
123

SPRINGER BRIEFS IN O P T I M I Z AT I O N

Balázs Bánhelyi
Tibor Csendes
Balázs Lévai
László Pál
Dániel Zombori

The GLOBAL
Optimization
Algorithm
 Newly Updated with
Java Implementation
and Parallelization

SpringerBriefs in Optimization

Series Editors

Sergiy Butenko
Mirjam Dür
Panos M. Pardalos
János D. Pintér
Stephen M. Robinson
Tamás Terlaky
My T. Thai

SpringerBriefs in Optimization showcases algorithmic and theoretical tech-
niques, case studies, and applications within the broad-based field of optimization.
Manuscripts related to the ever-growing applications of optimization in applied
mathematics, engineering, medicine, economics, and other applied sciences are
encouraged.

More information about this series at http://www.springer.com/series/8918

http://www.springer.com/series/8918

Balázs Bánhelyi • Tibor Csendes • Balázs Lévai
László Pál • Dániel Zombori

The GLOBAL Optimization
Algorithm
Newly Updated with Java Implementation
and Parallelization

123

Balázs Bánhelyi
Department of Computational Optimization
University of Szeged
Szeged, Hungary

Balázs Lévai
NNG Inc
Szeged, Hungary

Dániel Zombori
Department of Computational Optimization
University of Szeged
Szeged, Hungary

Tibor Csendes
Department of Computational Optimization
University of Szeged
Szeged, Hungary

László Pál
Sapientia Hungarian University
of Transylvania
Miercurea Ciuc
Romania

ISSN 2190-8354 ISSN 2191-575X (electronic)
SpringerBriefs in Optimization
ISBN 978-3-030-02374-4 ISBN 978-3-030-02375-1 (eBook)
https://doi.org/10.1007/978-3-030-02375-1

Library of Congress Control Number: 2018961407

Mathematics Subject Classification: 90-08, 90C26, 90C30

© The Author(s), under exclusive licence to Springer International Publishing AG, part of Springer
Nature 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-02375-1

Acknowledgments

The authors are grateful to their families for the patience and support that helped to
produce the present volume.

This research was supported by the project “Integrated program for training new
generation of scientists in the fields of computer science,” EFOP-3.6.3-VEKOP-16-
2017-0002. The project has been supported by the European Union, co-funded by
the European Social Fund, and by the János Bolyai Research Scholarship of the
Hungarian Academy of Sciences.

v

Contents

1 Introduction . 1
1.1 Introduction . 1
1.2 Problem Domain . 2
1.3 The GLOBAL Algorithm . 2

2 Local Search . 7
2.1 Introduction . 7
2.2 Local Search Algorithms . 8

2.2.1 Derivative-Free Local Search . 8
2.2.2 The Basic UNIRANDI Method . 9
2.2.3 The New UNIRANDI Algorithm . 9
2.2.4 Reference Algorithms . 14

2.3 Computational Investigations . 15
2.3.1 Experimental Settings . 15
2.3.2 Comparison of the Two UNIRANDI Versions 16
2.3.3 Comparison with Other Algorithms . 18
2.3.4 Error Analysis . 19
2.3.5 Performance Profiles . 22

2.4 Conclusions . 25

3 The GLOBALJ Framework . 27
3.1 Introduction . 27
3.2 Switching from MATLAB to JAVA . 28
3.3 Modularization . 28
3.4 Algorithmic Improvements . 31
3.5 Results . 37
3.6 Conclusions . 39

vii

viii Contents

4 Parallelization . 41
4.1 Introduction . 41
4.2 Parallel Techniques . 42

4.2.1 Principles of Parallel Computation . 42
4.3 Design of PGLOBAL Based on GLOBAL . 44
4.4 Implementation of the PGlobal Algorithm . 48

4.4.1 SerializedGlobal . 48
4.4.2 SerializedClusterizer . 51

4.5 Parallelized Local Search . 56
4.6 Losses Caused by Parallelization . 56
4.7 Algorithm Parameters . 56
4.8 Results . 57

4.8.1 Environment . 57
4.8.2 SerializedGlobal Parallelization Test . 58
4.8.3 SerializedGlobalSingleLinkageClusterizer Parallelization

Test . 61
4.8.4 Comparison of Global and PGlobal Implementations 62

4.9 Conclusions . 66

5 Example . 69
5.1 Environment . 69
5.2 Objective Function . 69
5.3 Optimizer Setup . 71
5.4 Run the Optimizer . 72
5.5 Constraints . 73
5.6 Custom Module Implementation . 77

A User’s Guide . 81
A.1 Global Module . 81

A.1.1 Parameters . 81
A.2 SerializedGlobal Module . 82

A.2.1 Parameters . 82
A.3 GlobalSingleLinkageClusterizer Module . 83

A.3.1 Parameters . 83
A.4 SerializedGlobalSingleLinkageClusterizer Module 84

A.4.1 Parameters . 84
A.5 UNIRANDI Module . 84

A.5.1 Parameters . 84
A.6 NUnirandi Module . 85

A.6.1 Parameters . 85
A.7 UnirandiCLS Module . 85

A.7.1 Parameters . 86
A.8 NUnirandiCLS Module . 86

A.8.1 Parameters . 86

Contents ix

A.9 Rosenbrock Module . 87
A.9.1 Parameters . 87

A.10 LineSearchImpl Module . 87

B Test Functions . 89

C DiscreteClimber Code . 101

References . 107

Chapter 1
Introduction

1.1 Introduction

In our modern days, working on global optimization [25, 27, 34, 38, 51, 67] is not
the privilege of academics anymore, these problems surround us, they are present
in our daily life through the increasing number of smart devices to mention one of
the most obvious evidences, but they also affect our life when public transport or
shipping routes are determined, or the placement of new disposal sites are decided,
to come up with some less obvious examples.

Although there are still a lot of open problems in classic mathematical fields [3],
like circle packing or covering (e.g., [39, 68]), dynamical systems [5, 13, 14], the list
of natural [2], life [4, 42, 41], and engineering fields of science, which yield new and
new problems to solve, is practically infinite. Simultaneously, a good optimization
tool becomes more and more valuable especially if it is flexible and capable of
addressing a wide range of problems.

GLOBAL is a stochastic algorithm [12, 15] aiming to solve bound constrained,
nonlinear, global optimization problems. It was the first available implementation
of the stochastic global optimization algorithm of Boender et al. [11], which at-
tracted several publications in those years and later [6, 7, 8, 9, 10, 37, 53, 59, 60].
Although, it was competitive and efficient compared to other algorithms, it has not
been improved much in the last decade. Its latest implementations were available
in FORTRAN, C, and Matlab. Knowing its potential (its competitiveness was doc-
umented recently in [15]), we decided to modernize this algorithm to provide the
scientific community a whole framework that offers easy customization with more
options and better performance than its predecessors.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1 1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02375-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-02375-1_1

2 1 Introduction

1.2 Problem Domain

In this book, we focus on constrained, nonlinear optimization. Formally, we consider
the following global minimization problems:

minx f (x),

hi(x) = 0 i ∈ E

gj(x)≤ 0 j ∈ I

a≤ x≤ b,

where we search for to the global minimizer point of f , an n-dimensional, real func-
tion. The equality and inequality constraint functions hi and g j and the lower and
upper bounds a and b of the n-dimensional variable vectors determine the feasible
set of points. If the constraints are present, we optimize over a new objective func-
tion, denoted by F , having the same optimum points as the original function, but it
represents the constraints by penalty terms. These increasingly add more and more
to the value of f as the point that we evaluate F gets farther and farther from the
feasible set of points (for details see [65]). This function replacement results in a
much simpler problem:

min
a≤x≤b

F(x).

The violation of the upper and lower bounds can easily be avoided if candidate
extremal points are generated within the allowed interval during the optimization.

1.3 The GLOBAL Algorithm

GLOBAL is a stochastic, multistart type algorithm that uses clustering to increase
efficiency. Stochastic algorithms assume that the problem to be solved is not hope-
less in the sense that the relative size of the region of attraction of the global min-
imizer points is not too small, i.e., we have a chance to find a starting point in
these regions of attraction that can then be improved by a good local search method.
Anyway, if you use a stochastic algorithm, then running it many times may result
in different results. Also, it is important to set the sampling density with care to
achieve good level of reliability while keeping speed. The theoretical framework of
stochastic global optimization methods is described in respective monographs such
as [63, 74]. The specific theoretical results valid for the GLOBAL algorithm are
given in the papers [7, 8, 11, 59, 60]. Among others, these state that the expected
number of local searches is finite with probability one even if the sampling goes for
ever.

Deterministic global optimization methods have the advantage of sure answers
compared to the uncertain nature of the results of stochastic techniques (cf. [27, 72]).

1.3 The GLOBAL Algorithm 3

On the other hand, deterministic methods [66] are usually more sensitive for the di-
mension of the problem, while stochastic methods can cope with larger dimensional
ones. The clustering as a tool for achieving efficiency in terms of the number of
local searches was introduced by Aimo Törn [71].

Algorithm 1.1 GLOBAL

Input

F : Rn → R

a,b ∈ R
n: lower and upper bounds

Return value

opt ∈ R
n: a global minimum candidate

1: i← 1, N ← 100, λ ← 0.5, opt ← ∞
2: new, unclustered, reduced, clustered ← {}
3: while stopping criteria is false do
4: new ← new ∪ generate N sample from [a,b] distributed uni f ormly
5: merged ← sort clustered∪new by ascending order regarding F
6: last ← i ·N ·λ
7: reduced ← select [0, ..., last] element from merged
8: x∗ ← select [0] element from reduced
9: opt ← minimum of {opt,x∗}

10: clustered, unclustered ← cluster reduced
11: new←{}
12: while size of unclustered > 0 do
13: x ← pop from unclustered
14: x∗ ← local search over F from x within [a,b]
15: opt ← minimum of {opt,x∗}
16: cluster x∗
17: if x∗ is not clustered then
18: create cluster from {x∗,x}
19: end if
20: end while
21: i← i+1
22: end while
23: return opt

Generally, global optimization is a continuous, iterative production of possible
optimizer points until some stopping condition is met. The GLOBAL algorithm
creates candidate solutions in two different ways. First, it generates random samples
within the given problem space. Second, it starts local searches from promising
sample points that may lead to new local optima.

If multiple, different local searches lead to the same local minima, then we gained
just confirmation. According to the other viewpoint, we executed unnecessary or, in
other words, redundant computation. This happens when many starting points are
in the same region of attraction. In this context, the region of attraction of a local
minimum x∗ is the set of points from which the local search will lead to x∗. With

4 1 Introduction

precaution, this inefficiency is reducible if we try to figure out which points are in
the same region of attraction. GLOBAL achieves this through clustering.

Before any local search could take place, the algorithm executes a clustering step
with the intent to provide information about the possible region of attractions of
newly generated samples. Points being in the same cluster are considered as they
belong to the same region of attraction. Relying on this knowledge, GLOBAL starts
local searches only from unclustered samples, points which cannot be assigned to
already found clusters based on the applied clustering criteria. These points might
lead us to currently unknown and possibly better local optima than what we already
know. The clustering is not definitive in the sense that local searches from unclus-
tered points can lead to already found optima, and points assigned to the same clus-
ter can actually belong to different regions of attraction. It is a heuristic procedure.

After discussing the motivation and ideas behind, let us have a look over the al-
gorithm at the highest level of abstraction (see the pseudo code of Algorithm 1.1).
There are two fundamental variables beside i: the loop counter, which are N, the
sampling size, and λ , the reduction ratio that modifies the extent of how many sam-
ples are carried over into the next iteration. These are tuning parameters to control
the extent of memory usage.

The random samples are generated uniformly with respect to the lower and upper
bound vectors of a and b. Upon sample creation and local searching, variables are
scaled to the interval [−1,1]n to facilitate computations, and samples are scaled back
to the original problem space only when we evaluate the objective function.

A modified single-linkage clustering method tailored to the special needs of the
algorithm is responsible for all clustering operations. The original single-linkage
clustering is an agglomerative, hierarchical concept. It starts from considering every
sample a cluster on its own, then it iteratively joins the two clusters having the
closest pair of elements in each round. This criterion is local; it does not take into
account the overall shape and characteristics of the clusters; only the distance of
their closest members matters.

The GLOBAL single-linkage interpretation follows this line of thought. An un-
clustered point x is added to the first cluster that has a point with a lower objective
function than what x has, and it is at least as close to x as a predefined critical dis-
tance dc determined by the formula

dc =
(

1−α
1

N−1

) 1
n
,

where n is the dimension of F and 0 < α < 1 is a parameter of the clustering proce-
dure. The distance is measured by the infinity norm instead of the Euclidean norm.
You can observe that dc is adaptive meaning that it becomes smaller and smaller as
more and more samples are generated.

The latest available version of GLOBAL applies local solvers for either differen-
tiable or non-differentiable problems. FMINCON is a built-in routine of MATLAB
using sequential quadratic programming that relies on the BFGS formula when up-
dating the Hessian of the Lagrangian. SQLNP is a gradient-based method capable
of solving linearly constrained problems using LP and SQP techniques. For non-

1.3 The GLOBAL Algorithm 5

differentiable cases, GLOBAL provides UNIRANDI, a random walk type method.
We are going to discuss this stochastic algorithm in detail later along our improve-
ments and proposals. For the line search made in UNIRANDI, one could also apply
stochastic process models, also called Bayesian algorithm [40].

The original algorithm proposed by Boender et al. [11] stops if in one main it-
eration cycle no new local minimum point is detected. This reflects the assumption
that the algorithm parameters are set in such a way that during one such main iter-
ation cycle, the combination of sampling, local search, and clustering is capable to
identify the best local minimizer points. In other words, the sample size, sample re-
duction degree, and critical distance for clustering must be determined in such a way
that most of the local minima could be identified within one main iteration cycle.
Usually, some experience is needed to give suitable algorithm parameters. The exe-
cution example details in Chapter 5 and especially those in Section 5.3 will help the
interested reader. Beyond this, some general criteria of termination, like exhausting
the allowed number of function evaluations, iterations, or CPU time can be set to
stop if it found a given number of local optima or executed a given number of local
searches.

Global can be set to terminate if any combination of the classic stopping rules
holds true:

1. the maximal number of local minima reached,
2. the allowed number of local searches reached,
3. the maximal number of iterations reached,
4. the maximal number of function evaluations reached, or
5. the allowed amount of CPU time used.

The program to be introduced in the present volume can be downloaded from the
address:

http://www.inf.u-szeged.hu/global/

Chapter 2
Local Search

2.1 Introduction

The GLOBAL method is characterized by a global and a local phase. It starts a lo-
cal search from a well-chosen initial point, and then the returned point is saved and
maintained by the GLOBAL method. Furthermore, there are no limitations regard-
ing the features of the objective functions; hence an arbitrary local search method
can be attached to GLOBAL. Basically, the local step is a completely separate mod-
ule from the other parts of the algorithm. Usually, two types of local search are con-
sidered: methods which rely on derivative information and those which are based
only on function evaluations. The latter group is also called direct search methods
[63]. Naturally, the performance of GLOBAL on a problem depends a lot on the
applied local search algorithm. As there are many local search methods, it is not an
easy task to choose the proper one.

Originally [12], GLOBAL was equipped with two local search methods: a quasi-
Newton procedure with the Davidon-Fletcher-Powell (DFP) update formula [19]
and a direct search method called UNIRANDI [29]. The quasi-Newton local search
method is suitable for problems having continuous derivatives, while the random
walk type UNIRANDI is preferable for non-smooth problems.

In [15], a MATLAB version of the GLOBAL method was presented with im-
proved local search methods. The DFP local search algorithm was replaced by the
better performing BFGS (Broyden-Fletcher-Goldfarb-Shanno) variant. The UNI-
RANDI procedure was improved so that the search direction was selected by using
normal distribution random numbers instead of uniform distribution ones. As a re-
sult, GLOBAL become more reliable and efficient than the old version.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1 2

7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02375-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-02375-1_2

8 2 Local Search

GLOBAL was compared with well-known algorithms from the field of global
optimization within the framework of BBOB 2009.1 BBOB 2009 was a con-
test of global optimization algorithms, and its aim was to quantify and com-
pare the performance of optimization algorithms in the COCO2 framework. Now,
GLOBAL was equipped with fminunc, a quasi-Newton local search method of
MATLAB and with the Nelder-Mead [46] simplex method implemented as in [36].
GLOBAL performed well on ill-conditioned functions and on multimodal weakly
structured functions. These aspects were also mentioned in [24], where GLOBAL
was ranked together with NEWUOA [55] and MCS [28] as best for a function
evaluation budget of up to 500n function values. The detailed results can be found
in [50].

One of the main features of the UNIRANDI method is its reliability, although
the algorithm may fail if the problem is characterized by long narrow valleys or the
problem is ill-conditioned. This aspect is more pronounced as the dimension grows.
Recently we investigated an improved variant of the UNIRANDI method [48, 49]
and compared it with other local search algorithms.

Our aim now is to confirm the efficiency and reliability of the improved UNI-
RANDI method by including in the comparisons of other well-known derivative-
free local search algorithms.

2.2 Local Search Algorithms

2.2.1 Derivative-Free Local Search

Derivative-free optimization is an important branch of the optimization where usu-
ally no restrictions are applied to the optimization method regarding the derivative
information. Recently a growing interest can be observed to this topic from the
scientific community. The reason is that many practical optimization problems can
only be investigated with derivative-free algorithms. On the other hand with the in-
creasing capacity of the computers and with the available parallelization techniques,
these problems can be treated efficiently.

In this chapter, we consider derivative-free local search methods. They may be-
long to two main groups: direct search methods and model-based algorithms. The
first group consists of methods like the simplex method [46], coordinate search [54],
and pattern search, while in the second group belong trust-region type methods
like NEWUOA [55]. The reader can find descriptions of most of these methods
in [61].

1 http://www.sigevo.org/gecco-2009/workshops.html#bbob.
2 http://coco.gforge.inria.fr.

http://www.sigevo.org/gecco-2009/workshops.html#bbob
http://coco.gforge.inria.fr

2.2 Local Search Algorithms 9

2.2.2 The Basic UNIRANDI Method

UNIRANDI is a very simple, random walk type local search method, originally
proposed by Järvi [29] at the beginning of the 1970s and later used by A.A. Törn
in [71]. UNIRANDI was used together with the DFP formula as part of a clus-
tering global optimization algorithm proposed by Boender et al. [11]. Boender’s
algorithm was modified in several points by Csendes [12], and with the two lo-
cal search methods (UNIRANDI and DFP), the algorithm was implemented called
GLOBAL.

UNIRANDI relies only on function evaluations and hence can be applied to
problems where the derivatives don’t exist or they are expensive to evaluate. The
method has two main components: the trial direction generation procedure and the
line search step. These two steps are executed iteratively until some stopping condi-
tion is met.

Algorithm 2.1 shows the pseudocode of the basic UNIRANDI local search
method. The trial point computation is based on the current starting point, on the
generated random direction (d), and on the step length parameter (h). The parame-
ter h has a key role in UNIRANDI since it’s value is adaptively changed depending
on the successful or unsuccessful steps. The opposite direction is tried if the best
function value can’t be reduced along the current direction (line 11). The value of
the step length is halved if none of the two directions were successful (line 19).

A discrete line search (Algorithm 2.2) is started if the current trial point de-
creases the best function value. It tries to achieve further function reduction along
the current direction by doubling the actual value of step length h until no more
reduction can be achieved. The best point and the actual value of the step length are
returned.

2.2.3 The New UNIRANDI Algorithm

One drawback of the UNIRANDI method is that it performs poorly on ill-
conditioned problems. This kind of problems is characterized by long, almost par-
allel contour lines (see Figure 2.1); hence function reduction can only be achieved
along hard-to-find directions. Due to the randomness of the UNIRANDI local
search method, it is even harder to find good directions in larger dimensions. As
many real-world optimization problems have this feature of ill-conditioning, it is
worth to improve the UNIRANDI method to cope successfully with this type of
problems.

10 2 Local Search

Algorithm 2.1 The basic UNIRANDI local search method

Input

f - the objective function
x0 - the starting point
tol - the threshold value of the step length

Return value

xbest , fbest - the best solution found and its function value

1: h← 0.001
2: f ails← 0
3: xbest ← x0
4: while convergence criterion is not satisfied do
5: d ∼ N(0, III)
6: xtrial ← xbest +h ·d
7: if f (xtrial)< f (xbest) then
8: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,d,h)
9: h← 0.5 ·h

10: else
11: d ←−d
12: xtrial ← xbest +h ·d
13: if f (xtrial)< f (xbest) then
14: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,d,h)
15: h← 0.5 ·h
16: else
17: f ails← f ails+1
18: if f ails≥ 2 then
19: h← 0.5 ·h
20: f ails← 0
21: if h< tol then
22: return
23: end if
24: end if
25: end if
26: end if
27: end while

Coordinate search methods iteratively perform line search along one axis di-
rection at the current point. Basically, they are solving iteratively univariate opti-
mization problems. Well-known coordinate search algorithms are the Rosenbrock
method [63], the Hooke-Jeeves algorithm [26], and Powell’s conjugate directions
method [54].

2.2 Local Search Algorithms 11

−2 −1 0 1 2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−10 −5 0 5 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Fig. 2.1 Ill-conditioned functions

Algorithm 2.2 The LineSearch function

Input

f - the objective function
xtrial - the current point
xbest - the actual best point
d and h - the current direction and step length

Return value

xbest , fbest , h - the best point, the corresponding function value, and the step length

1: while f (xtrial)< f (xbest) do
2: xbest ← xtrial
3: fbest ← f (xbest)
4: h← 2 ·h
5: xtrial ← xbest +h ·d
6: end while

The Rosenbrock method updates in each iteration an orthogonal coordinate sys-
tem and makes a search along an axis of it. The Hooke-Jeeves method performs
an exploratory search in the direction of coordinate axes and does a pattern search
(Figure 2.2) in other directions. The pattern search is a larger search in the improv-
ing direction also called pattern direction. The Powell’s method tries to discard one
direction in each iteration step by replacing it with the pattern direction. One impor-
tant feature of these algorithms is that they can follow easily the contour lines of the
problems having narrow, turning valley-like shapes.

12 2 Local Search

Fig. 2.2 Pattern search along the directions x2 − x0 and x5 − x2

Inspired by the previously presented coordinate search methods, we introduced
some improvements to the UNIRANDI algorithm. The steps of the new method
are listed in Algorithm 2.3. The UNIRANDI local search method was modified so
that after a given number of successful line searches along random directions (lines
7–36), two more line searches are performed along pattern directions (lines 39–53).

