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Abstract

A consistent connective system generated by nilpotent operators is not necessarily isomorphic to the Lukasiewicz system. Using
more than one generator function, consistent nilpotent connective systems (so-called bounded systems) can be obtained with
the advantage of three naturally derived negation operators and thresholds. In this paper, equivalences in bounded systems are
examined. Here, three different types of operators are studied, and a paradox of the equivalence (i.e. there is no equivalence
relation in a non-Boolean setting which fulfils Vx e(x, x) = 1 and e(x, n(x)) = 0) is resolved by aggregating the implication-based
equivalence and its dual operator. We will also show that the aggregated equivalence has nice properties like associativity, threshold
transitivity and T-transitiviy.
© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of fuzzy relations is a generalization of that of crisp relations of a set. Zadeh introduced the concept of
fuzzy relations in [28] and the concept of fuzzy similarity relations in [29]. Since then, many authors studied fuzzy
equivalence relations [6,7,22,23] and it has proven to be useful in different contexts such as fuzzy control, approximate
reasoning and fuzzy cluster analysis.

As shown by Gupta and Gupta [18], the condition p(x,x) =1 for Vx € X is too strong for defining a fuzzy
reflexive relation u on a set X (see also [27] and [8]). Therefore, new types of fuzzy reflexive relations were needed
to be introduced. In [27], the concepts of e-reflexive fuzzy relations and weakly reflexive fuzzy relations were defined
by weakening the standard reflexive fuzzy relation to w(x, x) > € > 0. Gupta and Gupta [18] introduced G-reflexive
fuzzy relations as a generalization of reflexive fuzzy relations.

While discussing fuzzy transitive relations, different approaches have been adopted. The first type of transitivity
is that introduced by Zadeh [29], and the second type of transitivity is the so-called T-transitivity of fuzzy relations,
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defined with the help of the t-norm. In [4,5,10,11], fuzzy T-transitivity has been deeply studied. Recently, Mesiar et
al. [21] have noticed that the associativity of a t-norm is superfluous in the above context, especially since we never
have to aggregate more than two arguments. Thus, they have substituted a conjunctor instead of a t-norm. An alter-
native approach based on implications has been considered in [25,26]. In [19], I-transitivity, where the implicator I is
nothing more than a binary operator satisfying the boundary conditions of an implication, was studied. Another type
of transitivity, the so-called e-fuzzy transitivity, has been introduced in [3]. In [1], the authors introduced the concept
of («, B)-fuzzy reflexive relations, as a generalization of fuzzy reflexive relation as well as of fuzzy G-reflexive rela-
tions. More general types of fuzzy symmetric relation, a («, 8)-fuzzy symmetric relation and («, 8)-fuzzy transitive
relations, were also studied. The concepts of («, §)-fuzzy reflexive, symmetric and transitive relations naturally lead
to the concept of («, 8)-fuzzy equivalence relations on a set. In [9], the concept of a T-partition was introduced as a
generalization of that of a classical partition.

Although the mentioned list of authors is by no means complete, it gives us a slight idea about the importance of
the concept of fuzzy equivalence relations in different contexts. In our work we resolve a paradox of the equivalence
(i.e. there is no equivalence relation in a non-Boolean setting which fulfils Vx e(x,x) =1 and e(x,n(x)) = 0) by
aggregating the implication-based equivalence and its dual operator.

In our previous article [14], we showed that a consistent connective system generated by nilpotent operators is
not necessarily isomorphic to the Lukasiewicz system. Using more than one generator function, consistent nilpotent
connective systems can be obtained in a significantly different way with three naturally derived negation operators.
As the class of non-strict t-norms has preferable properties that make them useful in constructing logical structures,
the advantages of such systems are obvious [20]. Due to the fact that all continuous Archimedean (i.e. representable)
nilpotent t-norms are isomorphic to the Lukasiewicz t-norm [ 17], the nilpotent systems studied earlier were all isomor-
phic to the well-known Lukasiewicz logic. Those consistent nilpotent connective systems which are not isomorphic
to Lukasiewicz logic are called bounded systems (referring to the fact that the generators are bounded functions) [14].
Based on the results of [14] and [15], we now focus on equivalences in bounded systems.

The paper is organized as follows. After some preliminaries in Section 2, we define and examine the implication-
based equivalences in bounded systems in Section 3. Next, we introduce and examine the so-called dual equivalences
in Section 4. Using the arithmetic mean operator examined in Section 5, the aggregated equivalences are introduced
and studied in Section 6. We show that unlike the other two types, the aggregated equivalences are threshold transitive
and associative as well. In Section 7, for further applications in image processing, the overall equivalence of two
grey level images is defined and an important semantic meaning of the aggregated equivalences is given. Finally, in
Section 7, we summarize our key results.

2. Preliminaries
First we recall the basic notations and results regarding equivalences and nilpotent systems.
2.1. Equivalences

There exist several approaches to the definition of equivalences. Equivalences can be considered as binary relations
[4,6-8,22,23].

Now we consider an equivalence as a connective. We give the definition of an equivalence as a binary operation on
the unit interval according to Fodor and Roubens.

