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Clustering Empirical Failure Rate Curves for
Reliability Prediction Purposes in the Case of
Consumer Electronic Products
József Dombi,a Tamás Jónásb and Zsuzsanna Eszter Tóthb*†
In this paper, a methodology based on the combination of time series modeling and soft computational methods is
presented to model and forecast bathtub-shaped failure rate data of newly marketed consumer electronics. The time-
dependent functions of historical failure rates are typified by parameters of an analytic model that grabs the most important
characteristics of these curves. The proposed approach is also verified by the presentation of an industrial application
brought along at an electrical repair service provider company. The prediction capability of the introduced methodology
is compared with moving average-based and exponential smoothing-based forecasting methods. According to the results
of comparison, the presented method can be considered as a viable alternative reliability prediction technique. Copyright
© 2015 John Wiley & Sons, Ltd.
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1. Introduction

W
e present a methodology that focuses on consumer electronic products. Because of shortening life cycles and times
between the design and release-to-market phases, consumer electronics are typically functionally tested rather than passed
through deeper reliability tests. It results in the fact that the failure rate or hazard rate function, which is a commonly used

quantity to describe electronic product life characteristics,1–3 is bathtub-shaped with all three sections of the traditional bathtub
curve. In this paper, a new way of modeling and forecasting bathtub-shaped failure rate lifetime data of newly marketed consumer
electronics is addressed and discussed.

Electronic repair service provider (ERSP) companies dealing with the repair process of consumer electronic products are
brought into focus in our research. This kind of electronics manufacturing service (EMS) companies possesses field return
data enabling the production of empirical failure rate curves. Based on their industrial experience, the empirical failure rate
curves serve as a knowledge base for reliability prediction and resource allocation purposes for repair service processes. The
historical failure rate curves representing the whole life cycles of on-the-market electronic products lay the foundation of
predicting the reliability of newly designed electronic products. Our paper aims to develop a model for typifying historical
failure rate curves in order to predict the reliability of such products by examining the application of the time series
modeling approach.

The proposed model describes the bathtub curve as three connected line segments (Figure 1); each of them refers to the
corresponding phase of the traditional bathtub curve. The observed failure rates of repairable electronic products as the
inputs of our model can be considered as time-dependent failure rates and hence can be treated as time series. We
constructed a model that is reasonably simple and applicable for the whole product life cycle to make overall decisions.
Therefore, we follow an approach that can be successfully used to discover similarities among time series of historical failure
rates. The time-dependent functions of failure rates are typified by different parameters of an analytic model that grabs the
most important characteristics of these curves. Based on the appropriate parameterization of the model, clustering of the
different bathtub curves originating from historical field data becomes possible in a three-dimensional or four-dimensional
space. Parameters of our model have semantics because of their geometric interpretation, and so, the presented approach
has a cognitive aspect as well.
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Figure 1. A typical empirical failure rate curve
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The methodology we propose combines time series modeling and soft computational methods and, as such, can be considered as
a hybrid one, which serves as a concrete alternative for modeling bathtub-shaped failure rate functions of newly marketed electronic
products.

The information deriving from the failure rate prediction provides important inputs to decision-making in the new product
development process. This kind of reliability analysis enables the manufacturer to assess and improve the dependability of the
electronic product and improve the performance of next-generation products. Our model is also verified by the presentation of an
industrial application brought along at an ERSP company where software was developed to apply the model. In order to evaluate
the goodness of our approach as a robustness test, we also compare its results with moving average-based and exponential
smoothing-based forecasts.

