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Abstract Characterization of optimization problems with respect to their solvability

is one of the focal points of many research projects in the field of global optimiza-

tion. Our study contributes to these efforts with the usage of the computational and

mathematical tools of network science. Given an optimization problem, a network

formed by all the minima found by an optimization method can be constructed. In

this paper we use the Basin Hopping method on well-known benchmarking problems

and investigate the resulting networks using several measures.

Keywords benchmarking · network science · continuous global optimization · Basin

Hopping

1 Introduction

The task of box-constrained global optimization (GO) is to find the solution to the

problem

min
x∈S

f (x), (1)

where f : S ⊂ R
n → R is a continuous function and S is a box. The vast literature

of GO contains several proposed algorithms for solving (1), and it is a question of

high interest how these algorithms perform on different problems. To this end, sev-

eral benchmarking techniques have already been proposed (see, e.g. [7,20,24,29]).

Our method complements these works with the help of the emerging field of network

science [25]. The proposed methodology follows the core idea of the early work of

Stillinger and Weber [31], in which potential energy landscapes of atom clusters were
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formed into graphs. This is done in a way that the landscapes can be divided into

basins of attraction surrounding each locally minimal energy level. This approach

was later applied in the analysis of network topology of small Lennard-Jones clusters

[8]. In that paper, the so-called inherent structure network (ISN) was built in which

vertices correspond to the minima and the edges link those minima which are di-

rectly connected by a transition state. The same idea can be used for combinatorial

optimization problems [30,34]. We give here a possible extension of these ideas to

the space of continuous optimization problems1, under the assumption that the op-

timization method used is Basin Hopping (BH). BH is a primary heuristic method

which could be considered as the basis of many elaborate heuristic-based global op-

timization algorithms.

Once the network representation G of a global optimization problem P is con-

structed, similarly to the above mentioned ISN, many interesting graph metrics and

measures of G can be calculated which can shed a light on several detailed char-

acteristics of P. The important questions we aim at answering in this paper are the

following:

– What kind of graph representations can be constructed for continuous global op-

timization problems?

– Practically, how difficult is it to find these graphs?

– From the network science literature, what are the interesting and relevant mea-

sures and what are the interpretations of them in the context of continuous global

optimization?

– Given the networks and their measures, how can these be meaningfully applied

together on (well-known) optimization problems and what are their implications?

In the following we first give an overview of the methodology producing the

graph models. Then, we discuss several graph metrics and measures together with

their interpretation in the context of continuous global optimization problems. This is

followed by numerical experiments in which some benchmark optimization problems

from the literature are investigated. Details on the network models of the tested func-

tions are given, which we believe give further contributions to the understanding of

why some problems are easy or hard for a particularly efficient optimization scheme

called Basin Hopping.

2 Methodology

2.1 Network representation of optimization problems

Interestingly, an early paper of Locatelli [17] and the recent book of Locatelli and

Schoen [18] already contain the idea of the (possible) construction of the network

representing a continuous global optimization problem. In the following, using the

terminology from [18], we give the necessary definitions of the graph construction.

1 Note that the optimization problem (1) can also be extended to have constraints, although in the

experimental part of our paper we will investigate only box-constrained problems of form (1)
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First of all, we assume that a local search procedure L (·) is available which,

given a starting point y returns a locally optimal solution z of f characterized by

‖x − z‖ ≤ ε =⇒ f (z) ≤ f (x) (∀x ∈ S). We associate a neighborhood structure

N (·) to each point in the search space S: for a given point x ∈ S, N (x) contains

those points of S which we get by perturbation of x and subsequently starting a local

optimization method from the perturbed point. Practically, the structure N depends

on the underlying local optimization algorithm used to solve the global optimization

problem (1). The Local Optima Network G(V,E) can be defined in the following way.

First of all, it is assumed that L (x) = x if x is a local minimizer point of f .

– The set V of vertices are the local minimizer points of f :

V = {y ∈ S : ∃x ∈ S,y = L (x)}.

Note that we need to assume that |V |< ∞.

– The set E of edges is defined as

E = {(x,y) ∈V ×V | ∃z ∈ N (x) : L (z) = y and x 6= y}.

Remark that the elements of set E are directed. Similarly to [18], a monotonic graph

Gm(V,Em) can also be defined with the edge set

Em = {(x,y) ∈V ×V | ∃z ∈ N (x) : L (z) = y and f (y)≤ f (x) and x 6= y}.

We say that a local minimizer y is a neighbor of another local minimizer x iff

(x,y) ∈ E. Note that in Gm(V,Em) all nodes with no outgoing arcs are locally optimal

solution of (1).

We will also use the concept of the adjacency matrix A of a graph G in the later

notations, which is defined as

Ai j =

{

1 if (i, j) ∈ E(G), and

0 otherwise.

