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Abstract: TiO2-SiO2-based nanocomposites with highly porous structures are gaining ever 

increasing attention due to their specific properties and large variability of synthesis 

pathways together with wide information on the impact of the synthesis on the activity of the 

catalyst. This thereby offers an alternative approach to traditional/commercially available 

photocatalysts. In our work TiO2-SiO2 based aerogels were obtained and modified with 

various amount of Ag nanoparticles, using different synthesis pathways. In the first instance 

their photocatalytic activity was examined in detail, by observing major differences toward 

salicylic acid and correlating them with their morphological and structural properties 

(investigating their mesoporous character, band-gap values, crystallinity grade etc.). 

Applying different techniques such as diffuse reflectance spectroscopy (DRS), X-ray 

diffraction measurements (XRD), transmission electron microscopy (TEM), Raman- and X-ray 

photoelectron spectroscopy (XPS) the nanoparticles and their composite morphological and 
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structural details were successfully evaluated. Major differences were observed in the 

activity towards salicylic acid. 

Keywords: titanium-dioxide; aerogels; silver nanoparticles; photocatalysis 

 

1. Introduction 

The procurement together with the creative combination of well-known materials, while taking into 

account their functionalities and their properties, is one of the most challenging research-fields in 

materials chemistry. Considering the alarming level of pollution of the hydrosphere, more and more 

alternative pathways are being investigated in order to eliminate organic pollutants from the 

environment. TiO2 is considered to be a promising material in the photocatalytic pathway of  

pollutant-removal, being non-toxic, relatively inexpensive and showing a notable UV light absorption 

and photocatalytic efficiency toward degradation of various model-contaminants, like phenol [1,2], 

oxalic acid [3], formic acid [4], and methyl orange [5]. However, like everything in balanced nature, it 

also has its own insufficiencies which decrease its efficacy. The most representative ones are the wide 

band-gap energy of native titania, which only allows adsorption of UV light of the solar spectrum  

and its relatively low active specific surface area (for example, in the case of commercial P25  

around 50 m2·g−1). 

One of the solutions for the above mentioned impairments can be the preparation of titania-based 

aerogels with optimized morphology (surface area and porosity) using the sol-gel method. The main 

challenge after the “aging” process of the wet gel is to avoid surface tension effects during the drying 

process and to maintain a porous nanostructure. This can be achieved by freeze-drying, ambient pressure 

drying with the use of surfactants to lower the surface tension or by the mostly widely used approach, 

supercritical drying, which can overcome the surface tension effects during the drying process [6]. 

Regarding titania aerogels, a relatively large number of methodologies have already been published [7–12]. 

The materials generally have higher surface areas than native titania and after a heat treatment,  

they show high photocatalytic activity, due to an increase in the (photo)catalytically active surface area. 

Another approach in the preparation of photocatalytically efficient TiO2-based materials is the 

introduction of another oxide material in order to merge the desired properties. The addition of SiO2 to 

titania can increase the available surface area of the catalyst, allowing an increased efficiency of 

adsorption of the model-pollutants, thus improving the activity of the composite materials. The 

properties of the mixed oxides are also strongly dependent on the applied synthesis pathway [13,14]. 

In the case of obtaining TiO2-based photocatalytic materials with higher activity, incorporation of 

various non-metallic [15] and metallic elements [16] has also been attempted. Noble metals such as  

gold [17], platinum [18,19], and silver [20] have been highly exploited in this respect. Silver is a 

favorable metal for TiO2-based composites, due to its remarkable electric, optical, and catalytic 

characteristics [21]. Also Ag nanoparticles have been reported to exhibit high bactericidal activity and 

biocompatibility compared to other nanoparticles. The synergistic coupling of Ag and TiO2 can be 

attributed to the Schottky-barrier that is formed, giving the possibility for a Ag nanoparticle to act as an 
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electron trap, inhibiting the recombination of photogenerated electron-hole pairs and in this way 

enhancing the overall photocatalytic activity of the composites [22]. 

Based on the facts described above, the aim of the present work was the synthesis TiO2-SiO2-Ag-based 

aerogels, the investigation of Ag nanoparticles addition effect on their morphological and structural 

properties using various methods (diffuse reflectance spectroscopy (DRS), X-ray diffraction 

measurements (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy 

(TEM)), and last but not the least, the correlation of the results with photocatalytic efficiencies obtained 

on model-pollutant degradation. 