The remaining part of the paper is organized as follows. In Section 2, we present a brief literature review. Section 3 proposes a time
series model and an analytical model for parameterization, based on which the clustering of typical failure rate curves becomes
possible. In Section 4, the application of our approach is demonstrated through an industrial example. Finally, in Section 5, the paper
is closed by drawing a number of key conclusions and presenting important managerial implications.
2. Literature review

New electronic products are being launched on the market at an ever-accelerated pace because of the advances in related
technology and to the increasing demands and expectations of customers and users.4 As electronic products are becoming more
sophisticated, customers want to be assured of satisfactory performance in the long run. Because of these changes, dealing with
reliability cannot be an afterthought for electronic manufacturers either. Reliability analysis and prediction have become an
increasingly important issue for the companies competing in the electronic industry.1,5

The electronic sector has been undergoing a momentous transformation during the last two decades in many ways. The
complexity and sophistication of electronic products and product functionality have greatly improved in the electronic sector.1

Customers of electronic products are increasingly demanding highly customized and high-quality products at a competitive price.
New products are constantly being launched, the time of which can be measured in weeks and months rather than years, which
results in shortening product life cycles and delivery times. Original equipment manufacturers (OEMs) have to keep pace with the
increasing requirements.6 Because of the highly competitive nature of the electronics industry, core competencies and the need
for reducing manufacturing costs have come to the front. These tendencies have resulted in the outsourcing of high-level
manufacturing capabilities, design, engineering, and aftermarket services. This outsourcing trend in the electronic industry has laid
a strong foundation of the subcontracting sector. Particularly, modular production has enhanced the growth of the EMS industry,7,8

which is the sector that has been performing strongly in the last 20 years.9

An EMS provider is usually an independent organization without managing an own brand but having a wide range of customers
managing entire product lines and whole supply chains for OEMs and offering end-to-end services.1,10 One kind of service that EMS
companies provide for OEMs is the industrial repair service as a piece of aftermarket services. The number of ERSP enterprises dealing
with electronic repair services has been increasing significantly in the EMS sector.9 These aftermarket services are developed to repair
different types of electronic products, modules, and parts. In today’s highly competitive electronic products market, product reliability
analysis and prediction has become extremely important for OEMs.3 ERSP companies play an important role in providing OEMs with
relevant information regarding the reliability of their products and possess field failure data of on-the-market consumer electronic
products, which can serve as a basis for predicting the reliability of future products.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015
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In reliability theory, the ‘bathtub shape’ is widely used to describe the failure patterns of different products. This hazard-rate curve,
which typically maps the failure rate versus time, has been verified by experience for many types of products.

Many lifetime failure data have a bathtub-shaped failure rate. Therefore, the estimation of the failure rate function is of
fundamental importance in reliability analysis. According to the industrial experience, it is verified that the failure rate function of
consumer electronics follows the phases of the traditional bathtub curve. The bathtub curve presents the idea that the operation
of a device population can be divided into three distinct periods called infancy, useful life, and wear-out periods with each region
corresponding to a specific type of failure (Figure 1).

The relevant literature regarding the bathtub curve is extremely wide-ranging. Bathtub-shaped hazard rate functions11,12 appear
frequently in reliability engineering.13,14 A huge number of bathtub curve models are developed for modeling data that display
the bathtub-shaped failure rate.11,15,16 Hundreds of papers deal with the distributions and the parameterization describing the
bathtub curve. Some new models have been proposed recently.17–21 Lai et al.11 gives an overview of bathtub-shaped failure rate
distributions. There are three typical trends of methods to establish a bathtub curve model:22 looking for an appropriate model,
modifying the traditional model by complementing it with additional parameters, and transforming the data to achieve compatibility
with a well-understood and convenient traditional model. Many literatures analyze the turning point of the failure rate function,
which helps to determine and plan appropriate burn-in, maintenance, and repair policies and strategies.23 Hallberg24 introduces a
model for predicting failure rate as a function of stress and time. Govil and Aggarwal25 propose a six-parameter and five-parameter
model to represent the bathtub curve. Cassanelli et al.26 suggested a reliability assessment method for new products by collecting
empirical data and reliability information on similar components. Lee and Lee27 developed a Web system-based electronic
components reliability prediction system based on the failure model and created a database from them. Campbell et al.5 studied
the reliability behavior of electronic components as a function of time.