Definition 1. (See [16].) A function e : [0, 17> — [0, 1] is called equivalence if it satisfies the following conditions:

1. Symmetry, i.e. e(x, y) = e(y, x) for Vx, y € [0, 1],

2. Compatibility, i.e. ¢(0, 1) = e(1,0) =0 and ¢(0,0) = e(1,1) =1,
3. Reflexivity, i.e. e(x, x) = 1 for Vx € [0, 1],

4. Monotonicity, i.e. x <x' <y <y=e(x,y) <e(x’,y).
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Definition 2. An operator e(x, y) : [0, 11?2 = [0, 1] is said to be

1. T-transitive with respect to a t-norm 7', if Vx, y, z € [0, 1]: T'(e(x, y), e(y, 2)) <e(x, 2),

2. threshold transitive with respect to a threshold v (0 < v < 1), if e(x,y) > v and e(y, z) > v together imply
e(x,z) >vforVx,y,z€l0,1],

3. invariant with respect to a negation n, if e(x, y) = e(n(x), n(y)) Vx, y € [0, 1],

4. associative, if e(x, e(y, 2)) = e(e(x, y), z) holds for Vx, y, z € [0, 1].

2.2. Bounded systems

To construct a logical system, we need to define the logical operators. As in [14] and [15], we will consider
connective systems where the conjunction and the disjunction are special types of t-norms and t-conorms, respectively.

Definition 3. (See [14].) The triple (c,d,n), where ¢ is a continuous Archimedean t-norm, d is a continuous
Archimedean t-conorm and 7 is a strong negation, is called a connective system.

Definition 4. (See [14].) A connective system is nilpotent if the conjunction c is a nilpotent t-norm, and the disjunction
d is a nilpotent t-conorm.

Definition 5. (See [14].) Two connective systems, (c1, d1, n1) and (cz, da, n2) are isomorphic, if there exists a mono-
tonic bijection ¢ : [0, 1] — [0, 1] such that

o7 (1 (@), p()) = c2(x, y)
¢~ (di (p(x), (1)) = da(x, y)
¢~ (m1 (P (x))) = na(x).

Definition 6. (See [14,24].) Let us define the cutting operation [ ] by

0 ifx<0O
[x]=4{x ifO<x<l1
1 ifl<x

and let the notation [ ] also act as brackets when writing the argument of an operator, so that we can write f[x] instead

of f([x]).

Definition 7. (See [14].) A connective system is called Lukasiewicz system if it is isomorphic to ([x + y — 1],
[x + y], 1 — x), i.e. if there exists a monotonic bijection ¢ : [0, 1] — [0, 1] such that the connective system has the
form

@ p)+0) — 11,07 [p(x) + oM, ¢~ (1 — $(x))).

Since the additive generator functions of the nilpotent t-norms and t-conorms are bounded and determined up to a
multiplicative constant, they can be normalized (see [14]). Let us use the following notations for the uniquely defined
normalized generator functions:

@ )
fc(x) = Z(O)’ fd(x) = S(l).

Using this concept, we have f., fz, fn : [0, 1] — [0, 1], where f, is the generator function of the negation used in our
system.

Definition 8. (See [14].) The negations n. and n, generated by f. and f; respectively,

ne(x) = £ = fo(x))
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and

na(x) = f; (1= fa(x))

are called natural negations of ¢ and d respectively.

Next, we recall certain key properties of connective systems and then give the propositions describing the condi-
tions that a logical system must satisfy in order to have the above properties.

Definition 9. (See [14].) Classification property means that the law of contradiction holds, i.e.
cx,n(x))=0 Vxel0,1], (1)
and the excluded middle principle holds as well, i.e.

dix,n(x))=1 Vxel0,1]. )
Definition 10. (See [14].) The De Morgan identity means that

¢ (n(x),n(y)) =n(d(x, y)) 3)

or
d(n(x),n(y)) =n(c(x,y)) Vx,yel0,1]. “4)

Remark 1. These two forms of the De Morgan law are equivalent, if the negation is involutive. The first De Morgan
law holds with a strict negation n if and only if the second holds with n~! [16].

Definition 11. (See [14].) A connective system is said to be consistent if the classification property (Definition 9) and
the De Morgan identity (Definition 10) hold.

Proposition 1. (See [14] and also [16] 1.5.4. and 1.5.5., and [2] 2.3.12. and 2.3.15.) In a connective system (c, d, n),
the classification property holds if and only if ng(x) < n(x) < nc(x), where n. and ng are the natural negations of ¢
and d respectively.

Proposition 2. (See [14].) If f. is the normalized generator function of a conjunction in a nilpotent connective system,
fa is a normalized generator function of the disjunction and n is a strong negation, then the following statements are
equivalent:

1. The De Morgan law holds in the connective system. That is,

cn(x),n(y)) =n(d(x,y)) Vx,ye[0,1]. &)

2. The normalized generator functions of the conjunction, disjunction and negation operator obey the following
equations (Which are obviously equivalent to each other):

n(x) = £ (fa0) = £7 (o)), (6)
fe(x) = fa(x))  orequivalently  fy(x) = fo(n(x)). ()

Proposition 3. (See [14].)

1. If the nilpotent connective system (c, d, n) is consistent, then f.(x) + fy(x) > 1 for any x € [0, 1], where f. and
fa are the normalized generator functions of the conjunction c and the disjunction d, respectively.

2. If fo(x)+ fa(x) = 1 forany x € [0, 1] and the De Morgan law holds, then the connective system (c, d, n) satisfies
the classification property as well (which now means that the system is consistent).