2. Results and Discussion 

2.1. Photocatalytic Performance of the Obtained Nanocomposites 

As a first step, the photocatalytic activities of the prepared composites were evaluated using salicylic 

acid, used as a standard pollutant (C = 5 × 10−4 M). From the slope of the ln C0/C, the kinetic constants 

of the studied composites were evaluated. 

By comparing the obtained photodegradation constants, it can be seen that the composites synthesized 

by two different pathways show different catalytic behavior: the composites synthetized with 

impregnation show about five times higher efficiency than composites which have only Ag nanoparticles 

(Ag NP) in their composition (e.g., 13.07 vs. 2.37, apparent kinetic constants obtained using composites 

with 0.75% Ag concentration). On the other hand it can be observed that the concentration of Ag NP 

(obtained by synthesis 2, see Section 3.2) does not have a significant effect on the photocatalytic  

efficacy of the catalysts, the differences between apparent kinetic constants being less than 5%  

(12.37 × 10−3 min−1 vs. 13.07 × 10−3 min−1 for the Ag concentrations of 1% vs. 0.75% respectively) 

(Figure 1). 

(a) (b) 

Figure 1. Degradation curves of salicylic acid using the in situ preparation method of  

(1) TiO2-SiO2-Ag (a) and mixing the precursors of TiO2-SiO2-Ag-based nanocomposites (b). 

Composites obtained by impregnation have the same tendency if we are looking for the Ag 

concentration with the highest efficiency; the composite with 0.75% noble metal being the most  
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active (2.37 × 10−3 min−1). The efficacies decreased significantly in both directions both for 

increased/decreased Ag content, with 13% and 31% respectively. It has to be mentioned that the 

unmodified/main catalyst (TiO2-SiO2) does not have any significant photocatalytic activity; the slight 

consumption of salicylic acid can be attributed partially to the adsorption of the model pollutant on the 

surface of the catalyst, a fact that was deducted from the color-change of the catalyst from white  

to yellow. 

2.2. Characterization of the Photocatalysts 

2.2.1. Morpho-Structural Characterization of the Composites (XRD, TEM) 

As a first step in the characterization process, the crystal size and phase composition was evaluated 

using diffraction patterns. As shown in Figure 2a, the prepared and thermally treated composites exhibit 

a weak broad peak around 25.2 °C, suggesting that TiO2 is just partially crystallized with a high amount 

of material still remaining amorphous after thermal treatment, having a crystallization grade around  

50% [23]. It can also be observed, that the peak mentioned above is not symmetric, a slight asymmetry 

of the peak can be observed at ≈30 °C, a fact that suggests the presence of brookite in a small 

concentration in the structure of the composite, the detail of which was also pointed out by Raman 

spectroscopy [24]. 

 

Figure 2. Diffraction patterns of the obtained composites (a), and transmission electron 

microscopy (TEM) micrograph of (2) TiO2-SiO2-Ag 1% (red arrows show the Ag aggregates, 

the blue arrows point out the single NPs) (b). 

In Figure 2b, the TEM micrograph of TiO2-SiO2-Ag 1% is presented. It needs to be mentioned that 

this sample was selected to be shown in detail because of the higher Ag concentration, which makes the 
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observation of the isolated Ag nanoparticles and the Ag NP aggregates easier (additional TEM images 

are presented in the Appendix, Figure A1). 

2.2.2. Diffuse Reflectance Spectroscopy (DRS) 

Another critical parameter, from the point of view of photocatalytic activity is the light-absorption 

properties of the TiO2-SiO2-based composites. 

As can be observed in Figure 3, the differences between the two approaches of the synthesis are 

clearly visible from the reflection spectra. Consequently, the evaluation of the band-gap values was 

mandatory. Using the Kubelka-Munk equation, it was found that the second synthesis pathway,  

(the precursor of Ag was added to the mixture of the precursors of the semiconductor) has both lower 

direct and indirect band-gap values (3.23–3.30 vs. 3.30). The method using TiO2-SiO impregnation was 

not so efficient when taking into account the procurement of composites with lower band-gap values.  

A clear tendency was not observable, the values obtained being in the range of the reference TiO2-SiO2. 

For detailed methodology regarding data evaluation using the Kubelka-Munk equation, please consult 

the Appendix, Figure A2. 

 

Figure 3. Comparison of different diffuse reflectance spectroscopy (DRS) spectra of the 

TiO2-SiO2-Ag composites containing differently shaped Au NPs. 
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Table 1. Photocatalytic efficiencies and morpho-structural properties of TiO2-SiO2-based composites. 