Algorithm 2.3 The new UNIRANDI local search algorithm

Input

f - the objective function
x0 - the starting point
tol - the threshold value of the step length

Return value

xbest , fbest - the best solution found and its function value

1: h← 0.001
2: f ails← 0
3: xbest ← x0
4: while convergence criterion is not satisfied do
5: itr← 0
6: Let dirsi, i= 1 . . .maxiters initialized with the null vector
7: while itr < maxiters do
8: d ∼ N(0, III)
9: xtrial ← xbest +h ·d

10: if f (xtrial)< f (xbest) then
11: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,d,h)
12: h← 0.5 ·h
13: f ails← 0
14: itr← itr+1
15: dirsitr ← xbest − x0
16: else
17: d ←−d
18: xtrial ← xbest +h ·d
19: if f (xtrial)< f (xbest) then

2.2 Local Search Algorithms 13

20: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,d,h)
21: h← 0.5 ·h
22: f ails← 0
23: itr← itr+1
24: dirsitr ← xbest − x0
25: else
26: f ails← f ails+1
27: if f ails≥ 2 then
28: h← 0.5 ·h
29: f ails← 0
30: if h< tol then
31: return
32: end if
33: end if
34: end if
35: end if
36: end while
37: The best point is saved as the starting point for the next iteration: x0 ← xbest
38: Let d1 ← dirsitr and d2 ← dirsitr−1 the last two pattern directions saved during the pre-

vious iterations
39: for i ∈ {1,2} do
40: xtrial ← xbest +h ·di
41: if f (xtrial)< f (xbest) then
42: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,di,h)
43: h← 0.5 ·h
44: else
45: di ←−di
46: xtrial ← xbest +h ·di
47: if f (xtrial)< f (xbest) then
48: [xbest , fbest ,h]← LineSearch(f ,xtrial ,xbest ,di,h)
49: h← 0.5 ·h
50: end if
51: end if
52: end for
53: end while

After each successful line search, new pattern directions are computed and saved
in lines 15 and 24. The role of the f ails variable is to follow the unsuccessful line
search steps, and the value of the h parameter is halved if two consecutive failures
occur (line 27). This step prevents h to decrease quickly, hence avoiding a premature
exit from the local search algorithm.

In the final part of the algorithm (lines 39–52), pattern searches are performed
along the last two pattern directions (dirsitr and dirsitr−1) computed during the pre-
vious iterations.

These steps can be followed in two-dimensions on Figure 2.3. After three
searches along random directions (d1, d2, and d3), we take two line searches along
the pattern directions x3 − x0 and x2 − x0 in order to speed-up the optimization pro-
cess.

14 2 Local Search

Fig. 2.3 Improved UNIRANDI: search along pattern directions x3 − x0 and x2 − x0

2.2.4 Reference Algorithms

The following derivative-free algorithms are considered for comparison in the sub-
sequent sections: Nelder-Mead simplex method (NM), Powell’s conjugate gradient
method (POWELL), Hooke-Jeeves algorithm (HJ), and NEWUOA, a model-based
method.

Nelder-Mead Simplex Method [46] The method uses the concept of a simplex, a
set of n+1 points in n dimension. The algorithm evaluates all the n+1 points of the
simplex and attempts to replace the point with the largest function value with a new
candidate point. The new point is obtained by transforming the worst point around
the centroid of the remaining n points using the following operations: reflection,
expansion, and contraction.

As the shape of the simplex can be arbitrarily flat, it is not possible to prove
global convergence to stationary points. The method can stagnate and converge to a
non-stationary point. In order to prevent stagnation, Kelley [35] proposed a restarted
variant of the method that uses an approximate steepest descent step.

Although the simplex method is rather old, it still belongs to the most reliable
algorithms especially in lower dimensions [52]. In this study, we use the implemen-
tation from [35].

Powell’s Algorithm [54] It tries to construct a set of conjugate directions by using
line searches along the coordinate axes. The method initialize a set of directions ui
to the unit vectors ei, i = 1, . . . ,n. A search is started from an initial point P0 by
performing n line searches along directions ui. Let Pn be the point found after n line
searches. After these steps the algorithm updates the set of directions by eliminating
the first one (ui = ui+1, i= 1, . . . ,n−1) and setting the last direction to Pn −P0. In
the last step, one more line search is performed along the direction un.

2.3 Computational Investigations 15

In [43], a recent application of Powell’s method is presented. We used a MAT-
LAB implementation of the method described in [56].

Hooke-Jeeves Method [26] It is a pattern search technique which performs two
types of search: an exploratory search and a pattern move. The exploratory search
is a kind of a neighboring search where the current point is perturbed by small
amounts in each of the variable directions. The pattern move is a longer search in
the improving direction. The algorithm makes larger and larger moves as long as
the improvement continues. We used the MATLAB implementation from [36].

NEWUOA Algorithm [55] NEWUOA is a relatively new local search method for
unconstrained optimization problems. In many papers [18, 24, 61, 21], it appeared
as a reference algorithm, and it is considered to be a state-of-the-art solver.

The algorithm employs a quadratic approximation of the objective function in the
trust region. In each iteration, the quadratic model interpolates the function at 2n+1
points. The remaining degree of freedom is taken up by minimizing the Frobenius
norm of the difference between the actual and previous model.

We used the implementation from NLopt [30] through the OPTI TOOLBOX [17]
which offered a MATLAB MEX interface.

2.3 Computational Investigations

2.3.1 Experimental Settings

We have conducted some computational simulations as follows: at first, the im-
proved UNIRANDI algorithm (nUNIR) was compared with the previous version
(UNIR) in terms of reliability and efficiency. The role of the second experiment is
to explore the differences between the new UNIRANDI method and the reference
algorithms presented previously. In the third experiment, all the local search meth-
ods were tested in terms of error value, while in the final stage, the performance
of the methods was measured in terms of percentage of solved problems. During
the simulations, the local search methods were tested as a part of the GLOBAL
algorithm.

The testbed consists of 63 problems with characteristics like separability, non-
separability, and ill-conditioning. For some problems, the rotated and shifted ver-
sions were also considered. Thirty-eight of the problems are unimodal, and 25 are
multimodal with the dimensions varying between 2 and 60.

The main comparison criteria are the following: the average number of function
evaluations (NFE), the success rate (SR), and the CPU time. SR equals to the ratio
of the number of successful trials to the total number of trials expressed as a per-
centage. A trial is considered successful if | f ∗ − fbest | ≤ 10−8 holds, where f ∗ is
the known global minimum value, while fbest is the best function value obtained.
The function evaluations are not counted if a trial fails to find the global minimum;

16 2 Local Search

hence it counts as an unsuccessful run. The different comparison criteria are com-
puted over 100 independent runs with different random seeds. In order to have a fair
comparison, the same random seed was used with each local search algorithm.

The maximal allowed function evaluation budget during a trial was set to 2 ·104 ·
n. The GLOBAL algorithm runs until it finds the global optimum with the specified
precision or when the maximal number of function evaluations is reached. In each
iteration of GLOBAL, 50 random points were generated randomly, and the 2 best
points were selected for the reduced sample. A local search procedure inside the
GLOBAL algorithm stops if it finds the global optimum with the specified precision
or the relative function value is smaller than 10−15. They also stop when the number
of function evaluations is larger than half of the total available budget.

During the optimization process, we ignored the boundary handling technique of
the UNIRANDI method since the other algorithms do not have this feature.

All computational tests have been conducted under MATLAB R2012a on a 3.50
GHz Intel Core i3 machine with 8 Gb of memory.

2.3.2 Comparison of the Two UNIRANDI Versions

In the current subsection, we analyze the reliability and the efficiency of the two
versions of the UNIRANDI method. The comparison metrics were based on the
average function evaluations, success rate, and CPU time. The corresponding values
are listed in Tables 2.1 and 2.2.

The success rate values show that the new UNIRANDI local search method is
more reliable than the old one. Usually, the earlier, called nUNIR, has larger or equal
SR values than UNIR, except the three multimodal functions (Ackley, Rastrigin, and
Schwefel). UNIR fails to converge on ill-conditioned functions like Cigar, Ellipsoid,
and Sharpridge but also on problems that have a narrow curved valley structure like
Rosenbrock, Powell, and Dixon-Price. The available budget is not enough to find the
proper directions on these problems. The SR value of the nUNIR method is almost
100% in most of the cases except some hard multimodal functions like Ackley,
Griewank, Perm, Rastrigin, and Schwefel.

Considering the average number of function evaluations, nUNIR requires less
number of function evaluations than UNIR, especially on the difficult problems.
nUNIR is much faster on the ill-conditioned problems, and the differences are more
pronounced in larger dimensions (e.g., Discus, Sum Squares, and Zakharov). On
the problems with many local minima, the nUNIR is again faster than UNIR ex-
cept the Ackley, Griewank, and Schwefel functions. The CPU time also reflects the
superiority of the nUNIR method over UNIR on most of the problems.

The last line of Tables 2.1 and 2.2 show the average values of the indicators
(NFE, CPU) computed over those problems where at least one trial was successful
for both of the methods. The SR is computed over the entire testbed. The aggregated
values of NFE, SR, and CPU time again show the superiority of the nUNIR method
over UNIR.

2.3 Computational Investigations 17

Table 2.1 Comparison of the two versions of the UNIRANDI method in terms of number of
function evaluations (NFE), success rate (SR), and CPU time—part 1

Function UNIR nUNIR

dim NFE SR CPU NFE SR CPU

Ackley 5 25,620 93 0.5479 32,478 87 0.7485
Beale 2 3133 98 0.0353 3096 98 0.0356
Booth 2 168 100 0.0062 185 100 0.0067
Branin 2 172 100 0.0064 170 100 0.0064
Cigar 5 68,357 41 0.5072 542 100 0.0133
Cigar 40 − 0 4.3716 6959 100 0.1140
Cigar-rot 5 57,896 57 0.9968 930 100 0.0317
Cigar-rot 40 − 0 11.9116 16,475 100 0.4034
Cigar-rot 60 − 0 20.3957 28,062 100 0.6363
Colville 4 15,361 100 0.1399 1524 100 0.0226
Diff. Powers 5 − 0 0.7139 1926 100 0.0340
Diff. Powers 40 − 0 9.7129 91,786 100 1.2864
Diff. Powers 60 − 0 18.5559 189,939 100 3.1835
Discus 5 5582 100 0.0555 1807 100 0.0253
Discus 40 23,480 100 0.2309 19,484 100 0.2354
Discus-rot 5 5528 100 0.1342 4477 100 0.1232
Discus-rot 40 23,924 100 0.4317 20,857 100 0.4153
Discus-rot 60 30,910 100 0.5558 27,473 100 0.5196
Dixon-Price 10 74,439 80 0.6853 15,063 100 0.1850
Easom 2 717 100 0.0133 1629 100 0.0295
Ellipsoid 5 41,611 100 0.2998 976 100 0.0170
Ellipsoid 40 − 0 9.7700 44,619 100 0.7159
Ellipsoid-rot 5 41,898 100 0.6076 3719 100 0.1058
Ellipsoid-rot 40 − 0 17.1149 71,799 100 1.7026
Ellipsoid-rot 60 − 0 26.7447 120,476 100 2.9285
Goldstein Price 2 233 100 0.0064 228 100 0.0072
Griewank 5 43,749 34 0.7231 44,944 34 0.7816
Griewank 20 12,765 100 0.1839 11,801 100 0.1792
Hartman 3 878 100 0.0298 241 100 0.0128
Hartman 6 9468 100 0.2168 1056 100 0.0513
Levy 5 31,976 77 0.6050 17,578 99 0.3083
Matyas 2 172 100 0.0062 188 100 0.0069
Perm-(4,1/2) 4 − 0 0.7295 44,112 44 0.7426
Perm-(4,10) 4 5076 1 0.8043 16,917 99 0.2437
Powell 4 43,255 33 0.5409 1787 100 0.0359
Powell 24 − 0 3.5950 42,264 100 0.4767
Power Sum 4 16,931 10 0.7003 33,477 86 0.4677
Rastrigin 4 36,665 22 0.6912 34,449 21 0.7817
Average 20,746 60 0.3247 11,405 95 0.2043

18 2 Local Search

Table 2.2 Comparison of the two versions of the UNIRANDI method in terms of number of
function evaliations (NFE), success rate (SR), and CPU time—part 2

Function UNIR nUNIR

dim NFE SR CPU NFE SR CPU

Rosenbrock 5 – 0 0.6763 2227 100 0.0415
Rosenbrock 40 – 0 5.7691 70,624 100 0.7062
Rosenbrock-rot 5 – 0 1.5023 1925 100 0.0719
Rosenbrock-rot 40 – 0 12.7113 78,104 100 1.4457
Rosenbrock-rot 60 – 0 20.0845 137,559 100 2.3171
Schaffer 2 18,728 36 0.2469 14,270 94 0.1499
Schwefel 5 57,720 40 0.7215 58,373 37 0.7733
Shekel-5 4 1314 100 0.0488 1401 100 0.0543
Shekel-7 4 1506 100 0.0513 1646 100 0.0616
Shekel-10 4 1631 100 0.0573 1817 100 0.0658
Sharpridge 5 – 0 0.9025 961 100 0.0209
Sharpridge 40 – 0 7.0828 12,755 100 0.2337
Shubert 2 854 100 0.0206 827 100 0.0211
Six hump 2 137 100 0.0058 139 100 0.0070
Sphere 5 292 100 0.0106 331 100 0.0122
Sphere 40 2698 100 0.0682 2799 100 0.0788
Sum Squares 5 373 100 0.0134 396 100 0.0147
Sum Squares 40 21,973 100 0.3337 8205 100 0.1696
Sum Squares 60 49,435 100 0.6189 15,053 100 0.3084
Sum Squares-rot 60 47,700 100 0.8876 17,472 100 0.4365
Trid 10 5588 100 0.0964 2057 100 0.0440
Zakharov 5 427 100 0.0148 465 100 0.0151
Zakharov 40 18,784 100 0.2799 16,913 100 0.2761
Zakharov 60 41,633 100 0.4633 36,191 100 0.4407
Zakharov-rot 60 42,813 100 0.9140 37,799 100 0.8689
Average 20,746 60 0.3247 11,405 95 0.2043

2.3.3 Comparison with Other Algorithms

This subsection presents comparison results between the new UNIRANDI method
and the reference algorithms of Nelder-Mead, POWELL, Hooke-Jeeves, and the
NEWUOA method. The main indicators of comparison are the average number of
function evaluations and success rate. The results are listed in Tables 2.3 and 2.4.

Considering the success rate values, we can observe the superiority of the nUNIR
and NEWUOA algorithms over the other methods. The smallest values for nUNIR
are shown for some hard multimodal problems like Griewank, Perm, Rastrigin, and
Schwefel with 34%, 44%, 21%, and 37%, respectively. NEWOUA has almost 100%
values everywhere; however, it fails on all the trials for the Different Powers (40 and
60 dimensions) and Sharpridge (40 dimension) functions. Although the POWELL
and Hooke-Jeeves techniques have similar behavior, the success rate values differ
often significantly. The Nelder-Mead simplex method usually fails in the trials in
higher dimensions, but in small dimensions, it shows very good values.

2.3 Computational Investigations 19

The average number of function evaluations show that NEWOUA is very fast and
outperforms the other methods on most of the problems. Another aspect is that the
rotated version of some functions usually requires substantially more function evalu-
ations (e.g., Discus, Ellipsoid in 40 dimension, and Sum Squares in 60 dimensions).
NEWOUA is followed by the POWELL method which is very fast especially on
separable functions (Cigar, Discus, and Ellipsoid). The Hooke-Jeeves algorithm is
less efficient than the POWELL method and is more sensitive to the rotation (see the
Discus, Ellipsoid, Rosenbrock, and Sum Squares functions). The Nelder-Mead algo-
rithm provides the best results after NEWUOA in the case of some functions (Beale,
Goldstein-Price, and Powell) in lower dimension. The new UNIRANDI method is
slower than the best algorithm from the counterparts. On the other hand, it is not that
sensitive to the rotation as the other algorithms (see Discus, Ellipsoid, and Rosen-
brock in 40 dimension).

The last two rows of Tables 2.3 and 2.4 present the average values of the indica-
tors (NFE, SR) that are computed over those problems where at least one trial was
successful for each of the five methods (Average1). The last row shows the results
without the Nelder-Mead algorithm (Average2). The success rate value is computed
here over the entire testbed. Considering the aggregated values, the reliability of
nUNIR is better than that of the other methods, and it proved to be the second most
efficient algorithm after NEWUOA.

2.3.4 Error Analysis

Comparing function error values is a widely used evaluation criterion of optimiza-
tion algorithms. Using this indicator the algorithms may be compared even if they
do not converge. The error value during a single trial is defined as the difference of
the function values of the best point found and the known global optimum. As the
algorithms are tested over several trials, we usually calculate average and median
error values.

The aim of the error analysis is to evaluate the average and median errors
of the six local search methods over the entire testbad. For this reason, the ob-
tained average error values for each problem were represented in a boxplot graph
(Figure 2.4). The boxplot contains the lower and upper quartiles, the median, the
mean values represented by big circles, and the outliers by small circles. The plots
use a logarithmic scale.

Considering the average values, the nUNIR method shows the smallest interquar-
tile range, and has the smallest number of outliers. UNIR shows a similar lower
quartile as nUNIR, but the upper quartile is much larger. The boxplot shows the
best results in the case of the NEWOUA, which obtained very small error values for
some functions. The POWELL method has also some small error values; however,
the third quartile is much larger than in the case of the NEWUOA. The Hooke-
Jeeves algorithm (HJ) spans a smaller range of values than POWELL having larger

20 2 Local Search

Table 2.3 Comparison of the nUNIR, NM, POWELL, HJ, and NEWUOA methods in terms of
number of function evaluations (NFE) and success rate (SR)—part 1

Function nUNIR NM POWELL HJ NEWUOA

dim NFE SR NFE SR NFE SR NFE SR NFE SR

Ackley 5 32,478 87 – 0 – 0 – 0 1868 100
Beale 2 3096 98 416 100 3043 98 11,439 9 363 100
Booth 2 185 100 113 100 118 100 2203 100 96 100
Branin 2 170 100 112 100 127 100 2265 100 376 100
Cigar 5 542 100 413 100 121 100 906 100 105 100
Cigar 40 6959 100 – 0 634 100 6408 100 172 100
Cigar-rot 5 930 100 428 100 432 100 4854 100 213 100
Cigar-rot 40 16,475 100 – 0 13,502 100 208,889 100 487 100
Cigar-rot 60 28,062 100 – 0 19,402 100 710,014 23 645 100
Colville 4 1524 100 512 100 1616 100 10,425 100 460 100
Diff. Powers 5 1926 100 42,169 24 370 100 11,136 100 – 0
Diff. Powers 40 91,786 100 – 0 71,098 98 9919 100 – 0
Diff. Powers 60 189,939 100 – 0 104,892 99 16,229 100 – 0
Discus 5 1807 100 337 100 121 100 843 100 105 100
Discus 40 19,484 100 – 0 644 100 5536 100 170 100
Discus-rot 5 4477 100 599 100 387 100 – 0 630 100
Discus-rot 40 20,857 100 – 0 37,496 100 493,423 87 11,075 100
Discus-rot 60 27,473 100 – 0 97,780 100 938,953 12 17,355 100
Dixon-Price 10 15,063 100 54,716 99 33,015 88 8094 100 8360 100
Easom 2 1629 100 2562 84 24,160 5 9292 59 4264 100
Ellipsoid 5 976 100 421 100 121 100 1003 100 99 100
Ellipsoid 40 44,619 100 – 0 641 100 6332 100 183 100
Ellipsoid-rot 5 3719 100 499 100 384 100 44,034 89 462 100
Ellipsoid-rot 40 71,799 100 – 0 33,003 100 126,523 100 26,282 100
Ellipsoid-rot 60 120,476 100 – 0 87,515 100 252,099 100 117,035 100
Goldstein Price 2 228 100 136 100 2272 98 3733 82 361 100
Griewank 5 44,944 34 37,925 43 73,922 1 44,848 37 14,059 36
Griewank 20 11,801 100 269,929 1 70,485 60 23,251 100 925 100
Hartman 3 241 100 160 100 147 100 1132 76 183 100
Hartman 6 1056 100 778 100 20,025 91 1293 84 401 100
Levy 5 17,578 99 10,745 100 30,517 5 33,048 89 1240 100
Matyas 2 188 100 109 100 118 100 3241 100 96 100
Perm-(4,1/2) 4 44,112 44 10,063 100 15,439 11 – 0 15,697 100
Perm-(4,10) 4 16,917 99 2213 100 11,747 42 37,309 29 1697 100
Powell 4 1787 100 276 100 729 100 17,759 29 478 100
Powell 24 42,264 100 – 0 105,542 37 – 0 14,791 100
Power Sum 4 33,477 86 8809 100 25,990 8 – 0 6117 100
Rastrigin 4 34,449 21 27,936 47 3110 5 27,993 13 33,710 20
Average1 7352 95 14,542 53 11,770 78 12,020 68 3245 89
Average2 14,612 95 – – 24,860 78 67,926 68 6945 89

2.3 Computational Investigations 21

Table 2.4 Comparison of the nUNIR, NM, POWELL, HJ, and NEWUOA methods in terms of
number of function evaluations (NFE), and success rate (SR)—part 2

Function nUNIR NM POWELL HJ NEWUOA

dim NFE SR NFE SR NFE SR NFE SR NFE SR

Rosenbrock 5 2227 100 980 100 9721 99 5281 100 685 100
Rosenbrock 40 70,624 100 – 0 512,485 1 56,340 100 13,760 100
Rosenbrock-rot 5 1925 100 1182 100 7288 99 20,585 100 640 100
Rosenbrock-rot 40 78,104 100 – 0 – 0 371,371 22 14,147 100
Rosenbrock-rot 60 137,559 100 – 0 – 0 935,695 23 21,493 100
Schaffer 2 14,270 94 4712 100 13,704 16 3233 82 3213 100
Schwefel 5 58,373 37 57,721 41 50,222 1 56,191 6 31,947 47
Shekel-5 4 1401 100 1110 100 2795 100 2662 100 588 100
Shekel-7 4 1646 100 957 100 6848 99 3641 100 493 100
Shekel-10 4 1817 100 965 100 10,681 99 5093 100 496 100
Sharpridge 5 961 100 – 0 634 100 32,400 4 41,470 2
Sharpridge 40 12,755 100 – 0 9652 100 – 0 – 0
Shubert 2 827 100 562 100 9922 59 6423 69 215 100
Six hump 2 139 100 117 100 106 100 1561 100 249 100
Sphere 5 331 100 264 100 120 100 537 100 113 100
Sphere 40 2799 100 – 0 634 100 4981 100 171 100
Sum Squares 5 396 100 305 100 125 100 826 100 94 100
Sum Squares 40 8205 100 – 0 676 100 7831 100 170 100
Sum Squares 60 15,053 100 – 0 992 100 11,353 100 213 100
Sum Squares-rot 60 17,472 100 – 0 21,692 100 60,914 100 2211 100
Trid 10 2057 100 – 0 2007 100 9749 100 1801 100
Zakharov 5 465 100 281 100 580 100 1675 100 331 100
Zakharov 40 16,913 100 – 0 53,942 100 – 0 16,222 100
Zakharov 60 36,191 100 – 0 143,548 100 – 0 32,818 100
Zakharov-rot 60 37,799 100 – 0 167,043 100 – 0 36,652 100
Average1 7352 95 14,542 53 11,770 78 12,020 68 3245 89
Average2 14,612 95 – – 24,860 78 67,926 68 6945 89

first quartile. The Nelder-Mead (NM) method performs worst in this context show-
ing the largest degree of dispersion of data.