Finally, we define the natural Local Optima Network (NLON). In this representa-

tion, two nodes are connected if they are separated by a critical point (i.e. a stationary

point where the Hessian has a single negative eigenvalue [21]). Separation of two

local minima x1 and x2 means that starting a gradient descent local search L from a

point which is given by arbitrarily small perturbation of the critical point can lead to

either x1 or x2.

Illustration. As an illustrative example, NLON of the classical, two dimensional Six

Hump Camel Back (SHCB) global optimization problem is shown on Figure 1. This

problem has 6 local optima among which two of them are global optima (shown as

larger (blue) nodes). The labels on the nodes represent the two dimensional coordi-

nates of the corresponding local optima. Size of the nodes are proportional to their

degree.
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Fig. 1: The natural Local Optima Network of the SHCB global optimization problem

2.2 Basin Hopping method

The Basin Hopping (BH) method is a metaheuristic, which proved to be very effi-

cient in solving global optimization problems [14,18,36]. Using the terminology of

[18] the high level description is given in Algorithm 1. In the following, we refer to

the lines of Algorithm 1 to give a detailed description. It is assumed that a uniform

pseudorandom generator U (·) is provided and the input is a continuous global opti-

mization problem of form (1). In Line 1 a starting point y is generated uniformly at

random in the search space S. Using a local search procedure L a local minimizer

point x is found in Line 2. Line 4 selects a new starting point from the global neigh-

borhood (to be defined later) of x. In order to do so, we let d be an n-dimensional

Gaussian(0,1) random vector with ‖d‖ = 1 (e.g. d is a random direction), and r2 be

a positive fixed step size. The new starting point z is generated as being x+ r2d. In

Line 5 a local search is performed starting from z and its result is stored as x (a local

minimizer point). Line 7 selects a new starting point z from the local neighborhood of

x. This is done by sampling a uniformly random point over S∩B[x′,r1], where B[x,r]
is a box centered at x and having half-edge length r > 0. We start a local search from z

and its result is stored as y (Line 8). In Line 9 we check whether y is a better solution

than x (being ’better’ is to be defined later). In Lines 12 and 13 we check whether

the local and global stopping criteria are satisfied, respectively. The algorithm returns

with the local minimizer point x and the corresponding function value f (x) in Line

14.

The conditional statement in Line 9 requires the procedure IsAcceptable(x,y) to

be given. This procedure can be implemented in different ways, the most common

approaches are as follows:

Monotonic: the procedure IsAcceptable(x,y) returns whether f (y)< f (x).
Generic: the procedure IsAcceptable(x,y) returns whether

U [0,1]≤ exp(−( f (y)− f (x))/T ),

where T is a nonnegative parameter (called temperature in the literature), which

iteratively gets decreased during the execution of Algorithm 1. Note that this

version of the algorithm occasionally accepts non-improving local solutions as

well.
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Algorithm 1 Basin Hopping method

1: y := U (S);
2: x := L (y);
3: repeat

4: z := U (Ng(x));
5: x := L (z);
6: repeat

7: z := U (Nℓ(x));
8: y := L (z);
9: if IsAcceptable(x,y) then

10: x := y;

11: end if

12: until local stopping rule is not satisfied

13: until global stopping rule is not satisfied

14: return x, f (x)

Furthermore, there are two procedures in Algorithm 1, namely Ng(·) and Nℓ(·),
which needed to be defined in detail. These procedures correspond to the local search

at Level 3 and Level 2, respectively, of the multi level optimization approach of Lo-

catelli [17]. We employ the scheme from [17], where the neighbors of a local mini-

mum x0 are all the local minima whose basins of attraction have a nonempty intersec-

tion with the box B[x0,r]∩S. Here B[x0,r] := [x0 − r1,x0 + r1], with half-edge length

r > 0 and centered at x0 (and 1 is the vector whose components are all equal to 1).

As this definition depends on the parameter r (which appears to be either r1 or r2 in

Algorithm 1) an adaptive scheme can be used which iteratively updates its value – for

full details see [17].

2.3 Building the Basin Hopping Network

In order to build the local optima network for a particular optimization problem we

applied an optimization scheme based on the BH method. Using the same terminol-

ogy as in Section 2.2 the high level description is given in Algorithm 2.

In the following, we refer to the lines of Algorithm 2 to give a detailed description.

The algorithm starts with an empty graph Gw, which iteratively gets expanded if new

nodes and edges are found. In Line 1 a starting point y is generated uniformly at

random in the search space S. The first node x of the graph Gw is found in Line 2.

Line 4 selects a new starting point from the global neighborhood of x using the same

technique in Algorithm 1. In Line 5 a local search is performed starting from z and

its result x (as a local minimizer point) is added to the set of vertices. Note that it is

possible that the local search finds a solution which has already been found earlier.