Sample kapp × 10−3 (min−1) Egdir Egindir Crystallites mean size [25]

TiO2-SiO2 - 3.30 2.99 3 
(1) TiO2-SiO2-Ag 0.5% 2.07 3.35 3.08 2 
(1) TiO2-SiO2-Ag 0.75% 2.37 3.27 2.88 3 

(1) TiO2-SiO2-Ag 1% 1.65 3.38 3.09 2 
(2) TiO2-SiO2-Ag 0.5% 12.37 3.23 2.97 4 
(2) TiO2-SiO2-Ag 0.75% 13.07 3.28 3.01 5 

(2) TiO2-SiO2-Ag 1% 12.73 3.3 3.015 4 
P25-Aeroxide 11.89 3.45 3.25 - 

2.2.3. Raman Spectroscopy 

The Raman spectra are displayed in Figure 4 and show broad features that indicate the existence of a 

structure whose crystallinity degree is relatively low. The signals around 150, 195, 244, 400, and  

620 cm−1 are due to the titania vibrations in TiO6 octahedral [26–28]. Besides the clear signature of the 

anatase phase (the signals around 195 and 400 cm−1 and partially the bands at 150 and 620 cm−1 which 

are most probably convoluted with others originating from another titania phase), the other spectral 

features around 245, 365 and 620 cm−1 (the last is the convoluted one) can be observed. These are 

probably due to the rutile or brookite phase [28,29]. 

 

Figure 4. Crystallinity related aspects investigated by Raman spectroscopy. 

Keeping in mind that anatase is the most thermodynamically stable phase at sizes less than 11 nm, 

brookite at crystal sizes between 11 and 35 nm, and rutile at sizes greater than 35 nm [30] and taking 

into consideration that the structure of the present investigated samples is built up from crystallites of 

only a few nanometers (see the XRD patterns and the derived data presented in Table 1), the most 

plausible hypothesis is that the brookite accompanies the anatase phase for all investigated samples.  
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presence of vibrations in SiO4 tetrahedral. Thus, the first signal can be assigned to the symmetric 

stretching vibrations of Si-O-Si, while the second one to the vibrations of Si-O bonds in SiO4 units, 

containing one non-bridging oxygen. The band at 725 cm−1 was obviously only apparent because of the 

high silver content and can be attributed to the deformation of O–(Si, Ti)–O and/or O–Ti–O in chain or 

sheet units [31,32]. This result shows the important structural influence of silver even if its concentration 

is relatively low, i.e., 1 wt%. There is another Raman band that can be observed around 800 cm−1 only 

for one of the samples with the lowest silver content, i.e., 0.5 wt%. This band can be assigned to the 

symmetric stretching vibrations of Si-O-Si in SiO4 tetrahedral [33]. 

2.2.4. X-ray Photoelectron Spectroscopy (XPS) 

Until now several interesting aspects have been discussed regarding these materials; determining 

crystallinity (XRD), optical properties (DRS) and some morphological features (TEM) and related 

information. However, catalytic/photocatalytic process “localization” is to do with the surface of these 

materials. Hence, the surface quality (hydrophylicity [34], surface defects [8], anchored surface  

groups [35], and contamination with carbon deposits) of the applied catalyst should be considered in 

each case [36]. This statement is also valid for the photocatalytic processes discussed here. 

The X-ray diffraction patterns have already shown that these materials are partially amorphous. 

Furthermore, in each sample series, Ag nanoparticles were introduced. This is rather important, because 

in the case of aerogels the presence of a noble metal nanoparticle can act as a local crystallization 

promoter (e.g., Au [37]). While a specific region of the material crystallizes around the Ag nanoparticle, 

the boundary zone between the amorphous/crystalline could contain a higher amount of defects. 

The Ti2p spectra of the two sample series can be seen in Figure 5. In both cases at 456.8 eV (2p3/2) 

and 461.5 eV (2p1/2), the presence of Ti3+ [38] was detected, indirectly confirming the presence of  

the earlier mentioned defects. In sample series (2) TiO2-SiO2-Ag, the amount of this species was 

approximately three times lower compared to sample series (1) TiO2-SiO2-Ag (e.g., 1.13 at% vs.  

3.18 at% in (2) TiO2-SiO2-Ag0.5 vs. (1) TiO2-SiO2-Ag0.5). The explanation can be found in the different 

deposition modes of the Ag. In the case of (2) TiO2-SiO2-Ag, AgNO3 was introduced together with the 

other precursors (Section 3.2), while in the case of sample series (1) direct reduction of AgNO3 with 

NaBH4 was performed in the presence of the already obtained TiO2-SiO2 aerogel. If the Ag precursor 

was already in the synthesis mixture, then in the obtained gel/aerogel network (pores) the Ag ions could 

have been easily reduced, resulting in a “bulk” Ag deposition; this was possible because the pores of the 

aerogels were larger than the Ag nanoparticles. As XPS is applicable only to the surface of the materials, 

the Ag nanoparticle driven crystallization effects occurring in the deep-bulk cannot be “seen”,  

resulting in a significantly lower Ti3+ concentration. 