The median error values show a similar behavior of the algorithms as in the case
of average values. Now the third quartile of Powell’s method is much better than in
the previous case.

The sum of average and median error values for each local search method are
reported in Table 2.5. This also contains one more row of error values summariz-
ing all functions except those for a difficult function (Schwefel). The results show
again that the new UNIRANDI method is quite reliable providing similar values as
NEWUOA.

22 2 Local Search

UNIR nUNIR NM POWELL HJ NEWUOA UNIR nUNIR NM POWELL HJ NEWUOA
10-15

10-10

10-5

100

105

1010
A

ve
ra

ge
 e

rr
or

 v
al

ue
s

 10
-15

10-10

10-5

100

105

1010

M
ed

ia
n

er
ro

r v
al

ue
s

Fig. 2.4 Box plots for average (left) and median (right) errors of the local search methods

Table 2.5 Sum of average and median error values

Local search UNIR nUNIR NM POWELL HJ NEWUOA

Sum of averagesa 88.55 83.93 8.5e+05 716.88 214.50 66.84
Sum of averagesb 10.38 1.22 8.5e+05 55.50 35.63 0.91
Sum of mediansa 129.98 119.44 8.5e+05 563.85 233.80 119.44
Sum of mediansb 115.48 1.00 8.5e+05 30.87 16.66 1.00

a Sum of average/median errors over all functions
b Sum of average/median errors over all functions except Schwefel

2.3.5 Performance Profiles

The performance indicators computed in the previous subsections characterize the
overall performance of the algorithms in an aggregate way. However, researchers
may be interested in other performance indicators that reveal some different impor-
tant aspects of the compared algorithms. Such performance measures were proposed
in [20, 22] or more recently in [23]. In both cases, the performance of the algorithms
is compared in terms of cumulative distribution functions of a given performance
metric.

In our tests, we use the data profile introduced in [20] and further developed
in [44]. The data profile consists of a set of problems P , a set of solvers S , and a
convergence test. Another important ingredient of the data profile is the performance
measure tp,s > 0 for each p ∈ P problem and an s ∈ S solver. The performance
measure considered in this study was the number of function evaluations.

The data profile of a solver s and α function evaluations are defined in the fol-
lowing way:

ds(α) =
1
np

size{p ∈P : tp,s ≤ α}, (2.1)

where np is the number of problems considered. In other words, ds(α) shows the
percentage of problems that can be solved with α function evaluations. Usually,

2.3 Computational Investigations 23

there is a limit budget on the total number of function evaluations. In this study we
consider larger budgets, that is, we are also interested in the long-term behavior of
the examined solvers.

A problem is considered to be solved using a given solver if a convergence test
is satisfied within the maximum allowed budget. The convergence test proposed in
[20] is as follows:

f (x0 − f (x))≥ (1− τ)(f (x0)− fL), (2.2)

where τ ∈ {10−1,10−3,10−5,10−7} is a tolerance parameter, x0 is the starting point
for the problem, and fL is computed for each problem as the best value of the objec-
tive function f obtained by any solver. The convergence test measures the function
value reduction obtained relative to the best possible reduction, and it is appropri-
ate in real-world applications where the global optimum is unknown. As in our
testbed, the global optimum values are known; we use the usual convergence test:
| f ∗− fbest | ≤ 10−8, where f ∗ is the global minimum value and fbest is the best func-
tion value achieved by the given solver.

We have performed several experiments by considering the different features of
the test problems. Hence the whole problem set is divided into the following subsets:
ill-conditioned problems, multimodal functions, low-dimensional problems (from 2
to 10 dimension), and functions with moderate or high dimensions (between 20 and
60 dimensions).

In all the tests, ten different runs of the GLOBAL method were performed on
each problem with the incorporated local search algorithms. The random seeds were
the same for all solvers to ensure fair comparisons. In all the scenarios, the maxi-
mum allowed function evaluations were set to 105. The results of data profiles for
the different settings can be followed in Figures 2.5, 2.6, and 2.7. Again, all the
figures use logarithmic scale.

According to Figure 2.5, NEWUOA clearly outperforms the other algorithms on
the whole testbed. Although the nUNIR is slower than NEWUOA, it solves slightly
more problems (85%). The POWELL and NM methods are the next fastest methods
(after the NEWUOA method) until 103 function evaluations by solving 73% and
68% of the problems in the final stage, respectively. The Hooke-Jeeves algorithm
is initially the slowest method, but in the end, it succeeded to solve 70% of the
problems. UNIR is slow for budgets larger than 8000 by solving only 68% of the
problems.

Considering the ill-conditioned problems (left picture of Figure 2.6), NEWUOA
is again the fastest method until 20,000 function evaluations. NEWUOA is outper-
formed in the final stage by POWELL, nUNIR, and HJ, by solving 83%, 79%, and
74% of the problems. After a quick start, Nelder-Mead drops significantly by solv-
ing only 52% of the problems. UNIR provides the worst result (48%) on this group
of problems, since the available budget usually is not enough to find a good direc-
tion.

The results on the multimodal problems (see the right picture of Figure 2.6) show
different aspects compared to the previous experiments. Now after NEWUOA, NM
and nUNIR are the fastest methods by solving 90% of the problems. The perfor-

24 2 Local Search

Fig. 2.5 Proportion of the solved problems over all functions

Fig. 2.6 Proportion of the solved problems for ill-conditioned (left) and multimodal (right) prob-
lems

mance of the coordinate search methods (POWELL and HJ) drops significantly by
achieving a proportion of 72% and 69%, respectively. The randomness of the UNI-
RANDI and the operations on simplices are more successful strategies for this group
of problems.

On the low-dimensional functions (left picture of Figure 2.7), the best local
solvers are the nUNIR, NEWUOA, and NM with 92%, 87%, and 85%, respec-
tively. The coordinate search methods (POWELL and HJ) and UNIR solve around
70% of the problems. The poor performance of the POWELL and HJ methods are

2.4 Conclusions 25

Fig. 2.7 Proportion of the solved problems for low-dimensional (left) and for moderate- and high-
dimensional (right) problems

due to the multimodal problems which belong mostly to the low-dimensional set of
problems. On the high-dimensional problems (right picture of Figure 2.7), the best
performers are the nUNIR, NEWUOA, POWELL, and HJ by solving 80%, 79%,
75%, and 70% of the problems, respectively. Now the performance of the Nelder-
Mead method drops significantly (41%) which is in accordance with the results from
Tables 2.3 and 2.4.

2.4 Conclusions

Summing it up, the performance of the GLOBAL method depends much on the
applied local search algorithm. The results show that both the efficiency and relia-
bility of the new UNIRANDI method have been improved much compared to the
previous variant especially on ill-conditioned problems. Compared to the other al-
gorithms, although NEWUOA and Powell’s conjugate gradient methods are usually
faster, the reliability of nUNIR is promising by solving the largest number of test
instances.

Chapter 3
The GLOBALJ Framework

3.1 Introduction

Henceforth in the whole chapter, we are going to use the terms GLOBALJ, GLOB-
ALM, and GLOBAL to distinguish the concept of the new JAVA implementation, the
previous MATLAB implementation [15], and the algorithm in the theoretic sense
[12] in that order for the sake of clarity.

The idea, and motivation, of reworking the algorithm came while we were work-
ing on an industrial designing task [16]. GLOBAL seemed the best tool to use, but
we encountered a handful of issues. First, the simulation software that calculated the
score of candidate solutions could not communicate directly with any of the imple-
mentations. Second, although we were able to muster enough computing capacity,
the optimization took a long time; it was barely within acceptable bounds. And last,
assembling the optimization environment and fine-tuning the algorithm parameters
needed much more time than it should have to. After a few weeks in the project, we
decided to rewrite GLOBAL to prevent such difficulties in the future.

We planned to improve the new implementation compared to the latest one in two
levels. First, we intended to create a new, easy to use and customize, modularized
implementation in contrast to GLOBALM, that is highly expert-friendly, and the
implementation is hard to understand. The user must be familiar with the MATLAB
environment in general and with the operation of the algorithm to acquire at least
some room to maneuver in customization. Second, we wanted to improve the algo-
rithm itself, reorder the execution of base functions to achieve a better performance,
and to make a parallel version of the algorithm to take advantage of multicore hard-
ware environment. Because the parallel implementation of GLOBAL tackles inter-
esting challenges on a different level, we dedicated the whole next chapter to its
discussion, and we are going to focus exclusively on the questions of the single
threaded implementation, GLOBALJ, and the algorithmic redesign.

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1 3

27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02375-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-02375-1_3

28 3 The GLOBALJ Framework

3.2 Switching from MATLAB to JAVA

Our first decisive action was choosing the right platform for the new implementation
during the planning phase. MATLAB is a great software for many purposes; it is like
a Swiss Army knife for computer science. It provides tools for almost every area of
expertise ranging from image processing to machine learning. It contains the widely
used algorithms and often provides more than one variants, as built-in functions, and
operations are optimized for efficient handling of large data. MATLAB is great for
the rapid creation of proof of concepts and research in general once someone got
used to the software.

From our point of view, the first problem is its limited availability for users.
MATHWORKS [69] commits a tremendous effort to maintain and improve MAT-
LAB every year that manifests in the annual license fee; therefore, the academic
institutions, universities, research groups, and larger companies are the usual users
of the software. The second limitation is the result of the smaller user base, just a few
software have an interface for the integration with MATLAB. Although MATLAB
is shipped with an array of tools to generate code in another language, to package
code as a shared library like a .NET assembly, figuring out the operation of auxil-
iary tools does not solve this problem, it only replaces it with another one while our
original intent remains the same: we wish to compute the solution of an optimization
problem. The third and last reason of change is the programming language used in
MATLAB. It is an interpreted language that will always produce much slower pro-
grams than the native ones written in C++ or JAVA applications that run on a deeply
optimized virtual machine.

Three programming platforms offered viable options that matched our goals,
Python, C++, and JAVA. Python and JAVA are one of the most popular choices
for software engineering [70], and they are used for a lot of great libraries in com-
puter science [1, 31, 32, 47, 64, 73] and financial economics [33, 57]. C++ has lost
a great portion of its fan base [70], but it is still the best language if someone wants
to squeeze out the last bit of performance from his or her machine. In the end of
our analysis, we decided to use JAVA for the new implementation. It provides a
better performance than Python, which is also an interpreted language. It is only
second to C++, but the language is familiar for much more researchers, and com-
mercial software products often provide JAVA interfaces for integration with other
applications.

3.3 Modularization

Easy customization was a priority during the design of GLOBALJ. If we look over
the main optimization cycle of the algorithm in Figure 3.1, we can observe that
GLOBAL can be decomposed into several key operations: generating samples, clus-

3.3 Modularization 29

tering samples, and executing local searches from the promising samples that prob-
ably lead to new local optima. GLOBAL organizes these operations into a pipeline
of sample production and processing. The different functions are connected through
the shared data that they all work on, but they are independent otherwise.

The applied local search method in GLOBAL has already been separated from
the rest of the optimizer in GLOBALM, but we intended to go one step further by
detaching the clustering operation too; therefore, the architecture of GLOBALJ is
built up from three modules: the local search module, the clustering module, and
the main module functioning as a frame for the previous two modules to implement
GLOBAL. We decided to leave the sample generation in the main module because
it is a very small functionality, and there is no smarter option than choosing random
samples from a uniform distribution that could have motivated the creation of a
fourth, sample generating module.

Fig. 3.1 The high-level illustration of the optimization cycle of GLOBAL. Solid lines denote con-
trol flow while dashed lines denote data flow

Besides providing the local search method for GLOBAL, the local search module
is responsible for several bookkeeping operations, counting the number of executed
objective function evaluations, and storing the new local optima found during the
optimization. The module must be provided with the upper and lower bound of
the feasible set in order to be able to restrict the searches to this region. GLOB-
ALJ contains the implementation of the local search algorithm UNIDANDI by
default.

Due to the special purpose of clustering in GLOBAL, the clustering module pro-
vides an extended interface compared to the usual operations that we would require
in other contexts. This module holds the clusters, their elements, and the unclus-
tered samples. The provided methods conform the way how GLOBAL depends on
clustering; thus, there are methods for the addition, removal, and query of unclus-

30 3 The GLOBALJ Framework

tered samples or clusters. Clustering both a single sample and all the stored, unclus-
tered samples can be issued as well. When providing a custom implementation for
GLOBALJ, we must take into account its role in the optimization. In general, the
aim of running a clustering algorithm is to cluster all the samples. The algorithm
only ends after every sample joined a cluster. On the contrary, the implementation
of this module must be designed to execute an incomplete clustering, to identify and
leave outliers alone. As GLOBAL does not use a priori knowledge about the regions
of attraction, it is wise to choose a hierarchical clustering concept [45, 62] and select
such a strategy which does not tend to prefer and create certain shapes of clusters,
for example, spherical ones, because the real regions of attractions may have arbi-
trary forms. GLOBALJ contains the implementation of an improved version of the
single-linkage clustering algorithm that we discuss in detail in the second part of the
present chapter.

Fig. 3.2 The modules, their provided functionality, and the interaction between them in the GLOB-
ALJ framework. As previously discussed, solid lines denote control flow while dashed lines denote
data flow

The main module, being the frame algorithm of GLOBALJ, generates samples,
evaluates the objective function at the samples, and moves them between the lo-
cal search and clustering modules repeating the optimization cycle. Both the local
search and clustering operations require the objective function values of the samples.
This information was kept in a globally available data structure before, but now it

3.4 Algorithmic Improvements 31

is attached to each sample individually instead. We implemented the main mod-
ule according to the improved algorithm of GLOBAL that will be our next topic.
Figure 3.2 illustrates the cooperation of the three modules of the framework.

3.4 Algorithmic Improvements

Studying the original algorithm, we identified two points in GLOBAL that can be
improved in order to avoid unnecessary local searches and replace them with much
less computation expensive operations.

Algorithm 3.1 Single-linkage-clustering

Input

F : objective-function

Input-output

clusters: cluster-set
unclustered: sample-set

1: N := count(values: samples-of(clusters)) + size(unclustered)
2: critical-distance := calculate-critical-distance(sample-count: N)
3: clustered-samples := create-set(type: sample, values: empty)
4: for all cluster: cluster in clusters do
5: for all sample: sample in cluster do
6: add(value: sample, to: clustered-samples)
7: end for
8: end for
9: for all sample: cs in clustered-samples do

10: for all sample: us in unclustered do
11: if distance(from: us, to: cs, type: ∞-norm) ≤ critical-distance

and F(cs) < F(us) then
12: move(value: us, from: unclustered, to: cluster-of(cs))
13: end if
14: end for
15: end for
16: return clusters, unclustered

Our first point of interest was the single-linkage clustering strategy, Algo-
rithm 3.1, applied in GLOBALM. The problem with this single-linkage interpreta-
tion realizes when a local search was executed, and its result along the starting point
joined an existing cluster, or a new one was created from the two samples.

32 3 The GLOBALJ Framework

Fig. 3.3 An example scenario when the original single-linkage clustering strategy of GLOBAL
fails to recognize cluster membership in time and makes an unnecessary local search as a result.
Black points denote clustered samples, gray points are unclustered samples, and white points rep-
resent the result of local searches

To better understand the problem, consider the following situation that is illus-
trated in Figure 3.3. We have three new samples, A, B, and C, which remained un-
clustered after the main clustering phase of an iteration; therefore, we continue with
local searches. First, we start a local search from A, and we find a cluster, the large
one in the center, which has an element that is within the critical distance of A′, the
result point of the local search; therefore, we add A and A′ to this cluster. We run
a clustering step according to Algorithm 3.1 in order to look for potential cluster
members within the critical distance of A and A′. As a result B also joins the cen-

3.4 Algorithmic Improvements 33

ter cluster. We follow the exact same process with C and add the two other sample
points, C and C′, to the same cluster again.

Algorithm 3.2 Recursive-single-linkage-clustering

Input

F : objective-function

Input-output

clusters: cluster-set
unclustered: sample-set

1: newly-clustered := create-set(type: sample, values: empty)
2: N := count(values: samples-of(clusters)) + size(unclustered)
3: critical-distance := calculate-critical-distance(sample-count: N)
4: clustered-samples := create-set(type: sample, values: empty)
5: for all cluster: cluster in clusters do
6: for all sample: sample in cluster do
7: add(value: sample, to: clustered-samples)
8: end for
9: end for

10: for all sample: cs in clustered-samples do
11: for all sample: us in unclustered do
12: if distance(from: us, to: cs, type: ∞-norm) ≤ critical-distance

and F(cs) < F(us) then
13: move(value: us, from: unclustered, to: newly-clustered)
14: add(value: us, to: cluster-of(cs))
15: end if
16: end for
17: end for
18: while size(newly-clustered)> 0 do
19: bu f f er := create-set(type: sample, values: empty)
20: for all sample: us in unclustered do
21: for all sample: cs in newly-clustered do
22: if distance(from: us, to: cs, type: ∞-norm) ≤ critical-distance

and F(cs) < F(us) then
23: move(value: us, from: unclustered, to: bu f f er)
24: add(value: us, to: cluster-of(value: cs)
25: end if
26: end for
27: end for
28: newly-clustered := bu f f er
29: end while
30: return clusters, unclustered

The goal of clustering is to minimize the number of local searches due to their
high cost. What we missed is that we could have avoided the second local search
if we had realized that C is in the critical distance of B indicating that it belongs to
the same cluster which A just joined; thus, the second local search was completely
unnecessary. The root cause of the problem is that the algorithm goes through the

34 3 The GLOBALJ Framework

samples only once in every clustering attempt and does not use immediately the
new cluster information. These clustering attempts execute steps until the algorithm
visited every single unclustered sample but not any further stopping in an incomplete
clustering state and starting local searches instead.

We improved the single-linkage clustering of GLOBAL to filter out the above
cases as well using Algorithm 3.2, an exhaustive, or recursive, clustering strategy.
This means that the new clustering approach separates samples into three sets, clus-
tered, newly clustered, and unclustered. In the beginning of each clustering attempt,
only the clustered and unclustered sets have elements. If a sample fulfills the join-
ing condition for a cluster, then it moves to the newly clustered set instead of the
clustered one. After we tried to add all unclustered samples into clusters for the first
time, we retry clustering the unclustered set but checking the joining condition for
only the elements of the newly clustered samples. After such a follow-up attempt,
newly clustered samples become clustered, and the samples added to a cluster in this
iteration fill the newly clustered set. We continue these iterations until there is no
movement between the sets. The recursive clustering compares each pair of samples
exactly once. They do not require further objective function evaluations; moreover,
a portion of these comparisons would happen anyway during the clustering steps
after later local searches.

For the second time, we focused on the reduction step and cluster data handling
to improve GLOBAL. The design of this algorithm and the first implementation
were created when the available physical memory for programs was very limited
compared to what we have today. The reduction step in the algorithm serves two
purposes. It removes a given portion of the samples from the search scope, the ones
having worse objective function values, as they will probably not be as good local
search starting points as the rest of the samples while discarding these samples also
keeps memory usage within acceptable and manageable bounds as practical algo-
rithm design may not disregard the future execution environment. The single but
significant drawback of this iterative sample reduction is that it can throw away al-
ready clustered samples as well continuously leaking the already gathered cluster
information.

Figure 3.4 illustrates this undesirable effect. The portion of the sample set that
have the worst objective function values is discarded in each iteration. These sam-
ples are mainly located far from the local optima that act like cluster centers from
our point of view. As subsequent iterations continue, clusters become more dense
because mostly the samples closer to the centers are carried over from one iteration
to the other. As the critical distance decreases with the number of sample points,
new clusters may appear in the place where the discarded samples of older clusters
were located previously. This cluster fragmentation can be interpreted in two differ-
ent ways. The first one is that GLOBAL discovers the finer granularity of the search
space, and the other interpretation is that the algorithm creates false clusters in the
sense that they do not represent newly discovered, separate regions of attraction that
potentially mislead the search. In our experience, the latter proved to be true in the
great majority of the examined cases.

3.4 Algorithmic Improvements 35

Fig. 3.4 An example of cluster erosion and fragmentation. The removal of samples with greater
objective function values in the reduction step transforms clusters to be more dense and concen-
trated around the local minima playing the role of cluster centers in this context. This process and
the decreasing critical distance over time may create multiple clusters in place of former larger
ones

Cluster fragmentation raises questions about efficiency. We put significant effort
into the exploration of the same part of the search space twice, or even more times.
More clusters mean more local searches. GLOBAL may also finish the whole op-
timization prematurely reaching the maximum allowed number of local searches
defined in the stopping criteria earlier. Intentionally forgetting the previously gath-
ered cluster information can cost a lot.

The reduction step can be turned off, but we would loose its benefits as well
if we decided so. Our solution is a modified reduction step that keeps the cluster
membership of points, but works as before in everything else. GLOBALJ stores

36 3 The GLOBALJ Framework

distinct references for the samples in all modules instead of using a single, shared,
central data structure everywhere as GLOBALM does.

Algorithm 3.3 GLOBALJ

Input

F : objective-function
a: vector
b: vector
termination: criteria
clusterizer: module
local-search: module

Output

optimum-point: sample
optimum-value: float

1: optimum-value := ∞, optimum-point := null, N := 100, λ := 0.5
2: search-space := create-distribution(type: uni f orm, values: [a,b])
3: reduced := create-list(type: sample, values: empty)
4: clusters := create-list(type: cluster, values: empty)
5: unclustered := create-list(type: sample, values: empty)
6: while evaluate(condition: termination) = f alse do
7: new := create-list(type: sample,

values: generate-samples(from: search-space, count: N))
8: add(values: new, to: reduced)
9: sort(values: reduced, by: F , order: descending)

10: remove(from: reduced, range: create-range(first: 1, last: [i ·N ·λ]))
11: add(values: select(from: reduced, holds: in(container: new)),

to: unclustered)
12: clusters, unclustered := clusterizer.cluster(objective-function: F ,

unclustered: unclustered, clusters: clusters)
13: while size(unclustered)> 0 do
14: x := select(from: unclustered, index: 1)
15: x∗ := local-search.optimize(function: F , start: x, over: [a,b])
16: if F(x∗)< optimum-value then
17: optimum-point := x∗, optimum-value := F(x∗)
18: end if
19: clusters, unclustered := clusterizer.cluster(objective-function: F ,

unclustered: {x∗,x}, clusters: clusters)
20: if cluster-of(x∗) = null then
21: cluster := create-cluster(type: sample, values: {x∗,x})
22: add(value: cluster, to: clusters)
23: end if
24: clusters, unclustered := clusterizer.cluster(objective-function: F ,

unclustered: unclustered, clusters: clusters)
25: end while
26: end while
27: return optimum-point, optimum-value

3.5 Results 37

As you can see in Algorithm 3.3, the pseudocode of the main module realizing
GLOBAL, the reduction step still discards the references of the worst portion of
samples in each iteration but does not call the removal methods of the clustering
module. This approach uses more memory and spends more time in clustering than
before but executes much less local searches having a reduced overall runtime in the
end if we consider the whole optimization.