J. Dombi, O. Csiszdr / Fuzzy Sets and Systems 299 (2016) 113—129 117

The following proposition shows that a consistent nilpotent connective system is isomorphic to L.ukasiewicz system
if and only if the negations coincide.

Proposition 4. (See [14].) In a nilpotent connective system, f.(x) + fq(x) =1 if and only if
ne(x) =ng(x).
Definition 12. (See [14].) A nilpotent connective system is called a bounded system, if

fex) + fa(x) > 1 (orequivalently ng(x) < n(x) <nq(x))

holds for all x € (0, 1), where f. and f; are the normalized generator functions of the conjunction and disjunction,
and n., ng are the natural negations.

Remark 2. (See [14].) Note that Lukasiewicz system is characterized by ng(x) = n.(x); or equivalently,
fe) + fax)=1.
Proposition 5. (See [15].) In a nilpotent connective system (c, d, n) the residual implication has the following form.

irCe, )= £ fe ) = fe0)],

where f. is the generator function of c, and [ ] is the cutting operator defined in Definition 6.
In a nilpotent connective system (c, d, n), we can define different types of S-implications.

Definition 13. (See [15].) The S-implications in a nilpotent connective system (c, d, n) are defined as follows.

1. iSn(x’y):d(n(x)sy)s x9y€[os 1]9
2. i5,(x,y) =dna(x),y), x,yel0,1],
3' iSC(x’ )’):d(”c(x)v y)v xﬂye[ov 1],

where n, and ng are the natural negations of ¢ and d, respectively.

Definition 14. (See [15].) In a nilpotent connective system (c, d, n)

10§ (e, ) =n(c(x,n(), x,yel0,1],
2. @5, (x, y) =na (c(x,nq(y)), x,yel0,1],
3' ig“r(x’y)zl/lC(C(-xan(y)))a x»ye[O, 1]7

where n, and ng are the natural negations of ¢ and d, respectively.

Proposition 6. (See [15].) In a nilpotent connective system (c,d, n)

L is, (x,y) = f; L) + faO)],
2. is, (6, ¥) = £ = fa) + fa)],
3. is, (6, y) = £ [faO) + fa(ne(x))],

where f. and fg are the normalized generator functions of ¢ and d, respectively.

Proposition 7. (See [ 15].) In a nilpotent connective system (c, d, n) igc (x,y)= fC_l [fe(y)— fe(x)]=ir(x,y), where
fc is the normalized generator function of c.

Proposition 8. (See [ 15].) In a nilpotent connective system (c, d, n), any two of the implications defined so far coincide
ifand only if f.(x) + fa(x) =1, where f. and f; are the normalized generator functions of ¢ and d, respectively.
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Table 1
Rational generator functions.
f(x) (generator) f -1 (x) 1—-fx) Negation
Neeati ! 1 1 1
R e = - e
= -
T-v x 1+ ( > T—
1 1 1 1
Conjunction 5 5 nex)= —————
c X 1 c_ X I—ve 1—x c 2
I+ I—ve T—x METRES 5= 1+ (1;:‘) lf‘x
Disiuncti 1 1 1 @) 1
isjunction " ngx)=—————
d_1—x 1-vg 1-x 1-vg x_ —u\2
I+ T—vg x I+ Vg X 1+ Vg T—x 1+ IVdVd ﬁ

2.3. Rational generator functions

Next, we consider the case of the rational family of the normalized generator functions (see Table 1) introduced by
Dombi in [12]. In the following sections, we will use these functions in the examples to illustrate our results.

Proposition 9. (See [14].) For the Dombi functions

1
) =———=> m0)=0,ve@1),
1+mT
1
Je(x) = m, fa(0) =0, v €(0,1),
fd(x)=mv fc(1)=07 Ude(()’ 1)7
T—vg x

the following statements are equivalent:
1. The connective system generated by the Dombi functions in Proposition 9 satisfies the De Morgan law.

2. For parameters vq and v. in the normalized generator functions and for parameter v in the negation function the
following equation holds:

1—v)\? ve 11—y
= . 8
( v ) 1—ve vy ®

Remark 3. Note that the fixpoints of the negation operators n, n. and ng are v, 1 — v, and vy respectively.

3. Equivalences in bounded systems

Let us now consider a nilpotent connective system (c, d, n) and let us denote the normalized generator functions of
c and d by f, and fy, respectively. Using the above-defined implications i, and i, we can define two different types
of equivalences.

Definition 15. The conjunctive and disjunctive equivalence operators (see Fig. 1) are defined as follows.
ec(x,y) =c(ic(x,y), ic(y, x))
ea(x,y) =nq(d (nq (iq(x,y)),ng (iqa(y, x))))

Proposition 10. In a bounded system,

ec(x,y) = f I fe () = fe )]

and similarly,

eate, )= 7 [1=1fax) = fa)I] -
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“0s ‘ 05

00 00
(a) ec with v =0.3 (b) eq with vg =0.3

Fig. 1. ec(x, y) and ey (x, y) for rational generators.

Proof.

ec(x,y) = fH[fe0) = fe @]+ [ fe) = £e]]-

If x <y, then f.(x) > f.(y), which means that we have fc_1 [fc(x) — fc(y)]. Similarly, if y > x, then f.(x) < fo(y)
and we get f.' [ fo(y) — fo(x)]. Similarly for eq, by using ng (iq(y, x)) = fdfl [fa(») — fa(x)], we obtain

naCea(e,y) = £ [[fa) = fa)] + [fa) = fa@)]] = £ [Ifa) = faDI].