In a computer implementation using floating-point arithmetic, one needs to apply ε-

tolerance here, e.g. to check if ‖x− x̃‖2 < ε for any x̃ ∈V and prescribed ε > 0. Thus

it is not given that the set V gets expanded in each iteration. In Line 7 we store the

previously found local solution x in a temporary variable x′. This will be needed to

construct new edges of the graph Gw. Line 8 selects a new starting point y from the

local neighborhood of x′, similarly to Line 7 Algorithm 1. What is done in Line 9 is

that we start a new local search from y, and its result x is added to the set of nodes V ,



6 Tamás Vinkó, Kitti Gelle

Algorithm 2 Basin Hopping Network builder algorithm

Require: Global optimization problem P

1: y := U (S);
2: x := L (y); V := {x};

3: repeat

4: z := U (Ng(x));
5: x := L (z); V :=V ∪{x};

6: repeat

7: x′ := x;

8: y := U (Nℓ(x));
9: x := L (y); V :=V ∪{x}; E := E ∪ (x′,x)

10: until local stopping rule is not satisfied

11: until global stopping rule is not satisfied

12: return Gw(V,E)

as well as the edge (x′,x) to the set of edges E. In Line 10 and 11 we check whether

the local and global stopping criteria are satisfied, respectively.

It is important to note that the output graph of Algorithm 2 is usually an approxi-

mation of the natural Local Optima Network of the input problem P. This is due to the

fact that finding the natural LON is a computationally intractable task, especially for

higher dimensions. Moreover, a computer implementation is based on floating-point

numbers, thus checking if a new node is found can only be done with pre-defined and

fixed precision only.

The efficiency of Algorithm 2 highly depends on the parameters r1,r2, on the

stopping criteria used in Line 10 and 11, and on the local search procedure L . The

algorithm needs to find all local minima, thus it is usually better to let it run for longer

time while allowing a larger number of iterations. According to our experiments, this

usually leads to an output graph that has all the local minima of the optimization

problem but with more edges than the natural LON. This means that, depending on

L , nodes which are not neighbors of each other in the natural LON get connected

by an edge in the Basin Hopping Network. Thus, post-processing is necessary, which

needs a slight modification of Algorithm 2 in the following way. When a potentially

new edge is added to the graph in Line 9 we count how many times this edge has

been found already. In this way, each edge in the resulting graph has a weight. The

post-processing procedure then iterates through the list of edges and removes those

ones whose weight is below a certain threshold. This threshold is chosen to be the P-

th percentile calculated by the nearest rank method. In the numerical examples (see

Section 4) we experimented with different values of P. Note that a similar procedure

was proposed in [6].

Illustration. A possible Basin Hopping Network of the two dimensional Six Hump

Camel Back function is shown in Figure 2. Note the differences between Figures 1

and 2.
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Fig. 2: A Basin Hopping Network of the SHCB global optimization problem

3 Graph measures

In the following we give a list of relevant graph measures, taken from network science

literature, together with their interpretations in the context of LONs.

Size of the network. This measure is defined as the number of nodes, i.e. |V |. Clearly,

this represents the number of local minima. As it has been argued, e.g., in [17] a

higher number of minima does not imply that the problem at hand is more difficult to

solve.

Neighborhood of a node. Besides the size of the network, this is also a critical feature

to be found by Algorithm 2, as these two provide the basis for the following measures

which are to capture the structural characteristics of the corresponding network. Put

it differently, if Algorithm 2 is not able to find the correct network representation

of the investigated global optimization problem P, then the measures listed in this

section can lead to incorrect claims on P. The neighborhood set of node i ∈ V in

graph G(V,E) is denoted by Ni(G).

Path and shortest path. These are important definitions for further measures. The

series of nodes x = x0,x1, . . . ,xk = y, where xi is adjacent to xi+1, is called a walk

between the nodes x and y. If xi 6= x j (∀i, j), then it is called a path. The path length

is k. Given all paths between nodes x and y, a shortest path is a path with fewest

edges. Shortest paths are usually not unique between two nodes. Note that most of the

heuristic based global optimization methods basically do random walks on paths in a

specific underlying graph. If the method is of monotonic type (like Monotonic Basin

Hopping [36] or Differential evolution [32]) then it walks on Gm. Some methods, like

Simulated Annealing [13], allow steps towards non-improving solutions, thus they

walk on graph G.

Average path length. This is defined as the average value of all shortest paths in

the network, denoted by ℓ. Networks with low average path length are called small

worlds. More specifically, in small world networks the average path length grows

proportionally to log(|V |). Intuitively, the small world property is a desirable feature

in graphs corresponding to global optimization problems.
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Diameter. The size of the longest of all shortest paths is called diameter, and it is

denoted by D. This gives a worst-case scenario regarding the number of jumps that

have to be taken to reach the global optimum. Similar to the average path length, the

smaller the diameter is, the better it is.