3.5 Results

We tested GLOBALM and GLOBALJ on a large function set to study the effects of
the algorithmic improvements and the platform switch. Both implementations were
provided the same memory limit and computing capacity using an average desktop
PC, and we run the algorithms with the same parameter setting listed in Table 3.1.
We turned off all stopping criteria except the maximum allowed number of function
evaluations and the relative convergence threshold to concentrate only on the change
of the number of executed function evaluations.

Table 3.1 The applied parameter values for the comparison of GLOBALJ with GLOBALM. In
case of both algorithms, we ran a preliminary parameter sweep for the clustering parameter α for
every function, and we used the value for which the algorithm performed the best

New samples generated in a single iteration: 400

Sample reduction factor: 5%

Maximum number of allowed function evaluations: 108

Relative convergence threshold: 10−8

The α parameter of the critical distance: Optimal

Applied local search algorithm: UNIRANDI

We ran the optimizers 100 times for the entire test suite consisting of 63 fre-
quently used functions for the performance studies of optimization methods. First,
we concentrated on the executed function evaluations in our analysis. We narrowed
down the study to the 25 functions for which both GLOBALJ and GLOBALM found
the global optimum in all the runs in order to ensure the comparison of results of
equal quality. We measured the change of the average number of executed function
evaluations using the following formula:

change=
average of GLOBALJ−average of GLOBALM

average of GLOBALM
.

The results are presented in Figure 3.5. The algorithmic improvements of GLOB-
ALJ came up to our expectation in the great majority of the cases, just as we pre-
dicted, and only performed a bit worse when it fell behind GLOBALM scoring a
27% overall improvement.

38 3 The GLOBALJ Framework

Fig. 3.5 The relative change measured in percent in the average of executed function evaluations
by GLOBALJ compared to GLOBALM

GLOBALJ mainly had trouble and needed a little more effort in case of two sets
of functions, the Shekel and the Zakharov functions. The former family has a lot of
local optima that definitely require a higher number of local searches, and it is an
exception to our general observation about cluster fragmentation. A cluster created
in the early iterations of the optimization may have more than one local optima in
reality in case of these functions. As an opposite, the Zakharov functions have only
one global optimum each, but the search space around this point resembles to much
more like a plateau. Pairing this fact with high dimensionality, running more local
searches leads to the optimum earlier, and thus it is a better strategy than a decreased
number of local searches.

From the technical point of view, GLOBALJ was at least ten times faster than
GLOBALM in terms of runtime due to the efficiency difference of compiled and
interpreted languages.

3.6 Conclusions 39

3.6 Conclusions

This chapter focused on the core structure of GLOBAL and presented our work of
making the algorithm anew. We highlighted the key points of possible improvements
and introduced a solution in form of a new clustering strategy. We kept the basic ap-
proach of single-linkage clustering but modified it to incorporate every available
information about the search space as soon as possible and to keep all the cluster-
ing information during the whole run in order to prevent the redundant discovery of
the search space. We implemented the modified GLOBAL algorithm using a mod-
ularized structure in the JAVA language to provide the key options of customization
regarding the applied local solver and clustering algorithm. We compared the new
optimizer and the old MATLAB implementation, and we experienced a significant
improvement in the necessary function evaluations to find the global optimum.

Chapter 4
Parallelization

4.1 Introduction

The implementation of the parallel framework can operate in two different ways.
The parallel structure means those units which are copyable, and their instances,
may run independently from each other simultaneously. The serialized structure de-
notes singleton units in the optimization whose inner, lower-level operations run
parallel.

Adapting to the multicore architecture of desktop and supercomputers, it seemed
promising to create a parallel implementation of the Global algorithm, as we will be
able to solve more difficult problems this way in reasonable time. For one hand, dif-
ficulty in our context means computationally expensive objective functions, whose
evaluation can take several hours or even days for a single processor core. On the
other hand, the computational complexity of a problem may come from the size of
the search space that can require a lot of time to discover as well even in case of
simple objective functions.

Multithreading programs make the execution faster by converting operation time
to computational capacity. This conversion is 100% efficient ideally, but a lot of
factors can hinder this unfortunately. Information sharing between parallel program
segments is inevitable for distributing tasks and collecting results that require shared
data storage that limits the number of simultaneously operating program units.
Moreover, the characteristics of data flow can also degrade the efficiency. This af-
fects the optimizer too as it disturbs the iterative algorithms the most. The algorithm
depends on result of previous iterations by definition; thus they must be executed in
a specific order. Although we cannot violate the principle of causality, we can still
execute parallel tasks with lower efficiency in such environments.

Henceforth, we refer to the parallel version of the algorithm Global as PGlobal. It
is worth to choose an environment for the implementation of PGlobal that supports
fast execution and instantiation of parallel structures and possibly extends a former
Global implementation. Only GlobalJ fulfills these requirements. Using the advan-

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1 4

41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02375-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-02375-1_4

42 4 Parallelization

tages of the programming language JAVA and following a well-planned architecture,
we can easily extend GlobalJ with the additional functionality.

We set several goals that the implementation of PGlobal must achieve. First, it
must fit into the GlobalJ framework inheriting every key feature of the base al-
gorithm. Second, all the previously implemented, local optimizers must be inte-
grated into the new parallel architecture without changing their logic. Last but not
least, PGlobal must have an improved performance in case of both large search
space problems and high-cost objective functions. An optimizer that complies all
the above requirements will be a versatile tool that is capable of handling a large va-
riety of optimization problems with success offering customization and scalability.

4.2 Parallel Techniques

The concept of threading in data processing appeared as soon as processors started
to have more than one core. Multithreading may seem to be the golden hammer for
these problems, but it can bring very little or almost no improvement to the table
depending on the problem. We can divide the addition of thousands of elements to
sub additions, but the iterative nature of a physical simulation prevents most forms
of parallelization. In the latter case, we loose the capacity surplus as resources re-
main idle in most of the time due to the dependencies between tasks. We can also
improve iterative algorithms. For example, we can modify a random walk, local
search method to create multiple starting points in each iteration executing the orig-
inal single-threaded algorithm for the independent points. We select the best result
after each thread finished.

It can also happen that we generate a temporary information loss, despite all the
data available, that leads to reduced performance again. In this context information
loss is a situation when we have every information we need, but we cannot pro-
cess them in time due to parallelization resulting in the execution of unnecessary
calculations.

4.2.1 Principles of Parallel Computation

We based PGlobal on the algorithm used in GlobalJ with the modified clustering
strategy that we discussed in the previous chapter. You can already identify the tasks
in this algorithm that differ on their input data. Such tasks can run independently as
no data sharing is required between them. This is the serialized way of paralleliza-
tion of the Global algorithm. This means that we simultaneously execute the disjoint
tasks that were run sequentially before. This process is called functional decomposi-
tion. You can see on Figure 4.1 that the tasks A, B, and C can be executed in parallel
provided they are independent from each other.

4.2 Parallel Techniques 43

Fig. 4.1 Parallelization by functional decomposition

Another way to make a computation parallel is the simultaneous execution of the
same algorithm but on multiple data packets. This type of parallelization is called
data decomposition. Again, any produced data is only used within the producer exe-
cution unit. Matrix addition is a good example for this in which the same algorithm
is repeated a lot of times. Data decomposition is a basis of multithreading for graphic
cards. Figure 4.2 illustrates that algorithm A could work simultaneously on data 1,
2, and 3.

Fig. 4.2 Parallelization by data decomposition

44 4 Parallelization

Sometimes specific parts of an algorithm could run in parallel, while other must
run sequentially due to data dependencies. The best option is the application of
a pipeline structure for such systems where every part of the algorithm can work
without pause. The data packets are processed by going through all the units that
are responsible for the necessary data manipulations. This type of operation is con-
sidered sequential from the data point of view, while it is parallel algorithmically
from the subtask point of view. Figure 4.3 shows a pipeline that executes oper-
ations A, B, and C in that order on data 1 and 2. The dotted lines denote the
data flow.

Fig. 4.3 Parallelization by pipeline structure

4.3 Design of PGLOBAL Based on GLOBAL

We developed PGlobal to combine the advantages of both the algorithm Global
and the multithreaded execution. The existing algorithmic components have been
modified for the parallel execution. They must be prepared so that PGlobal will not
have a fixed order of execution in contrast to the sequential execution of Global.
We have to organize the data flow between the computation units and the effective
distribution of tasks between the different threads.

While the improved Global algorithm of GlobalJ takes advantage of sequential
execution as much as possible, PGlobal runs a less efficient algorithm but uses much
more computation capacity. This is necessary because the efficient sequential oper-
ation of the algorithm of GlobalJ comes from a strict order execution. Fortunately,

4.3 Design of PGLOBAL Based on GLOBAL 45

the increased computational performance well compensates the loss of algorithmic
efficiency.

PGlobal combines the advantages of functional decomposition, data decom-
position, and the pipeline architecture. It implements a priority queue that dis-
tributes the tasks between the workers implementing the functional and data de-
composition as multiple logical units and multiple instances of the same logical
unit run simultaneously. From the data point of view, the algorithm is sequen-
tial, working like a pipeline, as each data packet goes through a fixed sequence
of operations.

Figure 4.4 illustrates how the workers choose the tasks for themselves. Workers
always choose the data packet that already went through the most operations. In
this example, the data has to be processed by an algorithm in the stages A, B, and
C of the pipeline in that order. Stage B may only work on two data packets that
already went through stage A, while stage C may only work on data packets that
previously processed stage B. The workers operate simultaneously and process all
four data packets completely under ideal circumstances three times faster than a
single-threaded algorithm would do.

Fig. 4.4 The combination of functional decomposition, data decomposition, and the pipeline ar-
chitecture

We implemented PGlobal based on the principles previously presented in this
chapter. As we have already discussed, the algorithm can be separated into several
different tasks. The main operations are the sample generation, the clustering, and
the local searches. We study the available options of parallel computation in Global
from the perspective of the data that the different logical units use and produce
considering their relations and sequential dependency as well.

It is easy to see that sample generation is an independent functionality due to only
depending on one static resource, the objective function. Therefore no interference
is possible with any other logical component of the algorithm. Sample generation
precedes the clustering in the pipeline from the data point of view.

46 4 Parallelization

The clustering and the local search module have a close cooperation in the im-
proved algorithm. They work together frequently on the unclustered samples and
output of resulting local searches. Scheduling the alternating repetition of these
two operation types is easy in case of sequential execution. The immediate feed-
back from local searches at the appropriate moments provides the most complete
information for clustering all the time. The improved Global uses this strategy
(Figure 4.5).

Fig. 4.5 The control flow of the improved algorithm used in GlobalJ

If we have to handle large sample sets, clustering requires a lot of resources that
can only mean the usage of additional threads; therefore the parallelization of the
clustering module is inevitable.

The local search during the clustering could be implemented in PGlobal by using
a single thread for the searches while the others are waiting. However this part of the
algorithm cannot remain sequential in the multithreaded case. Clustering becomes
a quite resource heavy operation when a lot of sample points have to be handled
that we must address by running the clustering operation on more threads. Using a
single thread, the local search can block the execution even in the case of simple
objective functions or make it run for an unacceptably long time period in case of
complex objective functions. We cannot keep the improved clustering strategy and

4.3 Design of PGLOBAL Based on GLOBAL 47

run this part of the algorithm efficiently on multiple threads at the same time; we
have to choose. Fortunately with the slight modification of the improved algorithm,
we are able to process a significant portion of data in parallel while we only sacrifice
a little algorithmic efficiency.

We modified the algorithm in order to cease the circular dependency between
the clusterizer and the local search method. We need to keep all data flow paths
as we have to execute the whole algorithm on all the data, but after analyzing the
problem, we can realize that not all paths have to exist continuously or simultane-
ously. We do not modify the algorithm if the data path going from the clusterizer
to the local search method is implemented temporary. The data can wait at an exe-
cution point without data loss; therefore we can create an almost equivalent version
of the improved algorithm of GlobalJ. The resulting algorithm can easily be made
multithreaded using the separated modules. As long as there are samples to clus-
ter, the program works as expected, and it integrates the found local optima in the
meantime. This type of operation stops as soon as we run out of samples. This
is the trigger point that activates the previously inactive, temporary data flow. To
make this blocking operation as short-lived as possible, we only uphold this block-
ing connection while the unclustered samples are transferred from the clusterizer to
the local search module. We reestablish the multithreaded operation right after this
data transfer ends.

This modification results in an algorithm that moves samples in blocks into the
local search module and clusters local optima immediately. This algorithm com-
bines the improvements introduced in GlobalJ with the multithreaded execution
(Figure 4.6).

Fig. 4.6 Data paths between the algorithm components of PGlobal

48 4 Parallelization

4.4 Implementation of the PGlobal Algorithm

The algorithm has three logical parts. The first is the local search module, which
already appears in the implementation of GlobalJ, and we have to support it. The
second is the clustering module that is also a module in GlobalJ, but these mod-
ules only share the names and run different algorithms. The third is the main
module which runs the PGlobal algorithm and uses the sample generation, local
search, and clustering modules. The implementation of the main module is the
SerializedGlobal.

SerializedGlobal and SeralizedClusterizer together are responsible for the man-
agement and preparation of multithreaded execution. The former is the optimization
interface provided to the user; the latter is ready to handle the threads that enter the
module and cooperates with SerializedGlobal. The operation of the two modules is
closely linked.

4.4.1 SerializedGlobal

Every worker thread executes the same algorithm, PGlobal, that we illustrated on
Algorithm 4.1. A thread selects a task in each main optimization cycle. We de-
fined five different tasks; each one of them represents a data processing operation
or a key part of algorithm control. Threads always choose the task that represents
a latter stage in the algorithmic pipeline in order to facilitate the continuous flow
of samples.

We discuss the algorithm in execution order; the tasks appear in reverse of the
data flow. Each cycle starts with the check of stopping criterion.

The last stage is local search from the data point of view. The threads take sam-
ples for starting points from the origins synchronized queue. The thread executes
the local optimization and then clusters the found local optimum and the starting
point with the clusterize optimum algorithm (Algorithm 4.4). Threads return to the
main cycle after finishing the process.

The second task is related to the termination of the algorithm. We consider the
end of each clustering as the end of an iteration cycle. As soon as the number of
iterations reaches the allowed maximum, and we cannot run further local searches,
then we stop any sample transfer to the local search module, and the optimization
ends for the worker thread.

The third task is the clustering of the samples. If the clusterizer’s state is active,
the thread can start the execution. Entering the clustering module is a critical phase
of the algorithm, and it is guarded by a mutex synchronization primitive accordingly.
After finishing the clustering, threads try to leave the module as soon as possible,
while new threads may not enter. A portion of the unclustered samples is moved into
the origins queue after all threads stopped the execution of the clustering algorithm.

4.4 Implementation of the PGlobal Algorithm 49

The previously inactive data path is temporarily activated at this point until these
samples are transferred from one module to another.

If enough samples are available, threads can choose the fourth option, setup the
clustering. If the conditions are fulfilled, the samples are moved to the clusterizer,
and the module state becomes active.

The last option is the sample generation task. If the number of generated samples
reaches its limit, the thread stops the execution. Otherwise the threads create a single
sample and store it in the samples shared container and check if it is a new global
optimum.

With the execution of the tasks sooner or later, the system will reach a point
where at least one stopping criteria is fulfilled. The main thread organizes and dis-
plays the results after all threads are terminated.

The single-threaded algorithm does not have to put too much effort to main-
tain consistency and keep the right order of data processing operations. The se-
quential execution ensures the deterministic processing of data. Meanwhile, coor-
dinating the threads requires a lot of effort in the multithreaded case. The algo-
rithm part responsible for keeping the consistency is in size comparable with the
actual processing of data. The single thread executing Global is completely aware
of the system state during the whole optimization. On the other hand, PGlobal does
not have a dedicated thread for this; the system organizes itself through shared
variables.

Although the implemented algorithms are totally different, the modules that han-
dle them work similarly. The generation of a single sample happens the same way,
and the only difference is thread handling in case of multiple samples. A simple
cyclic structure is sufficient for the single-threaded execution that executes a prede-
fined number of iterations. In multithreaded environment the threads must commu-
nicate with each other to achieve the same behavior. We use a shared counter whom
a mutex guards. Threads may generate a new sample if and only if this counter did
not reach its allowed maximum. The number of generated samples is considered to
be a soft termination criterion. The algorithm can exceed the allowed maximum by
a value proportional to the number of worker threads.

Local search itself works also identically; again, its controlling changed on the
higher level. PGlobal uses the same local search implementations as GlobalJ with
a little modification for the sake of compatibility with SerializedGlobal that com-
pletely preserves backward compatibility. The samples that can be the starting points
of local searches are stored in the origins shared container in the parallel version of
the algorithm. Threads take samples from this container and run the adapted lo-
cal search algorithms started from them. After the local searches, threads finish the
data processing using the clusterize optimum algorithm (Algorithm 4.4) as the last
operation.

Algorithm 4.1 PGLOBAL

Input

F : Rn → R

a,b ∈ R
n: lower and upper bounds

N: number of worker threads
maxSampleSize: maximum number of generated samples
newSampleSize: number of samples generated for every iteration
reducedSampleSize: number of best samples chosen from the new samples
batch size: number of samples forwarded to local search after clustering (if 0 use the number
of currently free threads)

Return value

optimum: best local optimum point found

1: samples, unclustered, origins ← {}
2: optimum ← maximum value
3: start N−1 new threads
4: while true do
5: if check stopping criteria then
6: break
7: else if origins is not empty then
8: origin← remove from origins
9: if origin is null then

10: continue
11: end if
12: localopt ← local search over F from origin within [a,b]
13: optimum ← minimum of {optimum, localopt}
14: call clusterize optimum (origin, localopt)
15: else if check iteration count stopping criteria then
16: break
17: else if clusterizer is active then
18: call clustering samples (critical distance)
19: if this is last clustering thread then
20: origins ← remove batch size from unclustered
21: if |unclustered|= 0 then
22: set clusterizer to inactive
23: increase iteration count
24: end if
25: end if
26: wait until all clustering threads reach this point
27: else if clusterizer is inactive and |samples| ≥ newSampleSize then
28: lock samples
29: samples← sort samples by ascending order regarding F
30: unclustered ← remove [1, ...,reducedSampleSize] element from samples
31: update critical distance
32: set clusterizer to active
33: unlock samples
34: else if check sample count stopping criteria then
35: break
36: else
37: lock samples
38: samples← samples ∪ generate a new sample from [a,b] distributed uniformly
39: optimum ← minimum of {optimum, new sample}
40: unlock samples
41: end if
42: end while
43: return

4.4 Implementation of the PGlobal Algorithm 51

4.4.2 SerializedClusterizer

The new clustering module significantly differs from the previous implementation.
It is responsible for the same work on the lower level, but it requires a much more
sophisticated coordination due to the multithreading. The parallel version must also
pay continuous attention to uphold consistency, while GlobalJ simply needs to it-
erate over the samples. The new clustering module is much more connected to the
controller module. Tabs must be kept on the number of threads that is currently
clustering and ones that are waiting in sleep for the end of clustering. Serialized-
Global has the responsibility of managing these numbers through shared variables
accessible to every thread. The manipulation of other shared variables is based on
temporary privileges given exclusively to a single thread at a time. This is impor-
tant for the optimal usage of the processor cores and separation of iterations. By
their help and the close cooperation with the clusterizer of SerializedGlobal, we can
minimize the number of local searches and the runtime.

We had to completely redesign the control flow of the clustering module as it
is a crucial part from the parallelization point of view, and the previous version
does not support parallel execution at all. The new module has to implement two
functions. We need an ordinary clustering procedure, which assigns sample points
to already existing clusters, and a secondary clustering procedure, which clusters
the local optima.

Figure 4.7 shows two distinct control graphs. Although they are separated, they
still share and use the same data containers whose accessibility is managed by a
mutex. The dashed lines assign the mutually exclusive program parts to the lock.
We implemented the clustering module in a way that makes the independent execu-
tion of these two processes possible as long as no interaction is required between
them. Storing the samples and local optima in clusters and creating a new cluster
are considered such interactions.

The shared variables are updated so that these types of events can keep the in-
ner state constantly consistent. When the clusterizer is active, the worker threads
continuously examine the unclustered samples. The mutual exclusion allows us to
add a new cluster to the system anytime that will participate in the clustering right
after its addition. The only exception to this is the case when a worker thread con-
cludes that the clustering cannot be continued while a local optima is clustered.
The thread signals the event of finished clustering by setting a flag. The termina-
tion of clustering will not be stopped despite of the new cluster; however, this does
not cause any trouble in practice due to its very low frequency and insignificant
consequences. Now let us discuss the clustering samples algorithm (Algorithm 4.2)
in detail.

52 4 Parallelization

Fig. 4.7 The new clusterizer logic in PGlobal. The continuous lines denote control flow, and the
dashed lines denote mutual exclusion

The operation of clusterizer depends on its inner state hidden from the outside
when the clusterizer is active. The critical distance acts as an input parameter in the
case of sequential execution; clustering of sample points does not affect it. However
it is possible that the critical distance decreases in multithreaded environment when
an optimum point is being clustered; therefore it must be handled as part of the
clusterizer’s state. The inner state includes the sets of unclustered and clustered
samples. Clustering a local optimum affects the latter set too. The inner state is
changed when the clustering ends; a portion of the unclustered samples are moved
to the clustered set.

Clustering the local optima also includes the starting point of the originating
search. The inner states of the clusterizer are involved again. The set of clusters
might change, but the set of clustered samples and the critical distance will definitely
be updated.

4.4 Implementation of the PGlobal Algorithm 53

Algorithm 4.2 Clustering samples

Input

critical distance: single linkage distance threshold

State before

clustered: previously clustered samples
unclustered: new samples to be clustered

State after

clustered: clustered ∪ new clustered
unclustered: unclustered \ clustered

1: while clusterizer is active do
2: sample← remove from unclustered
3: if sample is null then
4: return
5: end if
6: if sample is fully examined then
7: sample→ insert into unclustered
8: continue
9: end if

10: insider ← find next element in clustered which is not compared to sample
11: cluster ← null
12: while insider is not null do
13: if ‖sample− insider‖2 ≤ critical distance and sample value > insider value

then
14: cluster ← cluster of insider
15: break
16: else
17: insider← get next element from clustered which is not compared to sample
18: end if
19: end while
20: lock all cluster modifications
21: if cluster is null then
22: sample→ insert into unclustered
23: else
24: sample, cluster → insert into clustered
25: if center point of cluster < sample then
26: center point of cluster ← sample
27: end if
28: end if
29: if all samples are examined then
30: set clusterizer to clean up
31: end if
32: unlock all cluster modifications
33: end while
34: return

The clusterizer has a variable to keep count the current clustering phase. The
starting phase is the inactive one, meaning that the clusterizer is waiting for new

54 4 Parallelization

Algorithm 4.3 Compare optimum to clusters

Input

optimum: clusterizable optimum point
clusters: previously created clusters
critical distance: single linkage distance threshold

Return value

cluster: the cluster which contains the optimum

1: cluster ← find next element in clusters which is not compared to optimum
2: while cluster is not null do
3: center ← center point of cluster
4: if ‖center−optimum‖2 ≤ critical distance/10 then
5: return cluster
6: end if
7: cluster ← find next element in clusters which is not compared to optimum
8: end while
9: return null

samples to cluster. At this point only local optima can be clustered. The following
phase is the active one triggered by the addition of samples denoting that clustering
is in progress and further samples cannot be added. The last phase is the cleanup
when the remaining unclustered samples are transferred to the local search module.
The phase will become active again when a subset of unclustered samples is moved
but not all. If all unclustered samples moved, the phase will be inactive again.