Therefore,
eax,y) = £ [1=1fa) = faI]. O

Remark 4. Since 0 < | f,(x) — fe(y)| <1and 0 <1 — | fy(x) — fa(¥)| < 1, the cutting function can be omitted here.
For conceptual reasons, we prefer to leave it in all of the formulae.

3.1. Properties of ec(x,y) and eq(x, y)

Next, we will examine the chief properties of e.(x, y) and e4(x, y) and show that they coincide if and only if the
connective system is a Lukasiewicz system.

Proposition 11. Let v, and vg be the fixpoints of n. and nq respectively. The operators, e.(x, y) and ej(x,y) have
the following properties:

1. Compatibility (see Definition 1).

2. Symmetry (see Definition 1).

3. Reflexivity (see Definition 1).

4. Monotonicity (see Definition 1).

5. e. is T-transitive with respect to the conjunction c (see Definition 2) and similarly, ey is T-transitive with respect
to the t-norm generated by 1 — f;(x).

6. e. and eg are not threshold transitive (see Definition 2) with respect to v, and vg.

7. Invariance (see Definition 2) with respect to n. and ng.

8. ec(1,x)=e.(1,x) =x, eq(0, x) = ng(x), and similarly, e.(0, x) = n.(x).

9. ec(x,y)=0ifandonly if x,y € {0, 1} and x # y. Similarly, e;(x,y) =0 ifand only if x,y € 0,1 and x # y.
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10. ng(eq(x, y)) = eq(na(x),y) if and only if x € {0, 1} or y € {0, 1} and nc(ec(x, y)) = ec(nc(x), y) if and only if
x€{0,1}orye{0,1}.
11. ec(x,ve) > v and similarly, eg(x, vg) > vy.

Proof.

1. From fC_I(O) =1, it follows that e.(1,1) = e.(0,0) = 1. From f.(1) =0, f.(0) =1 and fc_l(l) =0, we get
that e, (0, 1) = e.(1, 0) = 0. Similarly, from fd_l(l) =1, it follows that e (1, 1) = e4(0,0) = 1. From f;(1) =1,
f4(0) =0and f;'(0) =0, we get that e,4(0, 1) = e4(1,0) = 0.

2. Trivial.
ec(x,x) = f7(0)=Tland eq(x,x) = f; ' (1) = 1.

4. We have to show that from x < x’ <y’ <y it follows that e.(x, y) < e.(x’, y"). Using the monotonicity of f.(x)
and fc_1 (x), the statement follows immediately. For ¢4, we have to show that from x < x” <y’ <y it follows that
eq(x,y) <eq(x’,y"). Using the monotonicity of f;(x) and f, d_l (x) the statement follows immediately.

5. By using the decreasing property of fc’l and the triangle inequality, we obtain

»

cle(x,y), e(y, ) = £ (1 fex) = fe| + 1 fe(¥) = fe@D < £7 (1 fe) = fe@]) =e(x, 2).

The proof is similar for e; as well.

6. ec(x,y) = iff | fo(x) — fe()] < % and similarly, e.(y, z2) > v iff | fo(y) — fe ()] < % Obviously, these condi-
tions are not sufficient for | f.(x) — f.(z)| < % Similarly, eg(x, y) > vg iff 1 — | fz(x) — fa(y)| > % and similarly,
eq(y,2) = v iff | fa(y) — fa(@)| > % Obviously, these conditions are not sufficient for 1 — | fy(x) — fa(2)| > %

7. ec (ne(x),ne(y) = fi ' [| fere @) = fe(neNI] = £ [I1 = fe) — A = feODI] = [T fe ) — fe )] =
ec(x,y). Similarly, eq (na(x),na() = f; ' [| fa(a() — famaGNI] = £ [I1 = fax) = A = faOG)I] =
F 1) = fa@I] = eatx, ).

8. Using the fact that f,.(1) =0, we gete.(1,x) = fc_l [|fC(1) — fc(x)|] =x.

Similarly, using the fact that f.(0) =1 and that 0 < f.(x) <1 for Vx € [0, 1], we get e.(0, x) = fc_1[|fc(0) —
fc(x)|] =n.(x). For e4, using the fact that f;(1) =1 and that 0 < f;(x) <1 for Vx € [0, 1] we get e;(1,x) =
S = 1fa(D) = fa)|] = x. From f4(0) =0, we get eq(0, x) = £ [1 = [ fa(0) — fa(0)|] = na(x).

9. If ec(x,y) =0, then | fo(x) — f-(y)| =1, from which x, y € 0, 1 and x # y. Going in the opposite direction is

trivial.
10. ne(ec(x,y) = £ A= fe(x) = fe)D and ec(ne(x), y) = £ 1(11— fo(x) = fe(»)]). Considering the four cases
and using the monotonicity of f.(x), we get that x € {0, 1} or y € {0, 1}. The proof is similar for e;(x, y) as well.
11. Using the monotonicity property of f.(x) and the fact that f.(v.) = %, we get e (x,v.) = f[l[| fe(x) —
fc(vc)|] = fc_l [|fc(x) — %|] > v, since 0 < [lf,;(x) — %|] < L Similarly, using the monotonicity property of

fa(x) and the fact that f;(vg) = %, we get

_ _ 1
eax.va) = fi 1= 1fat) = fa@a)l] = £ [1 IO 5@ > v,
since § <1—|fy(x)— 5/ <1. O
Proposition 12. I[f x, y > v. or x, y < v, then e.(x, y) > v.. Similarly, if x,y > vg or x,y < vg, then eq(x,y) > vq.