Clustering coefficient. It measures the average probability that two neighbors of a

node are themselves neighbors of each other. Formally, the local clustering coefficient

of node i is

Ci =
|{(x,y) ∈ E : x,y ∈ Ni}|

ki(ki −1)
,

where ki = |Ni|. The definition of global clustering coefficient is based on triplets. A

triplet consists of three nodes that are connected by either two (open triplet) or three

(closed triplet) undirected ties. The global clustering coefficient C is the number of

closed triplets over the total number of triplets (both open and closed).

Note that small world networks tend to have high clustering coefficient. Intu-

itively, networks with high C value correspond to easier to solve global optimization

problems.

Node degree. The neighborhood structure N can be quantified. This gives the defi-

nition of node degree, which is the number of edges adjacent to a node. In our case,

this measures the number of adjacent local optima. Since our graphs are directed, we

have indegree and outdegree for a given node. Formally, the outdegree is a function

d+ : V → N0 which for a node x gives d+(x) = |{y ∈ V : (x,y) ∈ E}|. The indegree

is defined as d−(x) = |{y ∈ V : (y,x) ∈ E}|. Nodes with degree that greatly exceeds

the average degree in the graph are called hubs. It is known that high degree nodes

are easier to be found by random walks [25]. Hence, if the global optimum vertex is

a hub, then a heuristic method can perform well on the problem.

Average degree. This measure is the ratio 1
|V | ∑x∈V d(x), where d(x) is either the in-

degree and outdegree (the average is the same value in both cases); and it is denoted

by 〈k〉.

Degree distribution. This measure is defined as the probability distribution of all

degrees in the graph. Formally, pk is the fraction of nodes with degree k:

pk =
|{x ∈V : d(x) = k|

|V | ,

where d(x) can be indegree or outdegree, or the sum of the two (i.e. the graph is

made undirected). Degree distributions have two categories of particular interest: (i)

random networks (also called Erdős-Rényi graphs [9]) have binomial distribution of

degree k:

pk =

(|V |−1

k

)

pk(1− p)|V |−1−k,
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where p is the probability that two nodes are connected; and (ii) scale-free networks

[2], which follow a power law distribution of the form pk ∼ k−α , where α is a pa-

rameter typically in the range 2 < α < 3.

The degree distribution is an important global measure of a network. Both random

and scale-free networks have advantages and disadvantages. These networks tend to

have small clustering coefficients and short average path length. By definition, scale-

free networks contain a few hubs with high degree and lots of nodes with low degree.

In contrast, random networks contain very similar nodes.

Community structure. It can be informally defined as a partition of vertices into

groups in such a way that nodes are more connected within a group and sparsely

connected between different groups [28]. Let H be a subgraph of G including node i.

If the graph is directed, then define

kin
i (H) := Ni(H), and kout

i (H) = Ni(G)\Ni(H).

Moreover, ki(H) := kin
i (H)+kout

i (H). Now, one can define a subgraph H as a commu-

nity in a strong sense, which is the case when kin
i (H)> kout

i (H) holds ∀i ∈V (H); and

also in a weak sense, when ∑i∈H kin
i (H)> ∑i∈H kout

i (H). The number of communities

we find in a network is denoted by K. Note that most of the community detection

algorithms treat the graph as undirected. A high number of communities in G does

not necessary imply a hard-to-solve optimization problem. However, if the problem

is multimodal and the local minima are located in different communities then the

Monotonic Basin Hopping method can have difficulties to find the global minimum.

Modularity. This quantity, denoted by Q, measures the fraction of the edges in the

network that connect vertices of the same type (i. e., within-community edges) mi-

nus the expected value of the same quantity in a network with the same community

divisions but random connections between the vertices [27]. Formally,

Q = ∑
i

(eii −a2
i ),

where ei j is the fraction of edges with one end vertices in community i and the other

in community j, and ai is the fraction of ends of edges that are attached to vertices in

community i. Modularity intends to measure the strength of the community structure

in a graph.