Considering a single-threaded execution, PGlobal works identical to GlobalM
if the maximal block size is chosen; adaptive block size or block size of 1 results
in equivalent algorithm to GlobalJ. Both algorithms generate samples, select a por-
tion of them for clustering, and try to cluster these samples. GlobalJ and correctly
parameterized PGlobal move exactly one sample into the local search module that
another clustering attempt follows again. These steps repeat while there are unclus-
tered samples. After evaluating every sample, a new, main optimization cycle starts
in Global, and a new iteration starts in PGlobal.

When the PGlobal algorithm operates with multiple threads, it differs from Glob-
alJ. The clusterizer closely cooperates with the local search method in the improved
Global to avoid as much unnecessary local search as possible. It makes out the most
from the available data by clustering samples whenever there is an opportunity. The
two modules work in turn based on the remaining unclustered sample points and
compare those that were not examined yet. GlobalJ starts a local search form an
unclustered sample point in case the previous clustering was incomplete. It repeats
this procedure until all samples joined a cluster. The parallel version supports this
activity with only moving whole sample blocks. A given amount of samples are
transferred to the local search module after the clustering finished.

The maximum of transferable samples can be parameterized. The disadvantages
of block movement are the possible unnecessary local searches if we transfer more
samples for local search than the number of available threads. Therefore the default

4.4 Implementation of the PGlobal Algorithm 55

Algorithm 4.4 Clusterize optimum

Input

origin: starting point of the local search which lead to optimum
optimum: optimum point to be clustered

State before

clusters: previously created clusters
clustered: previously clustered samples
critical distance: single linkage distance threshold

State after

clusters: clusters ∪ new clusters
clustered: clustered ∪ {origin, optimum}
critical distance: updated single linkage distance threshold

1: cluster ← call compare optimum to clusters (optimum, clusters, critical distance)
2: lock all cluster modifications
3: if cluster is null then
4: cluster ← call compare optimum to clusters (optimum, clusters, critical distance)
5: if cluster is null then
6: cluster ← new cluster
7: center point of cluster ← optimum
8: cluster → insert into clusters
9: end if

10: end if
11: origin, cluster → insert into clustered
12: optimum, cluster → insert into clustered
13: if center point of cluster < sample then
14: center point of cluster ← origin
15: end if
16: update critical distance
17: unlock all cluster modifications

setting for the block size parameter is determined adaptively, and it is set to the
number of threads that is currently exiting the clusterizer for optimal operation. This
can be interpreted as the multithreaded extension of the single-threaded operation
as it generates as much work as we are possibly able to handle. If a thread runs the
local search longer than the other ones, the faster threads will automatically start
clustering the search results and new local searches from the remaining samples
after that. The point of this method is to keep as many samples under local search
as the number of available worker threads. Balancing this way the clustering and
local searching operations, we can achieve similar efficiency as the single-threaded
versions do.

56 4 Parallelization

4.5 Parallelized Local Search

The local search methods are essential parts of the GlobalJ framework. We have to
make them compatible with PGlobal to offer the same functionality. These modi-
fications must keep backward compatibility of the resulting implementations with
GlobalJ.

The parallel execution makes two requirements for the units running in multiple
instances. It comes naturally that we have to create multiple algorithm instances that
work in total separation from each other only sharing their source code. We have to
provide an interface that facilitates the parametrization and cloning of ready-to-run
instances. These clones must operate on completely different memory segments;
they can only use the shared parametrization.

From a well-parameterized algorithm instance, we can easily create clones that
can be run in parallel if the above two conditions are met.

4.6 Losses Caused by Parallelization

Of course, the parallel operation comes with information loss in case of PGlobal
too. It is possible that the samples moved in into the local search module at the same
block could be clustered using the result of a search started from this block. This
can lead to unnecessary local searches; thus the program makes more computation
than required degrading the efficiency. This surplus effort will be minimal if the
size of the search space is large compared to the number of generated samples. It
is due to the very low probability of two samples being in the same block, within
the actual critical distance. This will not be a problem if the samples are generated
dense. Regardless of how difficult it is to calculate the objective function, the total
runtime spent on unnecessary local searches will be insignificant unless the number
of executed iterations is extremely low. If we deal with less iterations, it is worth to
distribute the same amount of samples between more iterations. In other words, we
should increase the maximum number of iterations.

Overrunning the soft criteria of algorithm termination can lead to further losses.
We can observe this phenomenon in the single-threaded versions, but parallelization
creates additional opportunities for it.

4.7 Algorithm Parameters

The parametrization of the SerializedGlobal algorithm looks very similar to the
parametrization of GlobalJ with a few exceptions. It is mandatory to provide the
objective function and the lower and upper bounds having the same equivalent in-
terpretation as before. The allowed maximum of the number of function evaluations,
iterations, generated samples during the whole optimization, local optima, and gen-

4.8 Results 57

erated samples in a single iteration are all optional. The number of worker threads
and the size of sample blocks transferred from the clustering module to the local
search module are additional, optional parameters. The usage of the latter is not
straightforward. Positive values denote the maximal transferable amount of samples
after all threads left the clustering module. All unclustered samples will certainly
be moved out from the clustering module and will be used as starting points for
local searches if this parameter value exceeds the number of samples generated in
a single iteration. This operation is analogous to implementations prior to GlobalJ
that worked the same way but on a single thread. If this parameter value is below
the number of unclustered samples remained in the clusterizer, the next iteration
will not start, and the idle threads start local searches. After a thread finished a local
search, and there is no other sample in the local search module, it reenters the clus-
terizer with the result of the searches and continues the clustering of the remaining
unclustered samples. It is important to note that the above-discussed sample move-
ment can easily happen right before another thread would enter the clusterizer. This
particular thread will not find any new samples, and therefore it will leave the clus-
tering module too. This leads to the arrival of another block of new samples in the
local search module eventually over feeding it. We can force a special operation if
we set the size of sample blocks transferred to the local search module to the value
0. The threads leaving the clusterizer will join in all cases; thus the thread leaving
last may determine the exact number of free threads. According to this parameter
setting, it recalculates the maximal number of transferable samples to fit the number
of threads. This results in optimal processor usage as we start precisely as many
local searches as it is necessary to use all the available computing resources. More-
over, it prevents the overfeeding effect by allowing the transfer of only one sample
when the latecomer threads exit.

4.8 Results

We studied the implementation of PGlobal from two aspects. First, we verified that
the parallelization beneficially affects the runtime, meaning that the addition of fur-
ther threads actually results in a speedup. Second, we executed a benchmark test to
compare Global with PGlobal.

4.8.1 Environment

We used the configuration below for all tests.

– Architecture: x86 64
– CPU(s): 24
– On-line CPU(s) list: 0–23
– Thread(s) per core: 2

58 4 Parallelization

– Core(s) per socket: 6
– Socket(s): 2
– Vendor ID: GenuineIntel
– CPU family: 6
– Model: 44
– Stepping: 2
– CPU MHz: 1600.000
– Virtualization: VT-x
– L1d cache: 32K
– L1i cache: 32K
– L2 cache: 256K
– L3 cache: 12288K
– Javac version: 1.8.0 45
– Java version: 1.8.0 71

4.8.2 SerializedGlobal Parallelization Test

Parallelization tests measure the decrease of runtime on problems that are numeri-
cally equivalent in difficulty but differ in computation time. In order to make these
measurements, we introduced the parameter hardness that affects the execution time
of functions. We calculate the objective function 10hardness times whenever we eval-
uate it. Thus the numerical result remains the same, but the time of function eval-
uation multiplies approximately by the powers of 10. The execution time greatly
depends on how the system handles the hotspots. The JAVA virtual machine opti-
mizes the code segments that make up significant portions of the execution time;
thus the ten times slowdown will not happen. Considering a given hardness, we
can only measure the speedup compared to the single-threaded executions. Another
noise factor is the nondeterministic nature of the system from the runtime point of
view. We repeated every test ten times and calculated the average of our measure-
ments to mitigate these interfering factors and to make the results more precise and
robust.

The following tables show the number of function evaluations and the time they
took in milliseconds as a function of the hardness and the number of threads. An
increase in the number of function evaluations was found. The overhead that we
experienced was proportional to the number of threads, due to the frequent need of
synchronizations during the optimization, and inversely proportional to the compu-
tation time of the objective function. You can see that the runtimes decrease in case
of every function up to application of four threads even without the alteration of the
evaluation time by the hardness. This remains true for up to eight threads in most
of the cases. The optimization time may increase by the addition of further threads
to the execution. We call this phenomenon the parallel saturation of the optimiza-
tion. This happens when the synchronization overhead of the threads overcomes
the gain of parallel execution. Additional threads only make things worse in such

4.8 Results 59

cases. The data series without hardness for the Easom function demonstrate well
this phenomenon.

This saturation starts to manifest if we use a greater number of threads, and we
set the function evaluation time at most ten times longer. Fitting a curve on the
runtimes, we can observe that its minimum is translated toward a higher number
of applied threads. This means that more threads are required for saturation as the
overhead ratio is lowered with the longer function evaluations. The runtime is con-
tinuously decreasing up to using 16 threads if we apply a 100 or 1000 multiplier
to the function evaluation times. We could not reach the saturation point with these
tests. The Easom and Shubert functions have a lesser runtime by one magnitude than
the other ones. The optimizer already found the optimum after approximately 104

function evaluations for these two problems, while roughly 105 evaluations were
needed for the other cases. The optimizer probably did not find the known global
optimum in the latter cases, but that is irrelevant from the multithreading speedup
point of view. The difference of magnitudes of function evaluations points out that
the parallelization of the computation is not affected when the evaluation numbers
are high enough (Table 4.1).

Table 4.1 Ackley, Easom, and Levy test function results

Time factor Threads
Ackley Easom Levy

NFE Runtime (ms) NFE Runtime (ms) NFE Runtime (ms)

1x

1 100,447 3553.7 10,120.7 122.7 101,742 3245.8
2 101,544 2216.0 10,246.4 118.4 104,827 2062.1
4 102,881 1515.3 10,506.2 112.0 112,351 1473.0
8 102,908 1145.9 11,078.7 145.0 129,056 1218.9
16 110,010 1319.3 12,335.9 149.0 156,907 1548.4

10x

1 100,553 5838.5 10,141.9 165.0 102,412 5414.6
2 101,510 3370.6 10,273.7 132.0 106,339 3057.4
4 103,495 2014.7 10,524.9 111.6 114,325 2100.8
8 105,977 1480.0 11,096.6 135.7 126,848 1592.3
16 112,008 1623.1 12,308.2 157.6 155,884 1714.4

100x

1 100,516 27,868.7 10,117.7 413.2 102,227 25,364.9
2 101,585 14,544.5 10,256.9 352.5 106,423 13,788.8
4 103,420 7806.3 10,546.1 323.9 115,158 8030.5
8 107,657 4544.7 11,083.6 296.3 130,109 5368.2
16 115,264 3648.3 12,313.7 257.8 167,983 5205.0

1000x

1 100,567 258,690.0 10,198.5 1722.4 102,028 236,066.5
2 101,561 126,315.0 10,249.7 865.1 106,792 123,220.0
4 103,616 68,691.5 10,521.7 508.7 114,847 70,399.6
8 107,718 39,430.4 11,116.0 441.6 128,450 45,762.8
16 115,875 27,021.5 12,358.5 389.3 160,364 37,713.4

The number of function evaluations is increased due to the parallel computation
induced by information loss. This means only 0.5–1.5% per thread, given the con-
figuration we used. The explanation is that the local searches do not stop after the

60 4 Parallelization

global evaluation limit is reached; thus every local search that is started right before
this limit will potentially use all the locally allowed number of function evalua-
tions. This behavior can be prevented if the local searches consider the global limit
of allowed function evaluations, but this has not been implemented in the current
optimization framework (Table 4.2).

Table 4.2 Rastrigin-20, Schwefel-6, and Shubert test function results

Time factor Threads
Rastrigin-20 Schwefel-6 Shubert

NFE Runtime (ms) NFE Runtime (ms) NFE Runtime (ms)

1x

1 100,479 2869.3 100,155 3027.4 10,085.1 145.0
2 100,921 1881.3 100,252 2337.6 10,192.2 140.2
4 101,436 1413.2 100,470 1555.4 10,381.4 128.0
8 103,476 1252.7 101,205 1596.5 10,788.4 127.2
16 107,937 1256.9 102,285 1408.3 11,686.9 145.2

10x

1 100,328 4201.9 100,189 3484.9 10,087.0 207.6
2 101,015 2514.4 100,362 2334.2 10,181.5 164.9
4 102,049 1682.6 100,616 1738.2 10,375.3 143.3
8 104,993 1364.4 100,691 1586.7 10,842.9 141.8
16 106,210 1444.7 101,445 1487.2 11,778.9 149.8

100x

1 100,354 17,438.0 100,185 7524.7 10,091.1 836.5
2 101,396 9114.6 100,327 4656.3 10,171.7 534.3
4 102,800 4958.8 100,782 2858.5 10,370.2 347.8
8 106,106 3053.4 101,176 2298.8 10,805.3 289.2
16 112,977 2627.7 102,331 1932.1 11,718.0 246.4

1000x

1 100,485 135,399.0 10,0248 44,046.3 10,091.4 6436.0
2 101,293 70,335.2 10,0394 22,780.3 10,177.3 3375.9
4 103,041 37,275.3 10,1183 12,169.5 10,383.5 1847.3
8 106,244 21,411.8 10,2259 7329.0 10,775.7 1249.9
16 113,135 14,740.0 10,4775 5466.7 11,679.3 979.4

We ran the optimization procedures with the following configuration:

<?xml version="1.0"?>
<Global package="org.uszeged.inf.optimization.algorithm"

class="optimizer.global.serialized.SerializedGlobal">
<ThreadCount type="long">

NUMCORES
</ThreadCount>
<NewSampleSize type="long">

10000
</NewSampleSize>
<SampleReducingFactor type="double">

0.66666
</SampleReducingFactor>
<LocalOptimizer class="optimizer.local.parallel.NUnirandiCLS">

<MaxFunctionEvaluations type="long">
10000

</MaxFunctionEvaluations>

4.8 Results 61

<RelativeConvergence type="double">
0.00000001

</RelativeConvergence>
<LineSearchFunction

class="optimizer.line.parallel.LineSearchImpl">
</LineSearchFunction>

</LocalOptimizer>
<Clusterizer class="clustering.serialized.

SerializedGlobalSingleLinkageClusterizer">
<Alpha type="double">

0.01
</Alpha>

</Clusterizer>
</Global>

4.8.3 SerializedGlobalSingleLinkageClusterizer Parallelization
Test

We tested the clustering module to study the effect of parallel computation to the
running time of the clustering cycle. Although the clustering is completely in-
dependent from the underlying objective function, we wanted to study it on real
data; therefore we chose to sample the five-dimensional Rastrigin function in the
xi ∈ [−5,5] interval. We generated N sample points to evaluate the function at these.
We selected random pairs from these sample points and added them to the clustering
module through the clustering samples algorithm (Algorithm 4.4).

This preparation resulted in approximately N/2 clusters of two elements. As
a second step of the setup, we repeated the sample generation, but the new sam-
ples were loaded into the clusterizer algorithm together as unclustered elements.
We started the multithreaded clustering in which all threads executed the parallel
clustering procedure (Algorithm 4.2). When a thread exited the module, it was also
stopped and could not reenter the clusterizer.

We measured how much time passed until all the threads stopped working on the
second sample set. The presented data is the average of ten runs. You can observe in
Table 4.3 that an improvement is achieved even in the case of low sample sizes. On
the other hand, the clustering easily became saturated that happens much later when
the sample size is greater. The unclustered samples are around 93% meaning that the
number of executed comparisons is greater than 93% of the theoretical maximum,
that is, at least 0.93∗N2.

62 4 Parallelization

Table 4.3 Clusterizer stress test results

Samples Threads Runtime (ms) Unclustered samples

102

1 7.3 92.5
2 6.1 95.5
4 6.6 94.3
8 8.8 95.4
16 12.9 94.1

103

1 132.5 938.7
2 94.5 938.7
4 77.0 936.3
8 80.6 940.7
16 120.1 938.3

104

1 11,351.5 9372.5
2 6255.4 9373.6
4 3549.3 9369.7
8 2730.1 9352.1
16 2183.1 9354.8

105

1 1,996,087.9 93,685.0
2 1,079,716.8 93,711.1
4 533,583.0 93,690.8
8 337,324.0 93,741.4
16 224,280.0 93,698.7

4.8.4 Comparison of Global and PGlobal Implementations

The aim of the comparison is to reveal the differences between the Global and
PGlobal implementations regarding the number of function evaluations. We applied
the same configuration for both optimizers; we ran PGlobal on a single thread the
same way as we ran Global. We studied 3 different local search algorithms and 63
test functions to have sufficient data. We ran every (global optimizer, local opti-
mizer, test function) configuration 100 times to determine the necessary number of
function evaluations to find the global optimum. We dropped any results of the 100
runs that were unsuccessful by using more than 105 function evaluations, and we
calculated the average of the remaining values. We call the ratio of successful runs
among all runs the robustness of the optimization. We only studied the configura-
tions that had a 100% robustness for both global optimizers.

The following is the configuration of the optimizer algorithm parameters for this
test:

<?xml version="1.0"?>
<Global package="org.uszeged.inf.optimization.algorithm"

class="<global_optimizer>">
<NewSampleSize type="long">

400

4.8 Results 63

</NewSampleSize>
<SampleReducingFactor type="double">

0.03999
</SampleReducingFactor>
<LocalOptimizer

class="optimizer.local.parallel.<local_optimizer>">
<MaxFunctionEvaluations type="long">

100000
</MaxFunctionEvaluations>
<RelativeConvergence type="double">

0.00000001
</RelativeConvergence>
<LineSearchFunction

class="optimizer.line.parallel.LineSearchImpl">
</LineSearchFunction>

</LocalOptimizer>
<Clusterizer class="<clusterizer>">

<Alpha type="double">
0.01

</Alpha>
</Clusterizer>

</Global>

Fig. 4.8 Distribution of relative differences between Global and PGlobal

Figure 4.8 shows that in 80% of compared configurations, the relative difference
was lower than 7%. The correlation between the two data vectors is 99.87%. The
differences in the results are caused by many factors. The results were produced
based on random numbers which can cause an error of a few percent. For the two
optimizer processes, the data were generated in a different manner which can also
cause uncertainties. These differences are hugely amplified by local optimization.
If every local search would converge into the global optimum, the number of func-

64 4 Parallelization

tion evaluations would be dominated by one local search. In case of multiple local
searches, the exact number is highly uncertain. With random starting points and
not optimized step lengths, the local search converges to a nearly random local op-
tima. The proportion of function evaluations will approximate the number of local
searches; hence the number of function evaluations is unstable in these cases. We
observed that on functions which have many local optima added to a slower function
as noise, the differences are in the common range in contrast to the high differences
that can be observed on “flat” and noisy functions. We suspect that the low noise
behavior is caused by the implicit averaging of the gradients along the local search.

 0

 5

 10

 15

 20

 25

−5
9

−5
7

−5
5

−5
3

−5
1

−4
9

−4
7

−4
5

−4
3

−4
1

−3
9

−3
7

−3
5

−3
3

−3
1

−2
9

−2
7

−2
5

−2
3

−2
1

−1
9

−1
7

−1
5

−1
3

−1
1 −9 −7 −5 −3 −1 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Relative differences (%)

Histogram of relative differences

Fig. 4.9 Relative difference in the number of function evaluations of PGlobal compared to Global

On Figure 4.9 most of the relative error results are in the [−7,3] range. It shows a
slight tendency that PGlobal uses on average less function evaluations. Most of the
extreme values also favor PGlobal.

Finally, we have tested three local search methods whether the parallel use on
a single core has different efficiency characteristic. The computational test results
are summarized in Tables 4.4, 4.5, and 4.6, for the local search algorithms of NUni-
randi, Unirandi, and Rosenbrock, respectively. The last column of these tables gives
the relative difference between the number of function evaluations needed for the
compared to implementations.

For all three local search techniques, we can draw the main conclusion that the
old method and the serialized one do not differ much. In the majority of the cases,
the relative difference is negligible, below a few percent. The average relative dif-
ferences are also close to zero, i.e., the underlying algorithm variants are basically
well balanced. The relative differences of the summed number of function evalua-
tions needed by the three local search methods were −1.08%, −3.20%, and 0.00%,
respectively.