Proof. If x,y > v, then f.(x), fe(y) < %, SO |fe(x) — fe(0)| < %, which means that e.(x, y) > v.. Similarly, if
X,y < v, then fo(x), fo(y) > %, 50 |fo(x) — fo(»)| < 4, which means that e (x, y) > v.. For eq, if x,y > vq,
then fy(x), fa(y) > %, so | fa(x) — fa(»)| < 4, which means that eq(x,y) > vg. Similarly, if x,y < vy, then

fa(x), fa(y) < 3,50 | fa(x) = fa(»)| < 4, which means that e;(x, y) > vg. O

Remark 5. e. and e, are not associative.
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Proof. A possible counterexample might be the case of rational generators with v, = 0.6 and v; = 0.3, x = 0.3,
y=0.4and y =0.5. In this case we get e.(x, e.(y, 2)) = 0.39, ec(e.(x, y), ) & 0.62, while for e; (x, e4(y, 7)) ~ 0.38
and eg(eq(x,y),2) = 0.64. O

Proposition 13. In a connective system the above-defined equivalences e.(x,y) and eq(x,y) coincide if and only
if fo(x)+ fa(x) =1 (or equivalently n. = ng, i.e. in a tukasiewicz system), where f. and fg are the normalized
generation function of the conjunction and disjunction operators, respectively.

Proof.

1. If fo(x) 4+ fa(x) =1, then f.(x) =1 — fy(x) and fc_l(x) = fd_l(l — x), from which we get e (x,y) =
FIfe@ = e = 77 [ = 1 fa ) = fa)I] = ea(x, y).

2. If ec(x,y) =eq(x,y), then in particular e.(0, x) = e4(x, 0), which means that n.(x) = ng(x) must hold for all
xe€l[0,1]. O

4. Dual equivalences

In classical logic, the equivalence operator has the following important property as well: e(x,n(x)) =0. As it is
well known, demanding Vx e(x, x) = 1 and e(x, n(x)) = 0 at the same time in a non-Boolean setting, gives rise to a
paradox.

Lemma 1. There is no equivalence relation which fulfils Vx e(x,x) =1 and e(x,n(x)) =0.
Proof. Let v be the fixpoint of the negation n(x). Then 1 =e(v, v) = e(v, n(v)) =0, which is a contradiction. O
However, in practical applications the property e(x, n(x)) = 0 might be of even greater importance than reflexivity
[13]. Motivated by this demand, below we will define new types of operators.
First, we will define the so-called dual equivalence, denoted by e. Let us now consider a nilpotent connective

system (c, d, n) and let us denote the normalized generator functions of ¢ and d by f, and f4, respectively.

Definition 16. The dual equivalence operations (see Fig. 2) are defined as follows.

ec(x,y)=n¢(ec(x,n.(y)) and
eq(x,y) =ng (eq(x,nq(y)).

Proposition 14. In a bounded system the equivalence operators have the form

e, )= £ 1= 1fe) + fe(0) —1]] and
ea(x,y) = £ 1 fa0) + fa) —11] .

Proof. The formulae can be derived from direct calculation. O
Remark 6. Since 0 < | f.(x) + fc(y) — 1| <1 and 0 <|fy(x) + fa(y) — 1| < 1, the cutting function can be omitted
here. For conceptual reasons, we prefer to leave it in all of the formulae.
4.1. Properties of eq and e,
Next, we will study the main properties of the dual equivalences.

Proposition 15. Let v, and vy, be the fixpoints of n. and ng, respectively. Then the operators e.(x,y) and eq(x, y)
have the following properties:



122

A e

o

9.
10.

11.

J. Dombi, O. Csiszdr / Fuzzy Sets and Systems 299 (2016) 113—129

10
(a) € with v. = 0.6 (b) &q with v4 = 0.6

Fig. 2. ec(x, y) and ey with rational generators.

Compatibility (see Definition 1).

Symmetry (see Definition 1).

ec(x,y) and eq(x,y) are not reflexive, but e.(x,n.(x)) = eq(x,ng(x)) =0.

ec(x,y) and eq(x,y) are not monotonic.

e. is T-transitive with respect to the conjunction c (see Definition 2) and similarly, ey is T-transitive with respect
to the t-norm generated by 1 — f;(x).

ec(x,y) and eq(x,y) are not threshold transitive with respect to v. and vq (see Definition 2).

Invariance with respect to n. and nq (see Definition 2).

ec(l,x)=e.(1,x)=x

eq(0, x) =ny4(x), and similarly, e.(0, x) = n.(x).

ec(x,y)=0ifand only if x =n.(y) and similarly, e;(x,y) =0 if and obly if x =nq(y).

na(ea(x, y)) = ea(na(x),y) if and only if x € {0, 1} or y € {0, 1} and nc(ec(x, y)) = ec(nc(x), y) if and only if
xe€{0,1}orye{0,1}.

ec(x,v) < v and eq(x,vg) < vg.