Betweenness centrality. This measure gives a local score to vertices by measuring the

extent to which a vertex lies on paths between other vertices [11]. Mathematically, let

ni
st be the number of shortest paths from s to t that pass through i, and define gst as

the total number of shortest paths from s to t. Then the betweenness centrality (BC)

of vertex i is ∑st
ni

st
gst

. BC is usually calculated on undirected graphs. Since a global

optimization method does not necessarily take shortest paths on G, a variant called

Random Walk BC will instead be investigated in Section 4.
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PageRank. This local measure is used on directed graphs, where the score of a ver-

tex is derived from the scores of its network neighbors and it is proportional to

their centrality divided by their out-degree. Formally, we need to calculate the vector

D(D−αA)−11, where A is the adjacency matrix of the graph Gm, D is a diagonal

matrix with elements Dii = max{d+(i),1}, 1 is again the vector whose components

are all equal to 1 and α is a damping parameter (default α = 0.85). PageRank was

originally designed as an algorithm to rank web pages [4] and essentially the score

it gives to a page reflects the chance that the random surfer will land on that page

by clicking on a link. In the context of global optimization, higher PageRank score

means higher chance to be found by the Monotonic Basin Hopping algorithm, which

performs random walks on the directed network representing the optimization prob-

lem to be solved.

4 Numerical results

In this section we demonstrate the usage and implications of the analysis of the

Basin Hopping Networks of global optimization problems. For this purpose, two

well-known benchmarking problems have been selected from the literature which

we discuss in Section 4.1 and 4.2 in full details. Further test functions are also ana-

lyzed in Section 4.3. We are interested to see if the global and local measures listed

in Section 3 are able to characterize the solvability of the problems.

The implementation of Algorithm 2 was done in AMPL [10], which allows to use

a very general class of objective functions and a large selection of local optimizer

methods. In our tests we used MINOS [22] as local optimizer L . The parameters

were:

– the local stopping rule (in Line 10) was: 10000 iterations;

– the global stopping rule (in Line 11) was: 50 iterations;

– the parameter γ (see [17] for details) was set to 0.5;

– and the values of P in the post-processing were starting from 20 up to 70 with

increment 5.

In order to compute the measures listed in Section 3, we used the igraph pack-

age in R and the NetworkX package in Python. Modularity Q and number of com-

munities K were calculated with the method called Multi Level [3], which is based

on local optimization of the modularity measure around a node.

As we have already discussed in Section 2.3, the output of the implemented pro-

cedure for a given global optimization problem is a set of graphs. These graphs are

then used for two types of analysis.

– First, we need to select one of them, which gives the BHN representation of the

problem. The selection of this graph is done in the following way. It is assumed

that the global optimization problem is continuous, hence the BHN representa-

tion must be a connected graph. Furthermore, as a general rule, we select that

connected graph which corresponds to a P value at which the diameter of the

graph gets increased in case of choosing a larger P value. This is motivated by

aiming at getting such BHN which is close to the natural LON of the problem.
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If the diameter of the graph gets increased then it is an implication that we just

removed a significant amount of edges than before. On the other hand, if the di-

ameter does not change by removing edges, that means we have removed edges

from the short ones from all shortest paths (i.e. we have removed unrealistic huge

jumps between nodes which are far away from each other in the natural LON).

The graph which represents the optimization problem can then be analyzed using

the measures from Section 3.

– Secondly, the series of graphs can be considered as results of a certain edge-

deleting procedure. This way the robustness of the graphs can be measured with

respect to a particular metric called random walk betweenness centrality (RWBC)

[26]. RWBC is a local measure, a particular variation of the betweenness central-

ity (see Section 3). It is based on random walks, counting how often a node is tra-

versed by a random walk between two other nodes. Calculation of RWBC values

are done on the vertices of graph G using the edge weights obtained by execut-

ing Algorithm 2, i.e., where we count how many times this edge has been found

already. In particular, we essentially associate a relative quantity to the node cor-

responding to the global optimum and thus it can be seen and compared how it

relates to the other nodes’ RWBC values.

4.1 Griewank function

The first test function we study is proposed by Griewank [12] and it has the form

Griewankn(x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos

(

xi√
i

)

+1.

Usually the search space used in the literature is xi ∈ [−600,600],(i= 1, . . . ,n). How-

ever, as this function has a huge amount of local minima we restrict the search space

to a much smaller one: x ∈ [−28,28]n. This restriction results in a smaller network,

whose size can be justified by the literature [5].

The Griewankn function, independently from its dimension n, has exactly one

global minimizer point with value 0, located at the origin. Although the number of its

local minima is growing exponentially with n, the locations of these minima follow

a regular pattern. This makes the corresponding network of simple form. Namely, in

n = 2 it is a regular lattice, whose structure remains the same in higher dimensions as

well.

Table 1: Network properties of Griewank graphs

graph size 〈k〉 ℓ D C Q K

G (n = 2,P = 30) 123 7.4796 4.7419 12 0.4810 0.6152 7

Gm (n = 2,P = 30) 123 3.7642 3.7609 11 0.4629 0.6179 7

G (n = 3,P = 45) 1359 6.8286 8.7206 20 0.1551 0.7019 12

Gm (n = 3,P = 55) 1359 2.8182 5.9961 17 0.0330 0.7180 13
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Fig. 3: A BSN of Griewank2 function. Colors represent community structure, size of

a node corresponds to its PageRank value

Graph measures. The summary of the graph measures are listed in Table 1. Note that

the sizes of the networks reported here are in accordance with the (estimated) number

of local optima reported in [5] if the search space is restricted to [−28,28]n. We chose

to study this test function first, mainly because of its regular structure, which is well

illustrated on Figure 3. As we can see, almost all the nodes (apart from those at the

edge) have the same degree, so this graph is a typical example of the Erdős-Rényi

random networks (see Section 3).