4.8 Results 65

Table 4.4 NUnirandiCLS results: what is the difference between the Serialized Global and Global
in terms of number of function evaluations? The difference is negative when the parallel version is
the better

Function Serialized NFEV Global NFEV Difference

Beale 672.9 792.6 −15.12%
Booth 605.3 628.0 −3.61%
Branin 528.0 559.7 −5.65%
Cigar-5 1547.1 1518.1 1.91%
Colville 2103.4 2080.7 1.09%
Discus-40 27,131.8 27,586.0 −1.65%
Discus-rot-40 26,087.3 26,927.7 −3.12%
Discus-5 4943.0 5297.2 −6.69%
Discus-rot-5 4758.9 4940.1 −3.67%
Easom 1795.6 1708.8 5.08%
Ellipsoid-5 4476.1 4567.3 −2.00%
Griewank-20 8661.7 8005.2 8.20%
Hartman-3 605.7 644.6 −6.03%
Matyas 625.4 647.2 −3.37%
Rosenbrock-5 4331.5 3664.0 18.22%
Shubert 545.9 963.9 −43.37%
Six hump 502.9 524.9 −4.20%
Sphere-40 4169.8 4178.8 −0.22%
Sphere-5 827.2 853.1 −3.03%
Sum Squares-40 12,370.8 12,495.6 −1.00%
Sum Squares-5 881.0 915.9 −3.81%
Sum Squares-60 21,952.9 21,996.8 −0.20%
Trid 3200.8 3095.2 3.41%
Zakharov-40 17,958.9 18,334.0 −2.05%
Zakharov-5 984.7 1009.5 −2.46%

Average 6090.7 6157.4 −2.74%

Table 4.5 UnirandiCLS results: what is the difference between the Serialized Global and Global
in terms of number of function evaluations? The difference is negative when the parallel version is
the better

Function Serialized NFEV Global NFEV Difference

Beale 762.3 1060.1 −28.10%
Booth 576.6 600.8 −4.02%
Branin 516.1 540.7 −4.55%
Discus-rot-40 33,824.2 35,055.3 −3.51%
Discus-5 18,605.9 19,343.3 −3.81%
Discus-rot-5 14,561.8 15,513.8 −6.14%
Goldstein Price 502.4 584.2 −13.99%
Griewank-20 9847.8 10,185.8 −3.32%
Matyas 615.2 646.1 −4.78%
Shubert 517.0 895.1 −42.24%
Six hump 480.6 501.0 −4.06%
Sphere-40 4083.1 4118.7 −0.86%
Sphere-5 781.9 794.3 −1.56%
Sum Squares-40 24,478.5 24,272.1 0.85%
Sum Squares-5 856.2 867.9 −1.35%
Zakharov-40 20,431.5 20,811.9 −1.83%
Zakharov-5 953.4 983.9 −3.10%

Average 7787.9 8045.6 −7.43%

66 4 Parallelization

Table 4.6 RosenbrockCLS results: what is the difference between the Serialized Global and
Global in terms of number of function evaluations? The difference is negative when the parallel
version is the better

Function Serialized NFEV Global NFEV Difference

Beale 709.6 831.9 −14.70%
Booth 593.8 616.5 −3.68%
Branin 599.9 620.4 −3.30%
Six hump 546.5 563.5 −3.02%
Cigar-5 1536.9 1600.0 −3.94%
Cigar-rot-5 3438.6 3551.2 −3.17%
Colville 2221.4 2307.7 −3.74%
Discus-40 30,721.0 31,059.7 −1.09%
Discus-rot-40 30,685.2 30,960.3 −0.89%
Discus-5 2946.2 3113.2 −5.36%
Discus-rot-5 2924.3 3085.3 −5.22%
Discus-rot-60 47,740.6 48,086.6 −0.72%
Easom 4,664.2 11,178.8 −58.28%
Ellipsoid-5 4493.3 4509.8 −0.37%
Goldstein Price 569.2 693.0 −17.87%
Griewank-20 12,647.5 12,222.8 3.47%
Hartman-3 975.2 1040.7 −6.29%
Hartman-6 3047.7 2493.5 22.23%
Matyas 628.5 651.8 −3.58%
Powell-24 42,488.6 43,425.8 −2.16%
Powell-4 1950.9 2006.7 −2.78%
Rosenbrock-5 4204.7 3527.7 19.19%
Shekel-5 4790.0 3775.0 26.89%
Shubert 553.5 1153.3 −52.01%
Sphere-40 7788.6 7839.7 −0.65%
Sphere-5 905.0 924.2 −2.08%
Sum Squares-40 30,688.5 30,867.8 −0.58%
Sum Squares-5 970.1 1005.3 −3.50%
Sum Squares-60 71,891.9 72,063.5 −0.24%
Trid 3919.0 3925.0 y0.15%
Zakharov-40 34,177.5 35,605.0 −4.01%
Zakharov-5 1123.7 1178.1 −4.62%
Zakharov-60 80,742.9 82,393.3 −2.00%

Average 13,269.2 13,269.0 −4.19%

4.9 Conclusions

This chapter provided the considerations along which we have designed and imple-
mented the parallel version of the GlobalJ algorithm. Our main aim was to have
a code that is capable to utilize the widely available computer architectures that
support efficient parallelization. The careful testing confirmed our expectations and
proved that the parallel implementation of PGlobal can utilize multiple core com-

4.9 Conclusions 67

puter architectures. For easy-to-solve problems with low computational cost, the
PGlobal may show weaker efficiency. But for computationally expensive objective
functions and for difficult to solve problems, the parallel version of Global can
achieve closely linear speedup ratio, i.e., the total solution time can more or less
be divided by the number of available CPU cores. The other way around, we have
checked what are the costs of parallelization. According to our computational tests,
the parallel implementation of the local search algorithms needed mostly somewhat
less function evaluations than their serial use—when run on a single core.

Chapter 5
Example

5.1 Environment

Before we can start work with the GLOBAL optimizer package, we must set up a
proper environment. The package uses the Java 8 virtual machine. To use the pack-
age with compiled objective functions, the Java 8 Runtime Environment (JRE) is
sufficient. However, the common case is that the objective function is not compiled,
and it implies the need for the Java 8 Development Kit (JDK). Both systems can be
downloaded from https://java.com/en/.

5.2 Objective Function

We have to provide an objective function in the form of a Java class. The class
must implement the org.uszeged.inf.optimization.data.Function interface thus all of
its functions. The implementation must not have inner state if the optimization is
done in parallelized environment.

The boolean isDimensionAcceptable(int dim) function receives the dimension
setting before every optimization. If the setting is applicable for the objective func-
tion, it must return true; otherwise it returns false. For example, the ∑dim

i=1 x
2
i can be

easily extended for any positive integer dimensions. On the other hand, the function
can be the simulation of a race car, and the highest velocity is tuned through the
wheels radius. In this case there is no place for more dimensions.

The boolean isParameterAcceptable(Vector lb, Vector ub) function receives the
lower bound of each dimension in lb and the upper bound of each dimension in ub.
The optimization is bounded by this N dimensional rectangle. The function have to

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1 5

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02375-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-02375-1_5

70 5 Example

return the value true if the bounds are acceptable and otherwise false. In the example
of the race car, the radius must be positive and not bigger than some reasonable
amount.

The last function is the double evaluate(Vector x) which calculates the function
value at the given point x. The vector x is guaranteed to have every coordinate be-
tween the corresponding lb and ub values.

To keep this example simple, we choose an interesting but algebraically solvable
function. It can be easily shown that the

(x1 −10)2 ∗ (ln(x1)
2 +1)+ x2

2 ∗ (sin(x2)+1.1)

function has several local optima and a single global optima at f (10,0) = 0. The
variable x1 must be bigger than 0, and x2 can be any rational number.

A Java implementation of the discussed functionality:

// CustomFunction.java
import org.uszeged.inf.optimization.data.Function;
import org.uszeged.inf.optimization.data.Vector;

public class CustomFunction implements Function{

private double sqr(double x){
return x*x;

}

public boolean isDimensionAcceptable(int dim){
return dim == 2;

}

public boolean isParameterAcceptable(Vector lb, Vector ub){
return lb.getCoordinate(1) > 0;

}

public double evaluate(Vector x){
double x1 = x.getCoordinate(1);
double x2 = x.getCoordinate(2);

double a = sqr(x1-10)*(sqr(Math.log(x1))+1);
double b = sqr(x2)*(Math.sin(x2)+1.1d);

return a+b;
}

}

5.3 Optimizer Setup 71

After finishing the function, save it to a directory and name it CustomFunc-
tion.java. Copy the global.jar compiled package to the same directory and open
the command line. In the directory type for Windows javac -cp .;global.jar Custom-
Function.java and javac -cp .:global.jar CustomFunction.java for linux. Now the
objective function is compiled, and it can be used with the package.

5.3 Optimizer Setup

The optimizer can be set up both from the Java code and an XML file. It is con-
venient to create the optimizer structure and set the parameters from code, but it
requires some experience with the package. Now we present the easier solution (for
beginners).

First of all we have to choose the modules to optimize with. We will use the
GlobalJ algorithm with the Unirandi local search method. GlobalJ is implemented
by the org.uszeged.inf.optimization.algorithm.optimizer.global.Global class, and
Unirandi is implemented by the

org.uszeged.inf.optimization.algorithm.optimizer.local.Unirandi

class. We use the built in clusterizer which is implemented by the

org.uszeged.inf.optimization.algorithm.clustering.GlobalSingleLinkageClusterizer

class.
Global has the following parameterization. The NewSampleSize parameter is set

to 100; the SampleReducingFactor is 0.1. This means that Global generates 100
samples on every iteration, and then it selects the 100 ∗ 0.1 = 10 best samples for
clustering. The MaxNumberOfFunctionEvaluations is used in a soft condition for
all the function evaluations. It is only set to override the default value which is too
low. The local optimizer type is a parameter of Global but it also has its own param-
eters. MaxFunctionEvaluations sets a limit for the maximum number of function
evaluations during each of the local searches; the value is chosen to be 10,000. The
RelativeConvergence parameter will determine the minimal slope that is considered
to be nonzero; now its value is 10−8. The clusterizer is also a parameter for Global,
and its Alpha parameter determines the critical distance. Higher values of Alpha
cause faster shrinking of the critical distance. The 0.2 value is about middle range.

The following XML file will be named GlobalUnirandi.xml and saved to the
example directory.

The root nodes name must be Global. It has the optional package attribute which
sets a basis package name. We must provide a class attribute which is the full name
of the global optimizer class using the package as a prefix. The child nodes are
parameters for the selected optimizer. Their name will be converted to a setXYZ
function call. Primitive types have the type attribute to select the primitive type,

72 5 Example

and the value will be converted respectively. Other classes have the class attribute
similar to the root and can have the package. The package will be overwritten only
in the nodes subtree where the root is the node.

<?xml version="1.0"?>
<Global package="org.uszeged.inf.optimization.algorithm"

class="optimizer.global.Global">
<NewSampleSize type="long">
100

</NewSampleSize>
<SampleReducingFactor type="double">
0.1

</SampleReducingFactor>
<MaxNumberOfFunctionEvaluations type="long">
1000000

</MaxNumberOfFunctionEvaluations>
<LocalOptimizer class="optimizer.local.Unirandi">
<MaxFunctionEvaluations type="long">
10000

</MaxFunctionEvaluations>
<RelativeConvergence type="double">
0.00000001

</RelativeConvergence>
</LocalOptimizer>
<Clusterizer class="clustering.GlobalSingleLinkageClusterizer">
<Alpha type="double">
0.2

</Alpha>
</Clusterizer>

</Global>

5.4 Run the Optimizer

Before the optimization can be started, we have to define the boundaries. To
have some exciting parts in the optimization, let us choose the bounds to be
lb = (0.1,−50), ub = (20,50). In this range there are multiple local optima and
the global optimum which is close to another local optima. The data goes into the
CustomFunction.bnd file as follows:

CustomFunction
CustomFunction
2
0.1 20
-50 50

5.5 Constraints 73

The file format consists of the printable function name, the Java class path from
where it can be loaded, the dimension count, and the bounds for every dimensions.
If the bounds are the same for every dimension, then the lower and upper bounds
follow the dimension count, in separate lines each.

To run the optimizer with the previous settings, type the command

java -cp .;global.jar Calculate -f CustomFunction.bnd -o GlobalUnirandi.xml

If you use linux change the classpath to .:global.jar. The result should be four num-
bers, number of function evaluations, the run time in milliseconds, the optimum
value, and some optimizer specific values. The present implementation of Global
returns the number of local searches. Due to the random sampling and random local
search techniques, the results will vary on every execution. In this case the typi-
cal values are between 300–1200 evaluations, 50–150 ms, 0–0.2 for the value, and
1–5 local searches. The Alpha value of 0.9 results in much higher robustness and
evaluation count. It varies then from 3000 to 15,000 evaluations.

5.5 Constraints

The optimizer package has the ability to handle the bound constraints on the search
space. However, there are a large number of use cases when nonlinear constraints
are required. The package itself does not have any direct support for it, but there
is a common technique to overcome the lack this functionality. We can introduce a
penalty function that has a constant value higher than the original objective func-
tion’s possible maximum value in the area. The distance from the target area is
added to the constant value, and this sum will represent the function value for the
outside region. If the evaluation point is inside the constrained area, the penalty term
is not taken into account. The use of the penalty function approach in connection to
GLOBAL algorithm has been discussed in detail in [13] together with some theoret-
ical statements on the reliability of the obtained solution and computational result
on its use to prove the chaotic behavior of certain nonlinear mappings.

Let us see an example with our custom objective function. Let the constrained
area be the circle centered at O(5,4) with radius 6. This circle violates the in-
terpretation region of the function, so we take its intersection with the bound-
ing box x1 ∈ [0.1,11], x2 ∈ [−2,10]. The constant value has to be bigger than
620+ 130 = 750; to be sure we choose it an order of magnitude higher, let it be
10,000. We intentionally choose the constraints such that the global optimum is
outside of the valid region.

Since the optimization methods did not change, the optimizer configuration XML
can be reused from the previous example. The ConstrainedFunction1.java imple-
mentation ensures that the objective function is not evaluated outside the constrained
region. The isConstraintViolated(Vector x) function returns the true value if the eval-
uation point is outside of the constrained region.

74 5 Example

// ConstrainedFunction1.java
import org.uszeged.inf.optimization.data.Function;
import org.uszeged.inf.optimization.data.Vector;
import org.uszeged.inf.optimization.util.VectorOperations;

public class ConstrainedFunction1 implements Function{

private static final Vector center = new Vector(new
double[]{5, 4});

private static final double radius = 6;
private static final double penaltyConstant = 10000d;

public boolean isConstraintViolated(Vector x){
Vector diff = VectorOperations.subtractVectors(x, center);
return Vector.norm(diff) > radius;

}

private double sqr(double x){
return x*x;

}

public boolean isDimensionAcceptable(int dim){
return dim == 2;

}

public boolean isParameterAcceptable(Vector lb, Vector ub){
return lb.getCoordinate(1) > 0;

}

public double evaluate(Vector x){

if (isConstraintViolated(x)){
Vector diff = VectorOperations.subtractVectors(x, center);
return Vector.norm(diff) + penaltyConstant;

} else {
double x1 = x.getCoordinate(1);
double x2 = x.getCoordinate(2);

double a = sqr(x1-10)*(sqr(Math.log(x1))+1);
double b = sqr(x2)*(Math.sin(x2)+1.1d);

double originalValue = a+b;

return originalValue;
}

}
}

The corresponding BND file is Constrained1.bnd.

5.5 Constraints 75

ConstrainedFunction1
ConstrainedFunction1
2
0.1 11
-2 10

Compile the file with the javac -cp .;global.jar ConstrainedFunction1.java com-
mand, and run it with the java -cp .;global.jar Calculate -f Constrained1.bnd -o
GlobalUnirandi.xml command. The optimum value should be about 0.4757, and
the run time should be much less than a second.

There is a special case for this kind of constraining that can be used sometimes.
If the objective function is interpreted in a such search box that it contains the con-
strained area, it is advised to use a different approach. The penalty function remains
the same as described earlier. It has 0 value inside the constrained region. The opti-
mizer will search the optimum on the sum of the objective function and the penalty
function.

To try the special approach of constraints, compile the following file. You can
notice that now the original objective function is evaluated every time, and the value
is used alone or with the penalty.

// ConstrainedFunction2.java
import org.uszeged.inf.optimization.data.Function;
import org.uszeged.inf.optimization.data.Vector;
import org.uszeged.inf.optimization.util.VectorOperations;

public class ConstrainedFunction2 implements Function{

private static final Vector center = new Vector(new
double[]{5, 4});

private static final double radius = 6;
private static final double penaltyConstant = 10000d;

public boolean isConstraintViolated(Vector x){
Vector diff = VectorOperations.subtractVectors(x, center);
return Vector.norm(diff) > radius;

}

private double sqr(double x){
return x*x;

}

public boolean isDimensionAcceptable(int dim){
return dim == 2;

}

public boolean isParameterAcceptable(Vector lb, Vector ub){
return lb.getCoordinate(1) > 0;

}

76 5 Example

public double evaluate(Vector x){
double x1 = x.getCoordinate(1);
double x2 = x.getCoordinate(2);

double a = sqr(x1-10)*(sqr(Math.log(x1))+1);
double b = sqr(x2)*(Math.sin(x2)+1.1d);

double originalValue = a+b;

if (isConstraintViolated(x)){
Vector diff = VectorOperations.subtractVectors(x, center);
return originalValue + Vector.norm(diff) +

penaltyConstant;
} else {

return originalValue;
}

}
}

The corresponding BND file is the following.

ConstrainedFunction2
ConstrainedFunction2
2
0.1 11
-2 10

Compile the function again, run it with the same configuration like before, and
check the results. The optimum value should be the same, and the function evalua-
tion count can sometimes drop below the first versions best values, because of the
better quality information.

If the constrained area is one dimensional, it is recommended to create a new
base variable. In our example we choose a new t variable. The constraints for the
variables are

x1 = t3

x2 = t5

We can substitute x1 and x2 into the original function, and it can be optimized like
any other function. After the optimization the results can easily be transformed into
the original problem space:

(t3 −10)2 ∗ (ln(t3)2 +1)+(t5)2 ∗ (sin(t5)+1.1)

5.6 Custom Module Implementation 77

5.6 Custom Module Implementation

To implement a custom module, first we have to specify the algorithm and the pa-
rameters. Our example is a local optimizer module which can be run on multiple
instances. The algorithm is a simple hill climbing method on a raster grid which can
change size during the search. It starts with a grid and checks its neighbors in every
direction along the axes. If there is a neighbor that has lower value than the base
point, that neighbor becomes the base point. If all neighbors have larger values, the
algorithm performs a magnitude step down; it divides the current step length with
2.33332. After that it continues the search on the grid.

There are three conditions that can cause the optimizer to stop. The relative con-
vergence measures the difference between the last two function values. If the relative
decrease is lower than the convergence value, the algorithm stops. The step length
is also bounded by this parameter. If the step length is lower than the convergence
value, the algorithm stops. When a step size decrease occurs, the algorithm checks
if the maximum number of such step downs is reached and exits if necessary. The
last condition is on the number of function evaluations.

Algorithm 5.1 Discrete climber

Input

startingpoint
con f iguration

Return value

optimum

1: while true do
2: generate neighbors and check for new optimum
3: if new optimum found then
4: if relative convergence limit exceeded then
5: break
6: end if
7: set new point as base point
8: else
9: if magnitude step down limit exceeded then

10: break
11: else
12: perform magnitude step down
13: end if
14: end if
15: if maximum number of function evaluations exceeded then
16: break
17: end if
18: end while
19: store optimum

78 5 Example

The implementation follows the guidelines present in the package. A key feature
is the Builder pattern which helps to instantiate optimizer modules. The Builder is
a nested class of the module; therefore, it can access and set up the inner state. The
Builder object has many setter functions to receive the parameters. The build() func-
tion checks the validity of the parameter set, saves the parameters in the log file, and
returns the fully parameterized module instance. The objective function-related pa-
rameters, such as starting point, bounds, and the objective function itself, are loaded
through setter functions into the module. The main class, included in the optimizer
package, assembles the optimization modules and controls the optimization from
the setup phase to displaying the results.

For simplicity we can reuse our custom objective function implemented by Cus-
tomFunction.java. The CustomFunction.bnd will also fit our needs. The only thing
left is the optimizer configuration. We want to use the Global optimizer and our
new DiscreteClimber local optimizer. The new configuration is identical with the
GlobalUnirandi.xml except the local optimizer module. Notice that the LocalOpti-
mizer tag has its package attribute set to the empty string. This is necessary because
the implementation of the DiscreteClimer class is in the default package, not in the
org.uszeged.inf.optimization.algorithm package.

<?xml version="1.0"?>
<Global package="org.uszeged.inf.optimization.algorithm"

class="optimizer.global.Global">
<NewSampleSize type="long">
100

</NewSampleSize>
<SampleReducingFactor type="double">
0.1

</SampleReducingFactor>
<MaxNumberOfFunctionEvaluations type="long">
1000000

</MaxNumberOfFunctionEvaluations>
<LocalOptimizer package="" class="DiscreteClimber">
<MaxFunctionEvaluations type="long">
1000

</MaxFunctionEvaluations>
<MaxMagnitudeStepDowns type="long">
32

</MaxMagnitudeStepDowns>
<RelativeConvergence type="double">
0.00000001

</RelativeConvergence>
</LocalOptimizer>
<Clusterizer class="clustering.GlobalSingleLinkageClusterizer">
<Alpha type="double">
0.9

</Alpha>
</Clusterizer>

</Global>

5.6 Custom Module Implementation 79

Save the configuration file, and compile the local optimizer module with the
javac -cp .;global.jar DiscreteClimber.java command. Run the optimization with
the java -cp .;global.jar Calculate -f CustomFunction.bnd -o GlobalDiscrete.xml
command. The optimization should finish quickly with around 3500 function evalu-
ations. With this configuration the global optimum is found robustly. The Discrete-
Climber code can be found in Appendix C.

Appendix A
User’s Guide

This chapter presents the parametrization of the PGlobal modules and how they
depend on each other.

The Builder design pattern is responsible for the parametrization of the modules.
The module classes have a statically enclosed Builder class which can access all the
variables in the module instances. The Builder class defines setter functions for the
parameters and stores the data in a Configuration object. The Builder also defines a
build() function to instantiate the module, load with custom and default parameters,
and then return the valid parameterized object.

For simplicity, we are going to use the shorthand . . . xyz.Abc for the long class
name of org.uszeged.inf.optimization.algorithm.xyz.Abc in the explanations. The
type of the parameters are going to be between square brackets before the parameter
names; the parameters marked with (required) must be provided.

A.1 Global Module

The module Global is the previously discussed GlobalJ implementation. The inter-
face . . . optimizer.global.GlobalOptimizer defines its functionality. It is implemented
in the . . . optimizer.global.Global class.

A.1.1 Parameters

– [module] Clusterizer (required): a clustering module must be provided that
implements the interface . . . clustering.Clusterizer<Point>.

– [module] LocalOptimizer (required): a local optimizer must be provided that
implements the interface . . . optimizer.local.LocalOptimizer<Vector>

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1

81

https://doi.org/10.1007/978-3-030-02375-1

82 A User’s Guide

– [long] MaxNumberOfSamples: Maximum number of sample points generated
during the whole optimization process.

– [long] NewSampleSize: Number of sample points generated in one iteration.
– [double] SampleReducingFactor: Denotes the portion of NewSampleSize to be

selected for clustering.
– [long] MaxNumberOfIterations: Maximum number of main optimization cy-

cles.
– [long] MaxNumberOfFunctionEvaluations: Maximum number of function

evaluations during the whole optimization process. It is a soft condition because
the local optimization will not stop at the global optimizer limit.

– [long] MaxNumberOfLocalSearches: Maximum number of local searches,
checked at the end of the main optimization cycle.

– [long] MaxNumberOfLocalOptima: Maximum number of local optima.
– [long] MaxRuntimeInSeconds: The maximum runtime of the optimization,

checked at the end of the main optimization cycle.
– [double] KnownGlobalOptimumValue: A special parameter to help bench-

mark tests of the optimizer, checked after every local optimization.

A.2 SerializedGlobal Module

The module SerializedGlobal is the previously discussed implementation of the
PGlobal algorithm. The interface . . . optimizer.global.GlobalOptimizer defines its
functionality. It is implemented in the
. . . optimizer.global.serialized.SerializedGlobal class.

A.2.1 Parameters

– [module] Clusterizer (required): a clustering module must be provided that
implements the interface . . . clustering.serialized.SerializedClusterizer<Point>.

– [module] LocalOptimizer (required): a local optimizer module must be pro-
vided that implements the interface
. . . optimizer.local.parallel.ParallelLocalOptimizer<Vector>.

– [long] MaxNumberOfSamples: Denotes the maximum number of sample
points generated during the whole optimization process.

– [long] NewSampleSize: Number of sample points generated for one iteration.
– [double] SampleReducingFactor: Denotes the portion of NewSampleSize to be

selected for clustering.
– [long] MaxNumberOfIterations: Number of iterations is defined to be the num-

ber of clustering cycles. The maximum number of iterations matches the maxi-
mum number of clustering cycles.