Proof.

1.

Using the formulae given in Proposition 14, compatibility is trivial.

2. Using the formulae given in Proposition 14, symmetry is trivial as well.

3.

Follows from direct calculation. Since e (x, n.(x)) = 0 holds for the fixpoint v. of the n. as well, reflexivity
cannot hold. Similarly for e,.

A counterexample might be the case of rational generators with v, = 0.3. e.(0.1, 0.6) ~ 0.75, while e, (0.4, 0.5) ~
0.68, and similarly for e;(0.4, 0.6) ~ 0.21, while ¢4(0.45,0.5) ~ 0.19.

By using the decreasing property of fc_1 and the factthat [a +b — 1|+ |b+c— 1| —1 <|a+ ¢ — 1] holds for all
a,b,ce]0, 1], we obtain

c(@c(x, ), 8c(y,2) = [N 2 = 1 fe) + Lo () = 1 = | fe() + fex) — 1))
< 7N A = 1£00) + fo(2) — 1) = e (x, 2).

The proof is similar for e; as well.
A possible counterexample might be for rational generators with v, = 0.3, x =0.85, y = 0.9 and z = 0.87, or for
v3=0.3,x=0.7,y=0.9 and z = 0.6.
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7. ec(ne(x),ne(y) = 11— f7 11— fo(¥) + 1= fo(y) — 1|]] = &.(x, y) and similarly, &4 (nq (x), na(y)) = f;'[I1 -
fa@)+1— fa(y) — 1] =ealx, y).

8. Using the fact that f.(1) =0, we gete.(1,x) = f' [I = | fo(D) + fe(x) — 1]] = x.
Similarly, using the fact that f.(0) =1 and that 0 < f,.(x) < 1 for Vx € [0, 1], we get e.(0, x) = f;l [1 — | fe(0)+
fe(x)— 1|] =n.(x). For ey, using the fact that f;(1) =1 and that 0 < f;(x) < 1 for Vx € [0, 1] we get ey (1, x) =
£ [1fa(D) + fa(x) — 1]] = x. Using the fact that £4(0) = 0, we get &4(0,x) = £, [|£2(0) — fa(x) —1]] =
ng(x).

9. Using the fact that f.(n.(x)) =1— fo(x) and fy(ng(x)) =1— fa(x), we gete.(x,n.(x)) =1— fc’l (0) =0and
similarly eg(x, ng(x)) = fdfl(O) =0.Ife.(x,y) =0, then f.(x)+ fc(y) =1, from which f.(x) =1— f.(y),i.e.
x = fTH1 = fo()]=nc(y). Similarly, if &4 (x, y) =0, then f;(x) + fa(y) = 1, from which f;(x) =1 — fa(y),
ie.x=f; 1= faNl=nay).

10. ne(@c(x, ) = £ (A= | fo(x) + fe(y) — 1)) and & (ne(x), y) = ' (1 — | fe(x) — fo(»)]). Considering the four
cases and using the monotonicity of f.(x), we get that x € {0, 1} or y € {0, 1}. The proof for e;(x, y) follows in
a similar way.

11. Using the strict monotonicity of f., fy and their inverse functions, and the fact that f.(v.) = fa(vg) = %, the
proof can be found by direct calculation. O

Remark 7. e.(x, y) and e;(x, y) are not associative.

Proof. It is easy to find a counterexample, e.g. for rational generators with v, = 0.3, ¢.(0.3, e.(0.4,0.5)) ~ 0.58,
while e (e.(0.3,0.4),0.5) ~ 0.16. Similarly, e;(0.1, ¢4(0.5,0.7)) ~ 0.12, while e;(e.(0.1,0.5),0.7) ~# 0.03. O

Proposition 16. In a connective system the above-defined equivalences e.(x,y) and e (x,y) coincide if and only
if fo(x)+ fa(x) =1 (or equivalently n. = ng, i.e. in a tukasiewicz system), where f. and fy are the normalized
generation function of the conjunction and disjunction operators, respectively.

Proof.

1. If fo(x) + fa(x) =1, then f.(x) =1 — fy(x) and fc.’l(x) = fd*](l — x), from which we get e.(x,y) =
= 1fe) + o) = U] = £ 11 = fax) = fa)I] = ealx, y).

2. If ec(x,y) = eq(x, y), then in particular e.(0, x) = e;(x, 0), which means that n.(x) = ny(x) must hold for all
xe[0,1]. O

5. Arithmetic mean operators in bounded systems
Let us define the so-called arithmetic mean operators in a bounded system.

Definition 17. In a connective system (c, d, n)
m® @, y) = f o fo@) + (1 =) - fo(y)]
and similarly,

m$ @,y = £ o fa@) + A=) - fa)],

where f. and f; are the normalized generator functions of the conjunction and disjunction operators, respectively,
0 <o < 1. m. and my are called weighted arithmetic mean operators.

Proposition 17. mﬁ“) (x,y) and mila) (x, ) satisfy the self-De Morgan property with respect to n. and nq respectively,
ie.

ne (m (e 1) = m® (1), ne ()
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Fig. 3. The domain of aggregated equivalences.

and similarly,
na (m§ (e, ) =m (a0 na ().

Proof.

ne(m@ @) =7 1= @ L)+ A=) feD] = £ o (1= fol@) + A=) (1 = fe0)]
= mga) (ne(x), nc(y)) .