It can be immediately noticed that the BHNs have relatively large diameters. This

indicates that an optimization method needs to take a large number of iteration steps

to guarantee success. This fact is already known from the literature, see, e.g. [16].

It is worth mentioning here that although these graphs have large modularity values,

which implicates the presence of communities in the network, their nodes are very

similar to each other with respect to their degree. Thus high Q values are misleading

in these cases. We can also notice that the clustering coefficient C is much smaller

for n = 3 than for n = 2, which should also be treated with care. In fact the simple

reason for this is the BSN we found for n = 3 is incomplete compared to the natural

LON representation. As we have already discussed, finding the natural LON repre-

sentation of an optimization problem is practically impossible in general. Still, it can

be constructed easily for the Griewank problem given its regular structure.

Concluding the analysis with the graph measures we can say that they do not give

us any particular insights about the Griewank test problems.

Degree investigation. For investigating the degree distribution of the BHNs we pro-

pose the usage of a scatter plot on which the degree of the vertex of the undirected

graph and the in-degree of the same vertex of the directed graph can be compared.

This kind of visualization gives a very interesting landscape of the problem’s local

optima. Figure 4 shows the corresponding plots for the Griewank test function. By

definition, no points can be above the red line. Note that in both cases the point repre-

senting the global optimum (which must be on the red line) is at the top right corner
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Fig. 4: Degree investigation of Griewank networks; the points are jittered for better

visibility

of the figure and the other points are beneath. This implies that the Monotonic Basin

Hopping method has a much better chance to find the global optimizer point than the

Generic BH method in which steps towards non-improving solutions are allowed.

Robustness of BHNs. Using the graph sequences we obtained from Algorithm 2 we

calculated the random walk betweenness centrality (RWBC) values. The results of

these experiments are shown on Figure 5. Note that a higher P value means a sparser

graph, thus higher P values correspond to such runnings of the Basin Hopping method

where the number of iterations are relatively small (compared to those represented by

lower P values). For both cases the RWBC value of the global optimum is higher than

the nodes’ average RWBC value. We can also see that for many P values the global

optimum vertex has the highest RWBC value, especially for low P values. Clearly,

nodes with high RWBC values are easier to be found by random walks. Thus, we

can conclude that finding the global optimum by Basin Hopping using the general
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Fig. 5: Random walk betweenness centralities of Griewank networks
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Fig. 6: PageRank values of Griewank networks. Note that the global optimum vertex

has the highest PageRank score.

approach is not hopeless, it is only a matter of allowing large numbers of iterations.

On the other hand, it is also indicated by these figures that the RBWS values do not

really change for lower P values, thus, by only letting the BH search run for a longer

time does not guarantee success in global optimization.

Turning now our attention to the monotonic network representations, we have

already seen in Figure 3 that due to the special structure of the Griewank functions the

global optimum node has the highest PageRank score. Figure 6 shows the calculated

values for the different P levels together with the mean PageRank scores. Note that

the PageRank value of the global optimum is the highest, hence there are overlaps on

the figures. It is clearly advised that using the BH method for solving the Griewank

problems should be done using the Monotonic approach.

4.2 Schwefel

Another test problem we study is the Schwefel function which is defined as follows:

Schwe f eln(x) =
n

∑
i=1

−xi sin(
√

|xi|) xi ∈ [−500,500].

This problem differs from the previous one in a sense that it has exponentially grow-

ing number of local minimizer points whose values are very close to the global op-

timum and, more importantly, they are located at different regions of the search do-

main. Thus, this function is considered as a hard problem instance for global opti-

mization methods.

Graph measures. The properties of the BHNs we found for the Schwefel problems

are listed in Table 2. Comparing the different quantities to the ones we obtained for

the Griewank functions, we can immediately see the differences everywhere. First

of all, the Schwefel networks have very small diameter as well as small average path

lengths. This means that the BH method can discover the entire network in reasonable

time. However, it must be emphasized that this is true for the BH using the General
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Table 2: Network properties of Schwefel graphs (directed graph)

name size 〈k〉 ℓ D C Q K

G (n = 2,P = 50) 64 14.9688 2.0761 4 0.5712 0.3679 4

Gm (n = 2,P = 45) 64 7.8281 2.0447 5 0.5478 0.4039 4

G (n = 3,P = 30) 502 17.4522 3.4073 7 0.3877 0.5345 6

Gm (n = 3,P = 40) 492 7.849593 3.6651 10 0.3655 0.5501 7

approach. The modularity values are not that high compared to those of the Griewank

networks. Still, the community structure is clearly there in these Schwefel networks,

as it is even shown on Figure 7. Note that the vertices representing the local optima

are moved to the periphery for better visibility. We can see here a very interesting

fact, namely that 3 out of 4 local optimizer points are in different communities. This

is certainly an indication that the Schwefel functions are difficult problems for global

optimization methods. In particular, applying the Monotonic approach for BH search

is not advised in this case.