If the above mentioned fact is true, then other “clues” for defective growth of this system should be 

observable. In the case of the O1s XPS spectra, a low binding energy oxygen was noticed in both of the 

sample series at 528 eV (besides the well-known components of Ti-O at 530 eV and Si-O at 532.2 eV), 

which, according to our recent work can be correlated with the concentration of Ti3+ [8,36,39]. 

Also in the present case the Ti3+ content is directly related to the presence of oxygen vacancies 

(defects). The defective nature of the sample series (1) TiO2-SiO2-Ag can also be discussed in the frame 

of the presence of Ti-O-Si bonds, visible at 531.2 eV [40]. As the concentration of the Ag nanoparticles 
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increases, the concentration of the Ti-O-Si bond decreases from 16.4–3.7 at%. It was known from the 

DRS spectra that the Ag nanoparticles tended to agglomerate at higher concentration values, resulting 

in more stable Ag nanoparticle agglomerates. This means that the number of individual particles 

contacted with the surface of the aerogel is lower with increasing Ag nanoparticle concentration. 

 

 

Figure 5. Cont. 
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Figure 5. Ti2p, O1s and Si2p XP spectra of the investigated composites. 

When an Ag nanoparticle is in contact with the surface of a semiconductor oxide, the Ag oxidizes 

slowly, using the O atoms available at the surface (it has already been shown, that a low Ag+ 
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sample set (2)—e.g., 3.18 vs. 1.13 at%. Furthermore, in sample set (2) the Ti3+ amount is constant, while 

the activity remains also unchanged (Figure 1, emphasizes the direct correlation of the activity with Ti3+). 

(b) No clear correlations were established between the photocatalytic activity/crystallinity related 

aspects or optical properties (band-gap values—Ti3+ content). 

The two points listed above suggest that indeed the key is in the concentration of Ti3+. If the Ti2p 

spectrum (Figure 5) is examined more closely it can be seen that the sample (1) TiO2-SiO2-Ag 0.5 

contains 3.18 at% of Ti3+. As the amount of the reduced Ag nanoparticles increases to 0.7 wt%, the Ti3+ 

concentration starts to increase also. This value reaches 3.82 at% in sample (1) TiO2-SiO2-Ag 0.7, while 

the activity is maximized (Table 1). If the Ag content achieves the critical value of 1 wt%, the Ti3+ 

content decreases somewhat (3.52 at%), while Ti2+ (0.41 at%) appears as shown by the component Ti2p 

component located at 455 eV [43]. This extremely reduced species can be easily oxidized to Ti4+ by 

molecular O2 (which is also present during the photocatalytic measurements, as described in the 

Experimental Section), resulting in an overall lower Ti3+ content and photocatalytic activity compared 

to sample (1) TiO2-SiO2-Ag 0.7. 

3. Experimental Section 

3.1. Materials 

All chemicals used were of analytical grade. Titanium isopropoxide (TIP), tetraethyl orthosilicate 

(TEOS), sodium borohydride, nitric acid and silver-nitrate were purchased from Sigma-Aldrich. 

3.2. The Synthesis of the TiO2-SiO2-Ag-Based Composites 

In order to obtain the desired nanocomposites, two synthesis pathways were followed as below: 

1. Synthesis pathway, by in situ impregnation of TiO2-SiO2 aerogels with the Ag precursor  

(AgNO3 dissolved in EtOH) followed by chemical reduction; 

2. Mixing the gel precursors for TiO2-SiO2-based composites with AgNO3. 

The aerogel used for (1) and for reference material was obtained as follows: a mixture of 

EtOH:H2Odist:HNO3conc (16.4:3:0.21 mL) was added dropwise to the mixture containing the 

semiconductor precursors (TIP:TEOS:EtOH—8.37:3.20:1.7 mL), under vigorous stirring. When the last 

drops were added, the jellification process started, obtaining the TiO2-SiO2 gel. The gels were kept in 

tightly closed polyethylene boxes for 2 weeks for maturation. The impregnation of TiO2-SiO2 gels with 

the Ag precursor was made by immersion in 14/21/28 mL of AgNO3 (ethanolic solution, 5 mM) for Ag 

NP concentration of 0.5/0.75/1% and stirred for 2 h. Then, cooled solution (≈4 °C) of 10 mM NaBH4 

(210/315/420 mL) was added dropwise and stirred for another 2 h. After the impregnation process,  

the gels were washed three times with EtOH and dried under low temperature supercritical conditions. 