For mg, the proof is similar. 0O
6. Aggregated equivalences

Next, we define a new type of operator derived from the equivalences defined above. This new operator is a com-
promise between the normal and the dual equivalences (see Fig. 3), i.e. it fulfils neither e(x, x) = 1 nor e(x, n(x)) =0,
but it has a nice property, namely e(v, v) = v. If we recall that the values represent uncertainities and v, as the fixpoint
of the negation means that we hesitate whether the objects A and B have the particular property or not, it is also
sensible to remain unsure about their equivalence value. This new operator will be called the aggregated equivalence
operator.

Definition 18. The aggregated equivalence operators (see Fig. 4) are defined as follows.

1
e (x,y) =mc<2) (ec(x, ), &c(x, ),

1
2 _
eg(x,y) = mg ) (ea(x,y),eq(x,y)).
Proposition 18. The aggregated equivalence operator in a bounded system

1 1
erte,y) =1 Elfc(X) —feOWI+ 3 A =1fe@)+ fe(y) — 1I)]

and

1 1
e,y =f;' 5 (1= 1fa@) = JaOID + S fa () + fa(y) = 1|} :

Proof. Follows from direct calculation. O
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(a) e (b) ea

Fig. 4. Aggregated equivalences with rational generators with v =0.3.

Proposition 19. The conjunctive and the disjunctive aggregated equivalence operators have the following property.

ne(y), ifx <y<nq(x)

. ) fne(y)<x =<y

e.(x,y)= ne(x), ify<xandy<ng(x)
y, ify<xandy>nc(x),
nqg(y), ifx<yandx <ng(y)

. N ES ifng(y) <x<y

=N ), ify < x and x < na(y)
v, ify<xandng(y) <x.

Proof. We prove for e}:. For ¢}, the proof is similar.

1. If x <y <n.(x), then using the monotonicity of f. and the fact that n.(x) = fc_l(l — fe(x)), we get fo(x) >
fe() and fc(x) + fc(y) = 1. In this case it means that e} (x, y) = n(y).

2. Ifn.(y) < x <y, then using the monotonicity of f, and the fact thatn.(x) = fc_l (1— fe(x)) we get fo(x) > fe(y)

and f.(x) + f¢(y) <1.In this case it means that e (x, y) = x.

If y <xand y <n.(x), then we get f.(x) < f.(y) and f.(x) + f.(y) > 1. In this case ¢ (x, y) = n.(x) follows.

4. If y <x and y > n.(x), then f.(x) < f.(y) and f.(x) + fc(y) < 1. In this case it means that ¢} (x, y) =y. O

(O8]

Next, we will examine the main properties of the aggregated equivalences. We will show that unlike the above-
mentioned equivalences, the aggregated equivalences are threshold transitive and associative as well.

Proposition 20. Let v. and vg be the fixpoints of n. and ng, respectively. The aggregated equivalences have the
following properties:

1. Compatibility (see Definition 1).
2. Symmetry (see Definition 1).
3. The aggregated equivalences are not reflexive, but e} (v, v.) = ve and e:;(vd, vq) = vg hold. In addition,

e*(x x) = ne(x), lfvac
ey X, ifx > v,
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and similarly,

ng(x), ifx<vy
X, ifx >vg.

4. Monotonicity (see Definition 1).

ey(x,x) = {

5. e} is T-transitive with respect to the conjunction c (see Definition 2) and similarly, €}; is T-transitive with respect
to the t-norm generated by 1 — f;(x).
6. The aggregated equivalences are threshold transitive with respect to v, and vy (see Definition 2).
7. Invariance with respect to n. and ng (see Definition 2).
8. ei(l,x)=ej(1,x)=x, €5(0,x) =ny(x), and similarly, e} (0, x) = n.(x).
9. ef(x,y)=0ifand onlyifx,y €0, 1 and x # y. Similarly for €.
10. ne(el(x,y)) =ei(nc(x),y) if and only if x € {0, 1} or y € {0, 1} and nqy(ej(x, y)) = e} (nq(x), y) if and only if

x€{0,1}orye{0,1}.
11. ef(x,vc) = ve and similarly, e} (x, vg) = vq.

Proof.

Follows from direct calculation.

Trivial.

The statement follows from Proposition 18 and 19.

We show monotonicity for e} For ¢}; the proof is similar. If x < x" <y’ <y, then by Proposition 19 we have to

consider two cases.

(a) y <nc(x). In this case e} (x, y) =nq(y).

i. If y' <n.(x'), then ¢} (x’, y') = n.(y), which means that ¢} (x, y) < e’(x’, y').
ii. Ify" >nq(x"), then €f(x’, y") =x" and nc(y) <n.(y') <x’,soel(x,y) <ef(x',y).

(b) y = n.(x). In this case e} (x, y) = x.

i. If y' > nc(x'), then ¢} (x’, y') = x’, which means that ¢ (x, y) < eX(x’, y).
ii. Ify’ <nc(x'), then ef(x’,y) =n.(y") and ne(y') > x" > x,s0 €l (x, y) < el (x',y).

5. By using the decreasing property of fc_1 and the fact that |a —b|—|la+b—1|+|b—c|—|b+c— 1]+ 1>
la —c|—la+c— 1| holds for all a, b, ¢ € [0, 1], the statement follows from direct calculation. The proof is similar
for e} as well.