Fig. 7: A BSN of Schwefel2 function; colors represent community structure

Degree investigation. Figure 8 shows the degree investigation of the Schwefel prob-

lems. In order to understand what makes this problem difficult to be solved (at least

for BH) we note that the point representing the global optimum is always the one

which has the lowest degree, i.e., it is the bottom left point on the red line, indicated

by a label ’GO’. In particular, for n = 3, where the number of local optima is 8,

there are many vertices having larger degree than that of the global optimum vertex

and hence they are having higher probabilities to be found by random walk. Hence,

this is another evidence for indicating the usefulness of applying the Generic BH

approach for the Schwefel problems.

Robustness of BHNs. Finally, we have calculated the RWBC and PageRank scores

for the series of Schwefel networks. Figure 9 shows the undirected case, thus it cor-

responds to the Generic Basin Hopping. We can immediately see that in these cases
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Fig. 8: Degree investigation of Schwefel networks; points are jittered for better visi-

bility
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Fig. 9: Random walk betweenness centralities of Schwefel networks; black lines with

square markers represent local optima

the global optimum vertex has lower value that those representing the local minima.

Moreover, the node having the maximum RWBC score is a different one. For small P

values (representing longer runs of the optimizer method) and n= 3, interestingly, the

differences between the GO and the local minima are vanishing. However, this is not

the case for n = 2. Though this does not imply that finding the global optimum of the

Schwefel function is easier for higher dimension, it only indicates that for higher di-

mension the probabilities of finding any local minima (including the global one) are

roughly equal. Hence, the advice here is to use the Generic Basin Hopping, which

can more easily escape from local minimizer points compared to the Monotonic ap-

proach.

Regarding PageRank values on the directed networks, we obtain a completely

different result, see Figure 10. In this case we include networks for higher P values,
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Fig. 10: PageRank values of Schwefel networks; black lines with square markers

represent local optima. Note the different scales on the y-axes.

which represent shorter BH runs. Although all the local optima have higher score

than the average, the global optimum node ranks lower than the other optima. For

large P values all of them are below the maximum score. When the P value is low,

i.e., when the BH algorithm is allowed to take larger amount of iterations, the global

optimum vertex has the highest PageRank score. The reason for this is very simple:

being stuck in a local optimum by the Monotonic Basin Hopping, the only vertex to

which we can jump is the global optimum node. Due to the recursive definition of

PageRank, the global optimum node becomes the vertex of highest rank. Note that

this happens when letting the MBH algorithm run for exceptionally long time.

4.3 Further test functions

In this section we show the analysis of further global optimization test functions.

These functions are also extensively used as benchmarks in the GO literature, hence

we do not give here the full definitions, only the references: Ackely [1], Levy8 [15],

Rastrigin [35], and Sinusoidal [37]. As for the Griewank and Schwefel problems, the

2 and 3 dimensional versions of these additional functions were investigated. The

results of the network measures are shown in Table 3.

We start with the discussion on Levy8. These functions have the smallest number

of local minima, the smallest average path length and diameter, large clustering coef-

ficients and the smallest number of communities. The degree investigation of Levy8

graphs are shown on Figure 11. For n = 2 the global optimizer node has the highest

indegree in Gm and there is only one node which has higher indegree in G. Similar

trend can be noticed for n = 3. We conclude that the Levy8 functions are the most

simple ones for MBH. These indicators are in lines with the experiments done in [19]

using MBH.

The Ackely and Rastrigin problems are similar to the already analyzed Griewank

problem with respect to their landscape, their corresponding BH networks show

rather regular grid structure. On the other hand, as we can see from the graph mea-

sures, the Ackely and Rastrigin functions have less number of nodes, larger average
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Table 3: Network properties of additional test functions

