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Abstract. The concept of using network centrality measures in the selection process of memetic differential evolution algorithm
is proposed. The usual aim for introducing changes in global optimization algorithms is to make it perform better. This short
paper does not intend to provide enough experimental details to decide upon the performance of the new method, nevertheless, we
definitely obtain interesting insights on how the discovery of local optima were done.

INTRODUCTION

The intersection of two highly relevant and active fields, global optimization and network science provides great
opportunities for interesting research works. This paper reports on the preliminary results obtained by experimenting
with memetic differential evolution driven by centrality measures defined on an auxiliary dynamic graph. The method
is iterative, population based and belongs to the derivative-free algorithms, i.e., it uses only the function value of the
global optimization problem of form f(x) : R” — R which needs to be minimized. As in the original version of the
differential evolution (DE), superficially, in every iteration steps three elements from the population are chosen, from
which, using specific formula, a new candidate solution is produced [1]. We propose and investigate new methods for
this selection procedure, which are inspired by network science [2].

ALGORITHMS

Memetic Differential Evolution (MDE) Memetic algorithms are population based approaches involving local
search method. Simply, all the individual elements in the population hold a locally optimal solution of the problem
(except perhaps at the very beginning). A high level description of the memetic differential evolution is the following.

1. Start with a random population {p1,...,p.} (P € R").
2. For each p; iterate until the stopping conditions hold:
(a) Select three pairwise different elements from the population: p;, px, p;, all different from p;.
(b) Letc=p;+F-(pr—p:) be acandidate solution.
(c) Modify vector ¢ applying a CR-crossover using vector p;.
(d) Execute a local search from vector c.
(e) Replace vector p; with vector ¢ if f(c) < f(p;) holds.

Parameters of MDE: m is the population size, F € (0,2) is the differential weight and CR € (0, 1) is the crossover
probability. The CR-crossover for the candidate solution ¢ € R”" in Step 2(c) is done in the following way. For all of
its dimensions generate uniformly a random number r from the interval (0, 1). If  is larger than the given parameter
CR then the dimension of ¢ is made equal to the same dimension of p;. In order to certainly get new vector c: select
and fix a dimension for which this CR-crossover is skipped (we keep the linear combination of the three other vectors
in this dimension).



Local Optima Network (LON) LONs are interesting graphs which are associated with optimization problems and
practically also with optimization methods. Informally, the local optimizer points are the vertices and the edges are
defined between vertices separated by a critical point. General definitions can be found in [3]. In this work we propose
a modified version, where the vertices are still local optimizer points found by MDE, but the edges are capturing the
information generated by the iterative part of MDE.

We need to mention here that a different approach has been developed in [4] for DE, where the vertices are
the members of the population, and two vertices are connected with a weighted edge if one is a parent of the other.
Hence, the generated network describes the evolution of the population members, rather than the discovery of the
local optima.

MDE LONs We propose the following approach that leads to an edge-weighted network. The vertices of the
network are the solutions (local optima) obtained by the execution of MDE. Two vertices are connected if the corre-
sponding vectors were in parent-child relation (as in Step 2(c) of the algorithm description given above). This means
that at the end of every iteration step vector ¢ (which by definition contains a local optimum) becomes a vertex in our
graph, and it gets connected by p;, p; and p; (which also contain local optima). Obviously, a local optimum can be
found multiple times. In this case new vertex is not created, but the weights of the edges get increased. Albeit the size
of the population in MDE is fixed, our network is dynamically growing during the optimization procedure.

Leveraging MDE LONs The construction of the above discussed network can open up the possibilities for con-
structing new selection rules in the creation of a candidate solution ¢ using the formula ¢ = p; + F - (px — py). In
the original DE algorithm, the three parents are selected uniformly at random from the population. Now, as all the
members are assigned to a vertex of the built network, one can use the so-called centrality measures of networks.

Centrality, in general, is a real valued function of the vertices of a graph. A centrality measure quantifies the
importance of a vertex by ranking. The vast literature of network science proposes various definitions leading to
different ranking of the vertices. We use the following measures for our experiments:

degree centrality, which measures the degree of a vertex;
betweenness centrality gives a score to vertices by measuring the extent to which a vertex lies on paths between
other vertices;

e PageRank score of a vertex is derived from the scores of its network neighbors and it is proportional to their
centrality divided by their out-degree;

e closeness centrality is the sum of the length of the shortest paths between a vertex and all other vertices.

These tools give us the possibility to define new selection rules applied in Step 2(a). In the selection of the
parents, give higher chances to a vertex to be selected which has higher (or smaller) centrality measure. In practice,
this selection rule should be applied only after some initial amount of iterations in order to let the MDE network grow
in a uniformly random fashion. Although the size of the network we build gets increased, the selection rule is only
applied to the vertices which are corresponding to any actual member of the current population of fixed size.