Type (2) aerogels were prepared using three different solutions: A–mixture of the semiconductor 

precursors (8.34 mL TIP, 3.13 TEOS, 22.3 mL EtOH); B–3 mL H2O, 0.21 mL HNO3conc.;  

C–2.8/4.2/5.6 mL of AgNO3 (50 mM ethanolic solution) mixed with 5/7.5/10 μL of H2O and 

8.37/6.97/5.55 mL of EtOH to obtain 0.5/0.75/1% of Ag concentration. Solution C was added to B and 

the mixture was added dropwise to A (both under vigorous stirring). The jellification process was 
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observed with the addition of the last drops of solution of B + C. After 2 weeks of maturation, the gels 

were washed three times with EtOH and dried in supercritical conditionswith liquid CO2 (T >35 °C,  

p >1200 psi) by using a SAMDRI-PVT 3D (Tousimis, Rockville, MD, USA) equipment. The as prepared 

aerogels were subjected to a thermal treatment at 600 °C for 2 h (v = 4 °C/min). 

3.3. Characterization Methods and Instrumentation 

A Heraeus type photoreactor system with a TQ-150 high pressure mercury lamp (λ >310 nm) was 

used to measure photocatalytic activity. The photocatalyst suspension containing salicylic acid  

(c0, substrate = 0.5 mM, cphotocat = 1.0 g/L, Vsusp = 400 mL) was continuously purged by air in order to 

maintain a constant concentration of dissolved oxygen during the irradiation. The concentration decrease 

of the chosen pollutant was followed using a JASCO-V650 (Tokio, Japan) spectrophotometer  

(λ = 297nm). 

X-ray diffraction (XRD) measurements were performed on a Rigaku (Prague, Czech Republic) 

diffractometer (λCu Kα = 0.15406 nm, 40 kV, 30 mA, in the 20–40° (2Θ) regime). The crystallites average 

size was calculated using the Scherrer equation [43]. 

Transmission electron microscopic (TEM) measurements were executed to characterize the particle 

size and to identify the morphology of the particles. The TEM micrographs were recorded on a  

Philips CM 10 (Amsterdam, The Netherlands) instrument operating at 100 kV using Formvar coated  

copper grids. 

A JASCO-V650 spectrophotometer with an integration sphere (ILV-724) was used for measuring the 

DRS spectra of the samples (λ = 250–800 nm). To obtain the band-gap energy the reflectance data were 

converted to F(R) values according to the Kubelka-Munk theory. The band gap was obtained from the 

plot of [F(R)·E]1/2 versus energy of the exciting light [34,39]. 

XPS measurements were performed on a SPECS PHOIBOS 150 MCD instrument (Berlin, Germany), 

with monochromatized Al Kα radiation (1486.69 eV) at 14 kV and 20 mA, and a pressure lower than 

10−9 mbar. Samples were mounted on the sample holder using double-sided adhesive carbon tape.  

High-resolution Ti2p, O1s, and Si2p spectra were recorded in steps of 0.05 eV for analyzed samples. 

Analysis of the obtained data was carried out with Casa XPS software (Cheshire, UK). All peaks were 

deconvoluted using Shirley background and Lorentzian–Gaussian line shapes. The applied value of the 

Gaussian–Lorentzian ratio was 30. 

4. Conclusions 

The present study shows a systematic overview and comparison between TiO2-SiO2-Ag aerogels, 

obtained by different synthesis pathways. The differences between the photocatalytic efficiencies were 

correlated with the shift of the material’s optical properties and the structural variations/differences 

induced by the synthesis routes. It was shown that adjusting the synthesis route and the way in which 

the Ag NP’s are inserted in the structure of the composite can influence in a more efficient way the 

photocatalytic activity toward salicylic acid than simply increasing the Ag Nps concentration. This can 

be attributed to the fact that at higher Ag concentration, the noble metal nanoparticles concentrate in 

aggregates making their influence/efficiency lower than expected. 
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Appendix 

Figure A1. TEM micrographs of (1) TiO2-SiO2-Ag composites (0.5, 0.75, and 1% Ag content). 

 

Figure A2. Kubelka-Munk transformation of reflectance spectra regarding the indirect band-

gap value of (2) TiO2-SiO2-Ag 1%. 
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