A.3 GlobalSingleLinkageClusterizer Module 83

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the whole optimization process. It is a soft condition because the local
optimization will not stop at the global optimizer limit and the thread handling
can cause overshoot.

– [long] MaxNumberOfLocalSearches: Maximum number of local searches,
overshoot can occur due to thread handling.

– [long] MaxNumberOfLocalOptima: Maximum number of local optima found
before threads start to exit.

– [long] MaxRuntimeInSeconds: The maximum runtime of the optimization,
overshoot can occur due to thread handling and local searches.

– [double] KnownGlobalOptimumValue: A special parameter to help bench-
mark tests of the optimizer.

– [long] ThreadCount: Number of optimizer threads.
– [long] LocalSearchBatchSize: Denotes the number of sample points transferred

from the clusterizer to the local optimizer after each clustering attempt. If this
value is lower than the number of sample points in the clusterizer, then some
sample points will stay in place. If the batch size is set to be 0, an adaptive
algorithm will set the batch size to the number of available threads.

A.3 GlobalSingleLinkageClusterizer Module

This module is responsible for the clustering of N-dimensional points. It is the only
member of the package that implements the interface

. . . clustering.Clusterizer<Point>

ensuring the usability of the module Global. It is implemented in the class

. . . clustering.GlobalSingleLinkageClusterizer.

A.3.1 Parameters

– [double] Alpha (required): Determines the size function of the critical distance.
N is the sum of clustered and unclustered sample points; n is the dimension of
the input space:

dc =
(

1−α
1

N−1

) 1
n
, α ∈ [0,1]

With lower Alpha the critical distance shrinks slower.

84 A User’s Guide

A.4 SerializedGlobalSingleLinkageClusterizer Module

The module, similarly to the GlobalSingleLinkageClusterizer, is responsible for the
clustering of N-dimensional points. It implements the interface

. . . clustering.serialized.SerializedClusterizer<Point>.

Its internal operation supports the multi-threaded environment of SerializedGlobal.
It is implemented in the class

. . . clustering.serialized.SerializedGlobalSingleLinkageClusterizer.

A.4.1 Parameters

– [double] Alpha (required): Determines the size function of the critical distance.
N is the sum of clustered and unclustered sample points; n is the dimension of
the input space:

dc =
(

1−α
1

N−1

) 1
n
, α ∈ [0,1]

With lower Alpha the critical distance shrinks slower.

A.5 UNIRANDI Module

UNIRANDI is a local search algorithm based on random walk. The module provides
a complete functionality; there is no need for any additional modules to be able to
use it. It implements the interface . . . optimizer.local.LocalOptimizer<Vector>. It is
implemented in the . . . optimizer.local.Unirandi class.

A.5.1 Parameters

– [double] InitStepLength: Initial step length of the algorithm. Smaller initial
step lengths can increase the number of function evaluations and the probability
of staying in the region of attraction.

– [string] DirectionRandomization: Selects the direction randomization method.
The UNIT CUBE setting generates a normalized vector using independent uni-
form distributions for each dimension. If it is set to NORMAL DISTRIBUTION,
then it will generate a normalized vector from the uniform distribution on the sur-
face of a hypersphere.

A.7 UnirandiCLS Module 85

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the local search. This is a soft condition; overshoot can occur due to the
line search method.

– [double] RelativeConvergence: Determines the minimum step length and the
minimum decrease in value between the last two points.

A.6 NUnirandi Module

NUnirandi is a local search algorithm also based on random walk. It is the improved
version of the UNIRANDI algorithm. The module provides a complete functional-
ity; there is no need for any additional modules to be able to use it. It implements
the interface . . . optimizer.local.LocalOptimizer<Vector>. It is implemented in the
. . . optimizer.local.NUnirandi class.

A.6.1 Parameters

– [double] InitStepLength: Initial step length of the algorithm. Smaller initial
step lengths can increase the number of function evaluations and the probability
of staying in the region of attraction.

– [string] DirectionRandomization: Selects the direction randomization method.
The UNIT CUBE setting generates a normalized vector using independent uni-
form distributions for each dimension. If it is set to NORMAL DISTRIBUTION,
then it will generate a normalized vector from the uniform distribution on the sur-
face of a hypersphere.

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the local search. This is a soft condition; overshoot can occur due to the
line search method.

– [double] RelativeConvergence: Determines the minimum step length and the
minimum decrease in value between the last two points.

A.7 UnirandiCLS Module

The module is a variant of Unirandi. UnirandiCLS must be provided a line search
algorithm in contrast to the original algorithm that has a built-in one. The rest of the
parametrization is the same. It implements the interface

. . . optimizer.local.parallel.ParallelLocalOptimizer<Vector>.

It is implemented in the . . . optimizer.local.parallel.UnirandiCLS class.

86 A User’s Guide

A.7.1 Parameters

– [module] LineSearchFunction (required): Line search module that imple-
ments the ...optimizer.line.parallel.ParallelLineSearch<Vector> interface.

– [double] InitStepLength: Initial step length of the algorithm. Smaller initial
step lengths can increase the number of function evaluations and the probability
of staying in the region of attraction.

– [string] DirectionRandomization: Selects the direction randomization method.
The UNIT CUBE setting generates a normalized vector using independent uni-
form distributions for each dimension. If it is set to NORMAL DISTRIBUTION,
then it will generate a normalized vector from the uniform distribution on the sur-
face of a hypersphere.

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the local search. This is a soft condition; overshoot can occur due to the
line search method.

– [double] RelativeConvergence: Determines the minimum step length and the
minimum decrease in value between the last two points.

A.8 NUnirandiCLS Module

The module is a variant of NUnirandi. NUnirandiCLS must be provided a line
search algorithm in contrast to the original algorithm that has a built-in one. The
rest of the parametrization is the same. It implements the interface

. . . optimizer.local.parallel.ParallelLocalOptimizer<Vector>.

It is implemented in the . . . optimizer.local.parallel.NUnirandiCLS class.

A.8.1 Parameters

– [module] LineSearchFunction (required): Line search module that imple-
ments the ...optimizer.line.parallel.ParallelLineSearch<Vector> interface.

– [double] InitStepLength: Initial step length of the algorithm. Smaller initial
step lengths can increase the number of function evaluations and the probability
of staying in the region of attraction.

– [string] DirectionRandomization: Selects the direction randomization method.
The UNIT CUBE setting generates a normalized vector using independent uni-
form distributions for each dimension. If it is set to NORMAL DISTRIBUTION,
then it will generate a normalized vector from the uniform distribution on the sur-
face of a hypersphere.

A.10 LineSearchImpl Module 87

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the local search. This is a soft condition; overshoot can occur due to the
line search method.

– [double] RelativeConvergence: Determines the minimum step length and the
minimum decrease in value between the last two points.

A.9 Rosenbrock Module

The module implements the Rosenbrock local search method. It implements the
...optimizer.local.parallel.ParallelLocalOptimizer<Vector> interface. It is imple-
mented in the . . . optimizer.local.parallel.Rosenbrock class.

A.9.1 Parameters

– [module] LineSearchFunction (required): Line-search module that imple-
ments the ...optimizer.line.parallel.ParallelLineSearch<Vector> interface.

– [double] InitStepLength: Initial step length of the algorithm. Smaller initial
step lengths can increase the number of function evaluations and the probability
of staying in the region of attraction.

– [long] MaxFunctionEvaluations: Maximum number of function evaluations
during the local search. This is a soft condition; overshoot can occur due to the
line search method.

– [double] RelativeConvergence: Determines the minimum step length and the
minimum decrease in value between the last two points.

A.10 LineSearchImpl Module

The module implements the ...optimizer.line.parallel.ParallelLineSearch<Vector>
interface. The module is the Unirandi’s built-in line search algorithm. Hence, the
running only depends on the starting point and the actual step length of the local
search; there are no parameters. The algorithm is walking with doubling steps until
the function value starts to increase. It is implemented in the class

. . . optimizer.line.parallel.LineSearchImpl.

Appendix B
Test Functions

In this appendix we give the details of the global optimization test problems applied
for the computational tests. For each test problem, we give the full name, the abbre-
viated name, the dimension of the problem, the expression of the objective function,
the search domain, and the place and value of the global minimum.

• Name: Ackley function
Short name: Ackley
Dimensions: 5
Function:

f (x1,x2,x3,x4,x5) = −20exp

⎛
⎝−0.2

√√√√1
5

5

∑
i=1

x2
i

⎞
⎠− exp

(
1
5

5

∑
i=1

cos(2πxi)

)

+20+ exp(1)

Search domain:
−15 ≤ x1, . . . ,xd ≤ 30

Global minimum:
f (3,0.5) = 0

• Name: Beale’s function
Short name: Beale
Dimensions: 2
Function:

f (x1,x2) = (1.5− x1 + x1x2)
2+

(
2.25− x1 + x1x

2
2

)2
+
(
2.625− x1

(
1− x3

1

))2
;

Search domain:
−4.5 ≤ x1,x2 ≤ 4.5

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1

89

https://doi.org/10.1007/978-3-030-02375-1

90 B Test Functions

Global minimum:
f (3,0.5) = 0

• Name: Booth Function
Short name: Booth
Dimensions: 2
Function:

f (x1,x2) = (x1 +2x2 −7)2 +(2x1 + x2 −5)2

Search domain:
−10 ≤ x1,x2 ≤ 10

Global minimum:
f (0,0) = 0

• Name: Branin function
Short name: Branin
Dimensions: 2
Function:

f (x1,x2) =

(
x2 − 5.1

4π2 x
2
1 +

5
π
x1 −6

)2

+10

(
1− 1

8π

)
cos(x1)+10

Search domain:
−5 ≤ x1,x2 ≤ 15

Global minimum: f (−π,12.275) = 0.3978873577, f (π,2.275)
= 0.3978873577, and f (9.42478,2.675) = 0.3978873577.

• Name: Cigar function
Short name: Cigar-5, Cigar-40, Cigar-rot-5, Cigar-rot-40, Cigar-rot-601

Dimensions: 5, 40, 60
Function2:

f (x1, . . . ,xd) = x2
1 +103

d

∑
i=2

x2
i

Search domain:

−5 ≤ x1, . . . ,xd ≤ 5

Global minimum:

f (0, . . . ,0) = 0

• Name: Colville function
Short name: Colville
Dimensions: 4

1 Rotation versions.
2 In MATLAB: 104 instead of 103.

B Test Functions 91

Function:

f (x1,x2,x3,x4) = 100(x2
1 − x2)

2 +(x1 −1)2 +(x3 −1)2 +90(x2
3 − x4)

2

+10.1((x2 −1)2 +(x4 −1)2)+19.8(x2 −1)(x4 −1)

Search domain:
−10 ≤ x1,x2,x3,x4 ≤ 10

Global minimum:
f (1,1,1,1) = 0

• Name: Sum of different powers function
Short name: Diff. powers-5, diff. powers-40, diff. powers-60
Dimensions: 5, 40, 60
Function:

f (x1, . . . ,xd) =
d

∑
i=1

|x|2+4 i−1
d−1

i

Search domain:
−5 ≤ x1, . . . ,xd ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Discus function
Short name: Discus-5, Discus-40, Discus-rot-5, Discus-rot-40, Discus-rot-60
Dimensions: 5, 40, 60
Function:

f (x1, . . . ,xd) = 104x2
1 +

d

∑
i=2

x2
i

Search domain:
−5 ≤ x1, . . . ,xd ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Dixon-Price function
Short name: Dixon-Price
Dimensions: 10
Function:

f (x1, . . . ,x10) = (x1 −1)2 +
10

∑
i=2

i
(
2x2

i − xi−1
)2

Search domain:
−10 ≤ x1, . . . ,xd ≤ 10

Global minimum:

f (2−
21−2

21 ,2−
22−2

22 , . . . ,2−
210−2

210) = 0

92 B Test Functions

• Name: Easom function
Short name: Easom
Dimensions: 2
Function:

f (x1,x2) =−cos(x1)cos(x2)exp(−(x1 −π)2 − (x2 −π)2)

Search domain:
−100 ≤ x1,x2 ≤ 100

Global minimum:
f (π,π) =−1

• Name: Elipsoid function
Short name: Elipsoid-5, Elipsoid-40, Elipsoid-rot-5, Elipsoid-rot-40, Elipsoid-

rot-60
Dimensions: 5, 40, 60
Function:

f (x1, . . . ,xd) =
d

∑
i=1

104 i−1
d−1 x2

i

Search domain:
−5 ≤ x1,x2 ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Goldstein Price function
Short name: Goldstein-Price
Dimensions:
Function:2

f (x1,x2) =
(
1+(x1 + x2 +1)2(19−14x1 +3x2

1 −14x2 +6x1x2 +3x2
2)
)

(
30+(2x1 −3x2)

2(18−32x1 +12x2
1 +48x2 −36x1x2 +27x2

2)
)

Search domain:
−2 ≤ x1,x2 ≤ 2

Global minimum:
f (0,−1) = 3

• Name: Griewank function
Short name: Griewank-5, Griewank-20
Dimensions: 5, 20
Function:

f (x1, . . . ,xd) =
d

∑
i=1

x2
i

4000
−

d

∏
i=1

cos

(
xi√
i

)
+1

Search domain:
−10 ≤ x1,x2 ≤ 10

B Test Functions 93

Global minimum:
f (0, . . . ,0) = 0

• Name: Hartman three-dimensional function
Short name: Hartman-3
Dimensions: 3
Function:

f (x1,x2,x3) =
4

∑
i=1

αi exp

(
−

3

∑
j=1

Ai j (x j−Pi j)
2

)
,

where
α = (1.0,1.2,3.0,3.2)T

A=

⎡
⎢⎢⎣

3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

⎤
⎥⎥⎦

P= 10−5

⎡
⎢⎢⎣

36890 11700 26730
46990 43870 74700
10910 87320 55470
3815 57430 88280

⎤
⎥⎥⎦

Search domain:
0.0 ≤ x1,x2,x3 ≤ 1.0

Global minimum:

f (0.114614,0.555649,0.852547) =−3.8627821478

• Name: Hartman six-dimensional function
Short name: Hartman-6
Dimensions: 6
Function:

f (x1,x2,x3) =
4

∑
i=1

αi exp

(
−

6

∑
j=1

Ai j (x j−Pi j)
2

)
,

where
α = (1.0,1.2,3.0,3.2)T

A=

⎡
⎢⎢⎣

10 3 17 3.5 1.7 8
0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8
17 8 0.05 10 0.1 14

⎤
⎥⎥⎦

94 B Test Functions

P= 10−4

⎡
⎢⎢⎣

1312 1696 5569 124 8283 5886
2329 4135 8307 3736 1004 9991
2348 1451 3522 2883 3047 6650
4047 8828 8732 5743 1091 381

⎤
⎥⎥⎦

Search domain:
0.0 ≤ x1,x2,x3,x4,x5,x6 ≤ 1.0

Global minimum:
f (0.20169,0.150011,0.476874,0.476874,0.275332,0.311652,0.6573) =
−3.322368011415511

• Name: Levy function
Short name: Levy
Dimensions: 5
Function:

f (x1, . . . ,xd) = sin2 (πω1)+
d−1

∑
i=1

(ωi−1)
[
1+10sin2 (πωi+1)

]
+

(ωd −1)2 [1+ sin2 (2πωd)
]
,

where

ωi = 1+
xi−1

4
Search domain:

−10 ≤ x1, . . . ,xd ≤ 10

Global minimum:
f (1, . . . ,1) = 0

• Name: Matyas function
Short name: Matyas
Dimensions: 2
Function:

f (x1,x2) = 0.26(x2
1 + x2

1)−0.48x1x2

Search domain:
−10 ≤ x1,x2 ≤ 10

Global minimum:
f (0,0) = 0

• Name: Perm-(d,β) function
Short name: Perm-(4,1/2), Perm-(4,10)
Dimensions: 4
Function:

f (x1, . . . ,xd) =
d

∑
i=1

(
d

∑
j=1

(
ji+β

)
((

x j
j

)i

−1

))2

B Test Functions 95

Search domain:
−4 ≤ x1, . . . ,xd ≤ 4

Global minimum:
f (1,2, . . . ,d) = 0

• Name: Powell function
Short name: Powell-4, Powell-24
Dimensions: 4, 24
Function: f (x1, . . . ,xd) = ∑d/4

i=1[(x4i−3 +10x4i−2)
2 +5(x4i−1 − x4i)

2+

(x4i−2 −2x4i−1)
4 +10(x4i−3 − x4i)

4]
Search domain:

−4 ≤ x1, . . . ,xd ≤ 5

Global minimum:
f (0,0,0,0) = 0

• Name: Power sum function
Short name: Power sum
Dimensions: 4
Function:

f (x1, . . . ,xd) =
d

∑
k=1

[(
d

∑
i=1

xki

)
−bk

]2

,

where
b= (8,18,44,114)

Search domain:
0 ≤ x1, . . . ,xd ≤ 4

Global minimum:
f (1,2, . . . ,d) = 0

• Name: Rastrigin function
Short name: Rastrigin
Dimensions: 4
Function:

f (x1, . . . ,xd) = 10d+
d

∑
i=1

[
x2

1 −10cos(2πxi)
]

Search domain:
−5.12 ≤ x1, . . . ,xd ≤ 5.12

Global minimum:
f (0, . . . ,0) = 0

• Name: Rosenbrock function
Short name: Rosenbrock-5, Rosenbrock-40, Rosenbrock-rot-5, Rosenbrock-

rot-40, Rosenbrock-rot-60
Dimensions: 5, 40, 60

96 B Test Functions

Function:

f (x1, . . . ,xd) =
d

∑
i=1

(
100

(
xi+1 − x2

i

)2
+(xi−1)2

)

Search domain:
−10 ≤ x1, . . . ,xd ≤ 10

Global minimum:
f (1, . . . ,1) = 0

• Name: Schaffer function
Short name: Schaffer
Dimensions: 2
Function:

f (x1,x2) = 0.5+
sin2

(
x2

1 − x2
2

)−0.5[
1+0.001

(
x2

1 + x2
2

)]2

Search domain:
−20 ≤ x1,x2 ≤ 20

Global minimum:
f (0,0) = 0

• Name: Schwefel function
Short name: Schwefel
Dimensions: 5
Function:

f (x1, . . . ,xd) = 418.9829d−
d

∑
i=1

xi sin
(√

|xi|
)

Search domain:
−500 ≤ x1, . . . ,xd ≤ 500

Global minimum:

f (420.9687, . . . ,420.9687) = 6.363918737406493 10−05

• Name: Shekel function
Short name: Shekel-5, Shekel-7, Shekel-10
Dimensions: 4
Function:

f (x1,x2,x3,x4) =−
m

∑
i=1

(
4

∑
j=1

(x j−Cji)
2 + ci

)−1

,

B Test Functions 97

where
m= 5,7,10

c= [0.1,0.2,0.2,0.4,0.4,0.6,0.3,0.7,0.5,0.5]

C =

⎡
⎢⎢⎣

4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6
4 1 8 6 3 2 5 8 6 7
4 1 8 6 7 9 3 1 2 3.6

⎤
⎥⎥⎦

Search domain:
0 ≤ x1,x2,x3,x4 ≤ 10

Global minimum: fm=5(4,4,4,4)=−10.153199679058231, fm=7(4,4,4,4)=
−10.402940566818664, and fm=10(4,4,4,4) =−10.536409816692046

• Name: Sharp ridge function
Short name: Sharpridge-5, Sharpridge-40
Dimensions: 5, 40
Function:

f (x1, . . . ,xd) = x2
1 +100

√√√√ d

∑
i=2

x2
i

Search domain:
−5 ≤ x1,x2 ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Shubert function
Short name: Shubert
Dimensions: 2
Function:

f (x1,x2) =

(
5

∑
i=1

icos((i+1)x1 + i)

)(
5

∑
i=1

icos((i+1)x2 + i)

)

Search domain:
−10 ≤ x1,x2 ≤ 10

Global minimum:

f (−5.12,5.12) =−186.7309088310239

• Name: Six-hump camel function
Short name: Six hump
Dimensions: 2
Function:

98 B Test Functions

f (x1,x2) =

(
4−2.1x2

1 +
x4

1

3

)
x2

1 + x1x2 +
(−4+4x2

2

)
x2

2

Search domain:
−3 ≤ x1,x2 ≤ 1

Global minimum: f (0.0898,−0.7126) =−1.031628453 and
f (−0.0898,0.7126) =−1.031628453

• Name: Sphere function
Short name: Sphere-5, Sphere-40
Dimensions: 5, 40
Function:

f (x1, . . . ,xd) =
d

∑
i=1

x2
i

Search domain:
−5 ≤ x1, . . . ,xd ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Sum of squares function
Short name: Sum squares-5, sum squares-40, sum squares-60, sum squares-

rot-60
Dimensions: 5, 40, 60
Function:

f (x1, . . . ,xd) =
d

∑
i=1

ix2
i

Search domain:
−5 ≤ x1,x2,x3 ≤ 5

Global minimum:
f (0, . . . ,0) = 0

• Name: Trid function
Short name: Trid
Dimensions: 10
Function:

f (x1, . . . ,xd) =
d

∑
i=1

(xi−1)2 −
d

∑
i=2

(xixi−1)

Search domain:
−100 ≤ x1, . . . ,xd ≤ 100

Global minimum:
f (0, . . . ,0) =−210

• Name: Zakharov function
Short name: Zakharov-5, Zakharov-40, Zakharov-60, Zakharov-rot-60

B Test Functions 99

Dimensions: 5, 40, 60
Function:

f (x1, . . . ,xd) =
d

∑
i=1

x2
i +

(
d

∑
i=1

0.5ixi

)2

+

(
d

∑
i=1

0.5ixi

)4

Search domain:
−5 ≤ x1, . . . ,xd ≤ 10

For the rotated version:
−5 ≤ x1, . . . ,xd ≤ 5

Global minimum:
f (0, . . . ,0) = 0

Appendix C
DiscreteClimber Code

In this appendix we list the code of the local search procedure DisreteClimber
used in the Chapter 5.