PRELIMINARY NUMERICAL RESULTS

In this section we show our preliminary results obtained by using the first prototype implementation. This was done
in AMPL [5], which has rich enough language to handle set of vectors (as population) and to code the simple loop of
differential evolution. A big advantage here is the easy usage of any AMPL compatible solver, which can serve as the
local optimizer called in Step 2(d) of MDE. The question remains, how the centrality measures should be calculated?
In our opinion, it would make no sense to implement them in AMPL, so we used the R/igraph package. Though
this made the experimenting easier, this approach is obviously not the way to go. Nevertheless, this prototype was
developed to provide us with the proof of concept results.
For the testing we chose the Schwefel benchmarking test function from the literature, defined as:

Schwefel,(x) = 418.9829n + Z =x; sin(+/|x;])  x; € [-500, 500].
i=1

This function has exponentially growing number of local minimizer points whose values are very close to the global
optimum and on top of that, they are located at different regions of the search domain. As it is reported in [6], MDE



can find the globally optimal solution of Schwefel, with relatively high success rate for dimensions n = 10, 50. In this
short paper, we do not aim at going for even higher percentage of success. Instead, we would like to demonstrate the
fact that the proposed selection rule by using centrality measures leads to diverse solutions.

We ran MDE using the different selection rules for n = 2 and n = 10, where the size of the population was 10 and
20, respectively. Further parameters were set up as F = 0.5 and CR = 0.1. The number of iterations were intentionally
kept as low as 20 steps. The new selection rules were applied only after the first 10 iteration steps.

In Table 1 the reported results correspond to the case where the new selection rules were applied for all the
members of the population, ranked by the different centrality measures. In case of the lower dimension, all versions
were able to find the global optimum at least once. On average, closeness centrality (cc) performed the best. For the
larger problem the original DE provided the average and absolute best solution, however, was unable to find the global
one. The results shown in the last row were achieved by always selecting the top three highly ranked vertices. As we
can see, this lead to better solutions, especially cc obtained as good result as the original DE.

TABLE 1. Average (and best) function values achieved. The last row reports the results when the top3 most central
vertices were considered.

dim - bc degree pagerank cc

2 26.32 (0) 13.16 (0) 50.44 (0) 52.63 (0) 0(0)

10 366.62 (118.43) 783.77 (356.83) 748.95(572.45) 852.03 (690.89) 594.31 (236.87)
10 366.62 (118.43) 555.75(236.87) 464.64 (236.87) 503.82(335.57) 387.26 (118.44)

Obviously, one should not draw general conclusions from the numerical experiments done in this section.
Whether MDE with the network-driven selection rules can give better results compared to the standard version re-
mains a question, which will certainly be answered in the full version of this paper. Nevertheless, it is still interesting
to investigate what are the properties of the networks obtained at the end of the optimization.

Properties of MDE LONs Investigating the features of the local optima networks built by the MDE algorithm can
reveal lots of interesting results regarding how the optimizer explored the search space of the optimization problem.
We give here a brief analysis of the networks obtained by the execution of our MDE. Some of the basic properties are
given in Table 2. The first column contains the properties of the graph obtained by not using any centrality measure.
We can see that the networks are different in the two simple aspects indicated here. The number of vertices refer to
the number of different local optima found. The original MDE explored the most locally optimal solutions. Among
the new methods betweenness centrality found the most local optima, however, it was unable to find the best one.
Note that if the different methods found the same or distinct local optima cannot be seen from this indicator. The
average degree might be a simple measure hiding many details about its distribution, it indicates that how many times
a vertex, on average, got selected to be a parent. We do not see much difference here with respect to the centrality
based methods, whereas the original one stands out. Knowing the results we conclude that this effect was beneficial
for the original MDE.

TABLE 2. Properties of the MDE LONSs corresponding to the best solu-
tions given in the last row of Table 1.

- bc  degree pagerank cc

number of vertices 179 162 116 145 152
average degree 311 272 278 2.76 2.81

Visualizations of the four networks are shown in Figures 1 and 2. Note that larger vertex size represent larger cen-
trality value measured by degree and betweenness, PageRank and closeness, respectively. Rigorous analysis should
not be made on graph drawings as the appearance depends on the layout. Nevertheless, we can indeed see the differ-
ences between the four graphs, as it was already indicated by Table 2. Maybe the closeness centrality based network
(on the right in Figure 2) stands out having relatively lots of vertices with higher centrality. According to Table 1, this
version achieved the best solution among the network driven MDEs.



FIGURE 1. MDE LONSs: using degree centrality (left) and betweenness centrality (right). Vertex size represents the corresponding
centrality value.
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FIGURE 2. MDE LON:Ss: using PageRank centrality (left) and closeness centrality (right). Vertex size represents the corresponding
centrality value.

Final remarks

At the time of writing this short paper, we have been working on an implementation done in Python using the Pyomo
open source optimization modeling language, and the NetworkX package for calculating the centrality measures. This
environment makes it possible to keep everything in memory, hence radically shortening the execution time, compared
to the prototype implementation we used earlier. We have seen that different measures lead to different results even
after small amount of iterations. Whether any of these ideas lead to more efficient version of MDE will be answered in
the full version of this paper using a set of challenging benchmark problems and detailed analysis of the local optima
networks.
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