6. We show the threshold transitivity for e. For e}, the proof is similar.

The condition e} (x, y) > v, is equivalent to the following inequality.

bl

1 1
s [Elfc(x) — JeO) 1+ 5 (= 1fe@) + fey) = ll)] = e,
which means that

[fe(x) = feOD S N fe(x) + fe(y) —1].

This means that either f.(x), fo(y) < %, or fo(x), fe(y) > % must hold, i.e. either x, y > v, or x, y < v..
Together with the condition ¢} (y, z) > v., we also have that y, z > v, or y, z < v, from which we easily get that
either x, z > v, or x, z < v must hold, i.e. €} (x, z) > v..

7. Follows from direct calculation.
8. Follows from the properties of e., é., ¢4, and é4.
9. The statement follows from Propositions 18 and 19.
10. Follows from direct calculation.
11, e*(x,ve) = ! [%|fc(x) — 1+ (1 ) — %|)] = f! (%) = v,. Similarly for ¢ as well. O

Remark 8. Note that from 3, it follows immediately that e (x, x) > v. and similarly for ef, as well.

Proposition 21. e} (x, y) > v ifand only if x,y > ve. or x,y <V, €i(x,y) = v if and only if x = v. or y = v, and
el (x,y) < v otherwise. Similarly for e} (x, y).
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Proof. The statement readily follows from Proposition 19. O
Remark 9. Note that ¢} and ej considered as fuzzy binary relations on [0, 1], are both c-transitive (see [16] p. 53).
Proposition 22. e} and e); are associative.

Proof. Let us consider ej; (x, y). First, we will show that associativity holds in the case where fz(x) =1 — x. Let us
use the following notation for the disjunctive aggregated equivalence for f;(x) =1 — x.

L(x,y) :=€Z§(x,y)=%(|x+y— I =lx=yl+ 1.
It can be shown that

L(x,y) =min(max(l — x, y), max(x, 1 — y)).
From this, we get

L(-xv L()H Z)) :min(max(x’ D) Z)vmax(-xs 1— Y, 1 _Z)»max(l - X, ), 1 _Z)vmax(l —X, 1 - Z))
=L(L(x,),2),

which means that L(x, y) is associative. In particular, for an arbitrary generator function fy,

£ L), Lfa (), fa@0D) = £ (LL(fa(x), fa(9), fa(2)))

also holds. Since
1 1 _
ey =fr" [5 (= 1faC) = faID + 51 fa () + fa(y) = 1@ = N (Lfa@). fa))).
we have proved the associativity of e};(x, y). The proof for e} is similar as well. O

Proposition 23. In a connective system, the above-defined equivalences e} (x,y) and e;(x,y) coincide if and only
if fo(x)+ fa(x) =1 (or equivalently n. = ny, i.e. in a Lukasiewicz system), where f. and fy are the normalized
generation function of the conjunction and disjunction operators, respectively.

Proof.

1. If fo(x) + fa(x) =1, then using the fact that f.(x) =1 — f;(x) and fc_l(x) = fd_l(l —x), we get e (x,y) =
ei(x,y).

2. If ef(x,y) = €jj(x, y), then in particular (0, x) = €};(x, 0), which means that n.(x) = ny(x) must hold for all
xel0,1]. O

7. Conclusion

In this paper, three different types of equivalence operators in bounded systems were studied. After taking a closer
look at the implication-based equivalences, we examined the properties of the so-called dual equivalences. Using
these two types of equivalence operators, a new concept of aggregated equivalences was introduced, which proved to
possess nice properties like threshold transitivity, T-transitivity and associativity. The main properties of all the three
types of the above-mentioned equivalence operators are summarized below (see Table 2).

Finally, for applications in image processing, we define the overall equivalence of two grey level images, and give
an important semantic meaning to the aggregated equivalences.

In signal and image processing, the equivalence of two signals or two images is always of great importance.

Let us assume that two grey level images, i.e. two integer-valued function f and g defined on a subset 12 of Z2,
are given. After normalizing f and g, the equivalence of the images can be calculated in each picture element x of />
(pixel) by using the equivalence operators considered above. For simplicity, let us assume that / = {1, ..., n}. The
overall equivalence of the two images (which measures the overlap) can be calculated by an arithmetic mean in the
following way.
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Table 2
The main properties of equivalence operators.
Implication-based ~ Dual Aggregated
equivalences equivalences equivalences
ec, eq ec, eq ek, e;
Compatibility v v v
Symmetry v v v
Reflexivity v - -
e(x,n(x))=0 - v -
e(v,v)=v - - v
Monotonicity v - v
Threshold transitivity =~ — - v
Invariance v v v
e(l,x)=x v v v
e(0,x) =n(x) v v v
Associativity - - v
T-transitivity v v v
Definition 19. Let us consider two normalized grey level images, f,g: I> — [0, 1], where I = {1, ..., n}. Their

overall equivalence E is defined the following way:

n

1
E(f,8)=— Y e(f(i. ). &G ),

ij=1

where e stands for one of the equivalences considered so far.

The overall equivalence can be defined for one dimensional signals similarly.

Note that for values around the middle grey level, the aggregated equivalences, e and e}, give the maximal level
of uncertainty, which gives them an important semantic meaning. Therefore, when studying the equivalence of two
grey level images, the aggregated equivalences are of great importance.
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