// DiscreteClimber
import org.uszeged.inf.optimization.algorithm.optimizer.
OptimizerConfiguration;
import org.uszeged.inf.optimization.data.Vector;
import org.uszeged.inf.optimization.algorithm.optimizer.local.
parallel.AbstractParallelLocalOptimizer;
import org.uszeged.inf.optimization.util.Logger;
import org.uszeged.inf.optimization.util.ErrorMessages;

public class DiscreteClimber extends
AbstractParallelLocalOptimizer<Vector>{

public static final String PARAM_MAX_MAGNITUDE_STEPDOWNS =
"MAX_MAGNITUDE_STEPDOWNS";

private static final long DEFAULT_MAX_FUNCTION_EVALUATIONS
= 1000L;

private static final long DEFAULT_MIN_FUNCTION_EVALUATIONS
= 100L;

private static final long DEFAULT_MAX_MAGNITUDE_STEPDOWNS =
5L;

private static final double DEFAULT_RELATIVE_CONVERGENCE =
1E-12d;

private static final double DEFAULT_MIN_INIT_STEP_LENGTH =
0.001d;

private static final double DEFAULT_MAX_INIT_STEP_LENGTH =
0.1d;

// It’s better to have numbers that can be represented by
fractions

// with high denominator values and the number should be
around 2.

public static final double STEPDOWN_FACTOR = 2.33332d;

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1

101

https://doi.org/10.1007/978-3-030-02375-1

102 C DiscreteClimber Code

private double initStepLength;
private long maxMagnitudeStepDowns;
private long maxFunctionEvaluations;
private double relativeConvergence;

private double stepLength;
private Vector basePoint;
private double baseValue;
private Vector newPoint;
private double newValue;
private long dimension;
private long magnitudeStepDowns;
private boolean newPointFound;

private DiscreteClimber(){
super();

}

public void reset(){
super.reset();

}

public void restart(){
super.restart();

basePoint = new Vector(super.startingPoint);
baseValue = super.startingValue;
dimension = basePoint.getDimension();

stepLength = initStepLength;
magnitudeStepDowns = 0;
numberOfFunctionEvaluations = 0;

super.optimum = new Vector(basePoint);
super.optimumValue = baseValue;

}

public void run(){
if (!isRunnable) {

Logger.error(this,"run() optimizer is not parameterized
correctly");

throw new IllegalArgumentException(
ErrorMessages.LOCAL_NOT_PARAMETERIZED_YET);

}

while(true){

// minimize neighbors
newPointFound = false;
newValue = baseValue;

for (int i = 1; i <= dimension; i++){
double value;
double coordinateBackup = basePoint.getCoordinate(i);

C DiscreteClimber Code 103

basePoint.setCoordinate(i, coordinateBackup +
stepLength);

value = objectiveFunction.evaluate(basePoint);
numberOfFunctionEvaluations++;
if (value < newValue){

newValue = value;
newPoint = new Vector(basePoint);
newPointFound = true;

}

basePoint.setCoordinate(i, coordinateBackup -
stepLength);

value = objectiveFunction.evaluate(basePoint);
numberOfFunctionEvaluations++;
if (value < newValue){

newValue = value;
newPoint = new Vector(basePoint);
newPointFound = true;

}

basePoint.setCoordinate(i, coordinateBackup);
}

if (newPointFound){
// new point found in current magnitude

// check if step length or decrease in function
value is big enough

if (Math.abs(stepLength) < relativeConvergence
|| (baseValue - newValue) / Math.abs(newValue) <

relativeConvergence){
Logger.trace(this,"run() exit condition: relative

convergence");
break;

}

basePoint = newPoint;
baseValue = newValue;

} else {
// in current magnitude an optimum is reached

// try step down , if the limit reached exit
if (magnitudeStepDowns < maxMagnitudeStepDowns){

magnitudeStepDowns++;
stepLength /= STEPDOWN_FACTOR;

} else {
Logger.trace(this,"run() exit condition: magnitude

step downs");
break;

}
}

// check if the function evaluation count is exceeded

104 C DiscreteClimber Code

if (numberOfFunctionEvaluations >=
maxFunctionEvaluations){

Logger.trace(this,"run() exit condition: number of
function evaluations");

break;
}

}

// save the optimum point to the conventional variables
optimum.setCoordinates(basePoint.getCoordinates());
optimumValue = baseValue;

Logger.trace(this,"run() optimum: {0} : {1}",
String.valueOf(super.optimumValue),
super.optimum.toString()
);

}

// Creates an exact copy of optimizer with link copy
public DiscreteClimber getSerializableInstance(){

Logger.trace(this,"getSerializableInstance() invoked");
DiscreteClimber obj = (DiscreteClimber)

super.getSerializableInstance();
// Elementary variables are copied with the object itself
// We need to copy the variables manually which extends

Object class
obj.basePoint = new Vector(basePoint);
obj.newPoint = new Vector(newPoint);
return obj;

}

public static class Builder {

private DiscreteClimber discreteClimber;
private OptimizerConfiguration<Vector> configuration;

public Builder() {
this.configuration = new

OptimizerConfiguration<Vector>();
}

public void setInitStepLength(double stepLength) {

if (stepLength < DEFAULT_MIN_INIT_STEP_LENGTH) {
stepLength = DEFAULT_MIN_INIT_STEP_LENGTH;

} else if (stepLength > DEFAULT_MAX_INIT_STEP_LENGTH) {
stepLength = DEFAULT_MAX_INIT_STEP_LENGTH;

}
this.configuration.addDouble(PARAM_INIT_STEP_LENGTH,

stepLength);
}

public void setMaxMagnitudeStepDowns(long stepDowns){

C DiscreteClimber Code 105

if (stepDowns < 0) {
stepDowns = 0;

}
this.configuration.addLong(PARAM_MAX_MAGNITUDE_STEPDOWNS,

stepDowns);
}

public void setMaxFunctionEvaluations(long
maxEvaluations) {

if (maxEvaluations < DEFAULT_MIN_FUNCTION_EVALUATIONS) {
maxEvaluations = DEFAULT_MIN_FUNCTION_EVALUATIONS;

}
this.configuration.addLong(PARAM_MAX_FUNCTION_EVALUATIONS,

maxEvaluations);
}

public void setRelativeConvergence(double convergence) {

if (convergence < DEFAULT_RELATIVE_CONVERGENCE) {
convergence = DEFAULT_RELATIVE_CONVERGENCE;

}
this.configuration.addDouble(PARAM_RELATIVE_CONVERGENCE,

convergence);
}

public DiscreteClimber build(){

discreteClimber = new DiscreteClimber();
discreteClimber.configuration.addAll(configuration);

if (!discreteClimber.configuration.containsKey
(PARAM_INIT_STEP_LENGTH)){

discreteClimber.configuration.addDouble
(PARAM_INIT_STEP_LENGTH,

DEFAULT_MAX_INIT_STEP_LENGTH);
}
discreteClimber.initStepLength =

discreteClimber.configuration.getDouble(
PARAM_INIT_STEP_LENGTH);

Logger.info(this,"build() INIT_STEP_LENGTH = {0}",
String.valueOf(discreteClimber.initStepLength));

if (!discreteClimber.configuration.containsKey
(PARAM_MAX_MAGNITUDE_STEPDOWNS)) {

discreteClimber.configuration.addLong
(PARAM_MAX_MAGNITUDE_STEPDOWNS,

DEFAULT_MAX_MAGNITUDE_STEPDOWNS);
}
discreteClimber.maxMagnitudeStepDowns =

discreteClimber.configuration.
getLong(PARAM_MAX_MAGNITUDE_STEPDOWNS);

Logger.info(this,"build() MAX_MAGNITUDE_STEPDOWNS =
{0}",

106 C DiscreteClimber Code

String.valueOf(discreteClimber.maxMagnitude
StepDowns));

if (!discreteClimber.configuration.containsKey
(PARAM_MAX_FUNCTION_EVALUATIONS)){

discreteClimber.configuration.addLong
(PARAM_MAX_FUNCTION_EVALUATIONS,

DEFAULT_MAX_FUNCTION_EVALUATIONS);
}
discreteClimber.maxFunctionEvaluations =

discreteClimber.configuration.getLong(
PARAM_MAX_FUNCTION_EVALUATIONS);

Logger.info(this,"build() MAX_FUNCTION_EVALUATIONS =
{0}",

String.valueOf(discreteClimber.maxFunction
Evaluations));

if (!discreteClimber.configuration.containsKey
(PARAM_RELATIVE_CONVERGENCE)){

discreteClimber.configuration.addDouble
(PARAM_RELATIVE_CONVERGENCE,

DEFAULT_RELATIVE_CONVERGENCE);
}
discreteClimber.relativeConvergence =

discreteClimber.configuration.getDouble(
PARAM_RELATIVE_CONVERGENCE);

Logger.info(this,"build() RELATIVE_CONVERGENCE = {0}",
String.valueOf(discreteClimber.relativeConvergence));

return discreteClimber;
}

}
}

References

1. Apache Commons Math: http://commons.apache.org/proper/commons-math
(2017)

2. Balogh, J., Csendes, T., Stateva, R.P.: Application of a stochastic method to the
solution of the phase stability problem: cubic equations of state. Fluid Phase
Equilib. 212, 257–267 (2003)

3. Balogh, J., Csendes, T., Rapcsák, T.: Some Global Optimization Problems on
Stiefel Manifolds. J. Glob. Optim. 30, 91–101 (2004)

4. Banga, J.R., Moles, C.G., Alonso, A.A.: Global optimization of Bioprocesses
using Stochastic and hybrid methods. In: C.A. Floudas, P.M. Pardalos (eds.)
Frontiers in Global Optimization, pp. 45–70. Springer, Berlin (2003)

5. Bánhelyi, B., Csendes, T., Garay, B.M.: Optimization and the Miranda ap-
proach in detecting horseshoe-type chaos by computer. Int. J. Bifurcation
Chaos 17, 735–747 (2007)

6. Betró, B., Schoen, F.: Optimal and sub-optimal stopping rules for the multistart
algorithm in global optimization. Math. Program. 57, 445–458 (1992)

7. Boender, C.G.E., Rinnooy Kan, A.H.G.: Bayesian stopping rules for multistart
global optimization methods. Math. Program. 37, 59–80 (1987)

8. Boender, C.G.E., Rinnooy Kan, A.H.G.: On when to stop sampling for the
maximum. J. Glob. Optim. 1, 331–340 (1991)

9. Boender, C.G.E., Romeijn, H.E.: Stochastic methods. In: Horst, R., Pardalos,
P. (eds.) Handbook of Global Optimization, pp. 829–869. Kluwer, Dordrecht
(1995)

10. Boender, C.G.E., Zielinski, R.: A sequential Bayesian approach to estimat-
ing the dimension of a multinominal distribution. In: Sequential Methods in
Statistics. Banach Center Publications, vol. 16. PWN-Polish Scientific Pub-
lisher, Warsaw (1982)

11. Boender, C.G.E., Rinnooy Kan, A.H.G., Timmer, G., Stougie, L.: A stochastic
method for global optimization. Math. Program. 22, 125–140 (1982)

© The Author(s), under exclusive licence to Springer International Publishing AG,
part of Springer Nature 2018
B. Bánhelyi et al., The GLOBAL Optimization Algorithm,
SpringerBriefs in Optimization, https://doi.org/10.1007/978-3-030-02375-1

107

http://commons.apache.org/proper/commons-math
https://doi.org/10.1007/978-3-030-02375-1

108 References

12. Csendes, T.: Nonlinear parameter estimation by global optimization-efficiency
and reliability. Acta Cybernet. 8, 361–370 (1988)

13. Csendes, T., Garay, B.M., Bánhelyi, B.: A verified optimization technique to
locate chaotic regions of Hénon systems. J. Glob. Optim. 35, 145–160 (2006)

14. Csendes, T., Bánhelyi, B., Hatvani, L.: Towards a computer-assisted proof for
chaos in a forced damped pendulum equation. J. Comput. Appl. Math. 199,
378–383 (2007)

15. Csendes, T., Pál, L., Sendin, J.O.H., Banga, J.R.: The GLOBAL optimization
method revisited. Optim. Lett. 2, 445–454 (2008)

16. Csete, M., Szekeres, G., Bánhelyi, B., Szenes, A., Csendes, T., Szabo, G.: Op-
timization of Plasmonic structure integrated single-photon detector designs to
enhance absorptance. In: Advanced Photonics 2015, JM3A.30 (2015)

17. Currie, J., Wilson, D.I.: OPTI: Lowering the barrier between open source
optimizers and the industrial MATLAB user. In: Sahinidis, N., Pinto, J.
(eds.) Foundations of Computer-Aided Process Operations. Savannah, Georgia
(2012)

18. Custódio, A.L., Rocha, H., Vicente, L.N.: Incorporating minimum Frobenius
norm models in direct search. Comput. Optim. Appl. 46, 265–278 (2010)

19. Davidon, W.: Variable metric method for minimization. Technical Report
ANL5990 (revised), Argonne National Laboratory, Argonne, Il (1959)

20. Dolan, E., Moré, J.J.: Benchmarking optimization software with performance
profiles. Math. Program. 91, 201–213 (2002)

21. Grippo, L., Rinaldi, F.: A class of derivative-free nonmonotone optimization
algorithms employing coordinate rotations and gradient approximations. Com-
put. Optim. Appl. 60(1), 1–33 (2015)

22. Grishagin, V.A.: Operational characteristics of some global search algorithms.
Prob. Stoch. Search 7, 198–206 (1978)

23. Hansen, N., Auger, A., Finck, S., Ros, R.: Real-parameter black-box optimiza-
tion benchmarking 2010: Experimental setup. Technical Report RR-7215, IN-
RIA (2010)

24. Hansen, N., Auger, A., Ros, R., Finck, S., Posik, P.: Comparing results of 31
algorithms from the black-box optimization benchmarking BBOB-2009. In:
GECCO’10: Proc. 12th Ann. Conf. on Genetic and Evolutionary Computation,
pp. 1689–1696. ACM, New York (2010)

25. Hendrix, E.M.T., G.-Tóth, B.: Introduction to Nonlinear and Global Optimiza-
tion. Optimization and its Application. Springer, Berlin (2010)

26. Hooke, R., Jeeves, T.A.: Direct search solution of numerical and statistical
problems. J. ACM 8, 212–226 (1961)

27. Horst, R., Pardalos, P.M. (eds.): Handbook of Global Optimization. Kluwer,
Dordrecht (1995)

28. Huyer, W., Neumaier, A.: Global optimization by multilevel coordinate search.
J. Glob. Optim. 14, 331–355 (1999)

29. Järvi, T.: A random search optimizer with an application to a max-min prob-
lem. Publications of the Institute for Applied Mathematics (3). University of
Turku, Finland (1973)

References 109

30. Johnson, S.: The NLopt nonlinear-optimization package. http://ab-initio.mit.
edu/nlopt. Last accessed July 2015

31. JScience: http://jscience.org (2017)
32. JSGL: http://jgsl.sourceforge.net (2017)
33. JQuantLib: http://www.jquantlib.org (2017)
34. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dor-

drecht (1996)
35. Kelley, C.T.: Detection and remediation of stagnation in the Nelder-Mead al-

gorithm using a sufficient decrease condition. Siam J. Optim. 10, 43–55 (1997)
36. Kelley, C.T.: Iterative Methods for Optimization. SIAM, Philadelphia (1999)
37. Locatelli, M., Schoen, F.: Random linkage: a family of acceptance/rejection

algorithms for global optimization. Math. Program. 2, 379–396 (1999)
38. Locatelli, M., Schoen, F.: Global Optimization: Theory, Algorithms, and Ap-

plications. MOS-SIAM Series on Optimization. SIAM, Philadelphia (2013)
39. Markót, M.Cs., Csendes, T.: A new verified optimization technique for the

“packing circles in a unit square” problems. SIAM J. Optim. 16, 193–219
(2005)

40. Mockus, J.: Bayesian Approach to Global Optimization. Kluwer, Dordrecht
(1989)

41. Moles, C.G., Gutierrez, G., Alonso, A.A., Banga, J.R.: Integrated process de-
sign and control via global optimization – A wastewater treatment plant case
study. Chem. Eng. Res. Des. 81, 507–517 (2003)

42. Moles, C.G., Banga, J.R., Keller, K.: Solving nonconvex climate control
problems: pitfalls and algorithm performances. Appl. Soft Comput. 5, 35–44
(2004)

43. Montes de Oca, M.A., Aydin, D., Stützle, T.: An incremental particle swarm
for large-scale continuous optimization problems: an example of tuning-in-
the-loop (re)design of optimization algorithms. Soft Comput. 15(11), 2233–
2255 (2011)

44. Moré, J.J., Wild, S.M.: Benchmarking derivative-free optimization algorithms.
SIAM J Optim. 20, 172–191 (2009)

45. Murtagh, F., Contreras, P.: Algorithms for hierarchical clustering: an overview.
Wiley Interdisc. Rew.: Data Min. Knowl. Disc. 2, 86–97 (2012)

46. Nelder, J., Mead, R.: The downhill simplex method. Comput. J. 7, 308–313
(1965)

47. NumPy: http://www.numpy.org (2017)
48. Pál, L.: Empirical study of the improved UNIRANDI local search method.

Cen. Eur. J. Oper. Res. 25(2017), 929–952 (2017). https://doi.org/10.1007/
s10100-017-0470-2

49. Pál, L., Csendes, T.: An improved stochastic local search method in a multistart
framework. In: Proceedings of the 10th Jubilee IEEE International Symposium
on Applied Computational Intelligence and Informatics, Timisoara, pp. 117–
120 (2015)

50. Pál, L., Csendes, T., Markót, M.Cs., Neumaier, A.: Black-box optimization
benchmarking of the GLOBAL method. Evol. Comput. 20, 609–639 (2012)

http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt
http://jscience.org
http://jgsl.sourceforge.net
http://www.jquantlib.org
http://www.numpy.org
https://doi.org/10.1007/s10100-017-0470-2
https://doi.org/10.1007/s10100-017-0470-2

110 References

51. Pintér, J.D.: Global Optimization in Action. Kluwer, Dordrecht (1996)
52. Pošı́k, P., Huyer, W.: Restarted Local Search Algorithms for Continuous Black

Box Optimization. Evol. Comput. 20(4), 575–607 (2012)
53. Pošı́k, P., Huyer, W., Pál, L.: A comparison of global search algorithms for

continuous black box optimization. Evol. Comput. 20(4), 509–541 (2012)
54. Powell, M.J.D.: An efficient method for finding the minimum of a function

of several variables without calculating derivatives. Comput. J. 7(2), 155–162
(1964)

55. Powell, M.J.D.: The NEWUOA software for unconstrained optimization with-
out derivatives. In: Di Pillo, G., Roma, M. (eds.) Large Scale Nonlinear Opti-
mization, pp. 255–297. Springer, Berlin (2006)

56. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical
Recipes in C. The Art of Scientific Computing, 2nd edn. Cambridge University
Press, New York (1992)

57. PyQL: https://github.com/enthought/pyql (2017)
58. Rastrigin, L.A.: Random Search in Optimization Problems for Multiparameter

Systems. Defense Technical Information Center (1967)
59. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods

Part I: Clustering methods. Math. Program. 39, 27–56 (1987)
60. Rinnooy Kan, A.H.G., Timmer, G.T.: Stochastic global optimization methods

part II: Multi level methods. Math. Program. 39, 57–78 (1987)
61. Rios, L.M., Sahinidis, N.V.: Rios, L.M., Sahinidis, N.V.: Derivative-free opti-

mization: a review of algorithms and comparison of software implementations.
J. Glob. Optim. 56, 1247–1293 (2013)

62. Rokach, L., Maimon, O.: Clustering Methods. Data Mining and Knowledge
Discovery Handbook, pp. 321–352. Springer, New York (2005)

63. Rosenbrock, H.H.: An Automatic Method for Finding the Greatest or Least
Value of a Function. Comput. J. 3, 175–184 (1960)

64. SciPy: https://www.scipy.org (2017)
65. Sendı́n, J.O.H., Banga, J.R., Csendes, T.: Extensions of a Multistart Clustering

Algorithm for Constrained Global Optimization Problems. Ind. Eng. Chem.
Res. 48, 3014–3023 (2009)

66. Sergeyev, Y.D., Kvasov, D.E.: Deterministic Global Optimization: An Intro-
duction to the Diagonal Approach. Springer, New York (2017)

67. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization
Exploiting Space-Filling Curves. Springer Briefs in Optimization. Springer,
New York (2013)

68. Szabó, P.G., Markót, M.Cs., Csendes, T., Specht, E., Casado, L.G., Garcia,
I.: New Approaches to Circle Packing in a Square – With Program Codes.
Springer, New York (2007)

69. The MathWorks, Inc.: https://www.mathworks.com/
70. TIOBE Index: https://www.tiobe.com/tiobe-index (2017)
71. Törn, A.A.: A search clustering approach to global optimization. In: Dixon,

L., Szegő, G. (eds.) Towards Global Optimization, vol. 2, pp. 49–62. North-
Holland, Amsterdam (1978)

https://github.com/enthought/pyql
https://www.scipy.org
https://www.mathworks.com/
https://www.tiobe.com/tiobe-index

References 111

72. Törn, A., Zilinskas, A.: Global Optimization. Lecture Notes in Computer Sci-
ence, vol. 350. Springer, Berlin (1989)

73. WEKA: http://www.cs.waikato.ac.nz/ml/weka/index.html (2017)
74. Zhigljavsky, A.A., Zilinskas, A.: Stochastic Global Optimization. Springer,

New York (2008)

http://www.cs.waikato.ac.nz/ml/weka/index.html

	Acknowledgments
	Contents
	1 Introduction
	1.1 Introduction
	1.2 Problem Domain
	1.3 The GLOBAL Algorithm

	2 Local Search
	2.1 Introduction
	2.2 Local Search Algorithms
	2.2.1 Derivative-Free Local Search
	2.2.2 The Basic UNIRANDI Method
	2.2.3 The New UNIRANDI Algorithm
	2.2.4 Reference Algorithms

	2.3 Computational Investigations
	2.3.1 Experimental Settings
	2.3.2 Comparison of the Two UNIRANDI Versions
	2.3.3 Comparison with Other Algorithms
	2.3.4 Error Analysis
	2.3.5 Performance Profiles

	2.4 Conclusions

	3 The GLOBALJ Framework
	3.1 Introduction
	3.2 Switching from MATLAB to JAVA
	3.3 Modularization
	3.4 Algorithmic Improvements
	3.5 Results
	3.6 Conclusions

	4 Parallelization
	4.1 Introduction
	4.2 Parallel Techniques
	4.2.1 Principles of Parallel Computation

	4.3 Design of PGLOBAL Based on GLOBAL
	4.4 Implementation of the PGlobal Algorithm
	4.4.1 SerializedGlobal
	4.4.2 SerializedClusterizer

	4.5 Parallelized Local Search
	4.6 Losses Caused by Parallelization
	4.7 Algorithm Parameters
	4.8 Results
	4.8.1 Environment
	4.8.2 SerializedGlobal Parallelization Test
	4.8.3 SerializedGlobalSingleLinkageClusterizer Parallelization Test
	4.8.4 Comparison of Global and PGlobal Implementations

	4.9 Conclusions

	5 Example
	5.1 Environment
	5.2 Objective Function
	5.3 Optimizer Setup
	5.4 Run the Optimizer
	5.5 Constraints
	5.6 Custom Module Implementation

	Appendix A User's Guide
	A.1 Global Module
	A.1.1 Parameters

	A.2 SerializedGlobal Module
	A.2.1 Parameters

	A.3 GlobalSingleLinkageClusterizer Module
	A.3.1 Parameters

	A.4 SerializedGlobalSingleLinkageClusterizer Module
	A.4.1 Parameters

	A.5 UNIRANDI Module
	A.5.1 Parameters

	A.6 NUnirandi Module
	A.6.1 Parameters

	A.7 UnirandiCLS Module
	A.7.1 Parameters

	A.8 NUnirandiCLS Module
	A.8.1 Parameters

	A.9 Rosenbrock Module
	A.9.1 Parameters

	A.10 LineSearchImpl Module

	Appendix B Test Functions
	Appendix C DiscreteClimber Code
	References