name size 〈k〉 ℓ D C Q K

Levy8 (n = 2,P = 40) 47 13.0426 1.9172 4 0.5917 0.2035 4

Levy8m (n = 2,P = 70) 45 3.8222 1.8422 4 0.4386 0.3217 4

Levy8 (n = 3,P = 35) 97 9.4124 2.4099 5 0.4728 0.2612 5

Levy8m (n = 3,P = 50) 78 4.3333 2.1189 5 0.4353 0.3928 4

Ackely (n = 2,P = 30) 111 14.5225 2.4985 6 0.5988 0.2103 5

Ackleym (n = 2,P = 20) 109 7.1927 2.3597 7 0.5766 0.3638 6

Ackley (n = 3,P = 30) 358 13.9469 3.0894 7 0.4427 0.2452 5

Ackleym (n = 3,P = 30) 356 7.5365 2.7845 9 0.3928 0.4361 6

Rastrigin (n = 2,P = 20) 118 21.6102 2.2024 6 0.5933 0.1704 4

Rastriginm (n = 2,P = 30) 116 10.0086 2.0473 6 0.5394 0.2714 5

Rastrigin (n = 3,P = 65) 335 13.2298 2.8954 8 0.3728 0.2548 10

Rastriginm (n = 3,P = 60) 351 9.3988 3.0543 14 0.3717 0.2905 9

Sinusoidal (n = 2,P = 25) 178 22.6348 2.3764 6 0.5455 0.2010 5

Sinusoidalm (n = 2,P = 25) 167 10.3353 2.5047 6 0.4918 0.3723 6

Sinusoidal (n = 3,P = 65) 912 12.2983 3.9024 12 0.3365 0.3557 7

Sinusoidalm (n = 3,P = 60) 946 7.7833 3.1646 10 0.2892 0.4276 10

degree, smaller average path length and diameter compared to Griewank. The degree

investigation figures of Ackely functions (see Figure 12) are similar to Griewank in

the sense that there are only a few nodes which have higher degree than the global

minimizer. In line with the experiments done in [19] using MBH, Rastrigin functions

are slightly more difficult to solve, which can also be demonstrated by the degree in-

vestigation, see Figure 13. We conclude that these test problems can be solved easier

than the Griewank problem.

Finally, the Sinusoidal test problem has the largest number of nodes. This simple

fact does not make it difficult to solve. As it can be seen in Figure 14, especially for

n = 3, the global minimizer node has the highest degree.

5 Conclusions

Basin Hopping Networks are interesting representations of global optimization prob-

lems. Using the rich set of measures and metrics from network science lots of prop-

erties can be analyzed regarding the solvability of continuous problems by the fun-

damental heuristic method Basin Hopping. In this paper we have investigated some

well-known benchmark problems, hence our contribution here can be regarded as

’telling classical optimization stories in the language of network science’. It needs to

be emphasized that we did not want to solve the optimization problems but to ana-

lyze their structural properties. Hence, we proposed and successfully applied a graph

building scheme which, in order to discover how the heuristic BH method performs

its search, results in a series of (weighted) networks representing possible outcomes

of BH run with different parameter setups.

As future works we can outline two main directions. Based on the results shown

in this paper, it is worth dealing with the development of an extension of the Basin

Hopping method. That version would work as follows. During its run the algorithm
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Fig. 11: Degree investigation of Levy8 networks; the points are jittered for better

visibility
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Fig. 12: Degree investigation of Ackley networks; the points are jittered for better

visibility

would build up the BHN representation of the global optimization problem. Using

that network it would adaptively change its parameters (local stopping rule, direction

of search, length of the jumps, acceptance criterion, etc) according to the characteris-

tics of the BHN. For example, if it detects strong community structure in the network

then the algorithm should make bigger jumps in the search space to discover further

details. This and further techniques might result in a Basin Hopping approach which,

although for a price of larger computational cost, would give higher level of guarantee

that the best solution found is the real global minimum. This has particular relevance

in case of multimodal optimization.
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Fig. 13: Degree investigation of Rastrigin networks; the points are jittered for better

visibility
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Fig. 14: Degree investigation of Sinusoidal networks; the points are jittered for better

visibility

Another line of research is to discover such network representations of global

optimization problems which correspond to other optimization methods. Although

many heuristic methods share similarities to BH, it would be interesting to see and

compare the different graphs and develop benchmarking methodologies based on

network science.
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ship of the Hungarian Academy of Sciences.



Basin Hopping Networks of Continuous Global Optimization Problems 21

References

1. Ackley D, A connectionist machine for genetic hillclimbing. Vol. 28. Springer Science & Business

Media, 2012.

2. Albert R, Barabási A-L, Statistical mechanics of complex networks, Reviews of Modern Physics

74:47–97 (2002)

3. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E, Fast unfolding of communities in large networks,

Journal of Statistical Mechanics: Theory and Experiment, 10, P10008, 2008

4. Brin S, Page L, The anatomy of a large-scale hypertextual Web search engine, Computer Networks,

30:107–117 1998

5. Cho H, Olivera F, Guikema SD, A derivation of the number of minima of the Griewank function,

Applied Mathematics and Computation, 204, 694–701(2008).
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