Companies competing in the electronic industry have two opportunities when it comes to constructing a reliability prediction
model for repairable electronic products. On the one hand, an appropriate probability function can be selected in advance and then
applied for predicting future reliability.28,29 Liang28,29 argues that despite the fact that the predetermined probability function fits the
failure data well, the results of prediction may not be satisfactory enough in practice. It must be also taken into consideration that
there is a wide range of appropriate probability functions; so, selecting one from the many existing ones is not an easy task for
reliability professionals.28–30

One of the most widely used applications of reliability analysis is to monitor field failure data. Considering field failure data as time
series, the other viable opportunity is to construct a reliability prediction model involving time series analysis.31 However, time series
models have been successfully applied in many engineering and economic fields, and their use in the field of reliability prediction can
only be dated back to the late 90s.32–35 The aim of using time series methods is to recognize iterative patterns and nonlinear
relationships.36 Time series models are well-grounded both statistically and theoretically, and when analyzing failure rate data, no
requirements and assumptions of models are required. It is also important to note that because the time series approach gives a
higher weightage to more recent data, it is very suitable for repairable systems.37

Traditional time series methods include the exponential-smoothing method, the moving average method, the autoregressive
integrated moving-average (ARIMA) model, the seasonal ARIMA models,31 and the time series decomposition method, all of which
have been used for predicting repairable system reliability.30,38–40 Neural networks can also be employed for time series
prediction.41–44

The presented approach is a hybrid model in the sense that we consider historical failure rates as time series to which a parametric
analytical model is fit. After parameterization, we apply a fuzzy clustering method to identify typical failure rate curves. In our research,
the objective was to examine the usefulness of this hybrid approach in predicting the failure rates of newly marketed electronic
products. We considered the ratios of failed products per interval as a time series and then applied a time series approach to model
and analyze the failure behavior. Once the model parameters were estimated, the model could be used for future prediction. We are
also to prove that our method based on analyzing time series gives satisfactory results in terms of its predictive performance and
hence can be a viable alternative to other widely used prediction tools such as moving average and exponential smoothing.
3. Methodology

3.1. The line segment model

Our approach is founded on the phenomenon that there are three characteristic parts recognizable in each of the studied empirical
failure rate curves, and each of these parts can be represented by a simple line segment as shown in Figure 1.

The three characteristic parts of such a failure rate curve can be determined by the A, B, C, and D points. The AB line segment

represents the first decreasing part of the curve, and theBC line segment corresponds to the quasi-constant middle piece of the curve,

while the CD segment represents the increasing part of the bathtub curve. Having the A, B, C, and D points identified, the failure rate

curve can be represented by the AB, BC , and CD line segments.
Let λ0, λ1, …, λn be the known weekly failure rates of an electronic product. The λ0, λ1, …, λn series can be considered as the λt0, λt1 ,

…, λtn times series, where ti= i and i= 1, 2,…, n. Let the A, B, C, and D points be A(tA, λA), B(tB, λB), C(tC, λC), and D(tD, λD), respectively, in
the time–failure rate coordinate system. As A is the first, and D is the last point of the AB and CD segments, respectively, tA= 0

and tD= n. The CD segment represents the constant piece of the failure rate curve; so, λB= λC. By this means, the A, B, C, and D
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015
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points are A(0, λA), B(tB, λB), C(tC, λB), and D(n, λD), where 0< tC< tB< n, and λA, λD> λB. The segments AB, BC, and CD fitting best to
the failure rate curve can be identified by minimizing the

∑
n

i¼0
f i � λið Þ2 (1)

quantity, where

f tð Þ ¼

λB � λA
tB

t þ λA; if 0 ≤ t < tB

λB; if tB ≤ t < tC
λD � λB
n� tC

t � nð Þ þ λD; if tC ≤ t ≤ n

8>>>><
>>>>:

(2)

The unknown parameters λA, λB, λD, tB, and tC of f(t) can be determined by using the generalized reduced-gradient method.45,46

For practical applications, it is worthwhile to calculate the root-mean-square error (RMSE) between f(t) and the λ0, λ1, …, λn failure
rate time series (FRTS) for each segment of f(t) and link the RMSEs to f(t). The σ1, σ2, and σ3 RMSEs are calculated as

σ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

tBb c þ 1
∑
tBb c

i¼0
f ið Þ � λið Þ2

s

σ2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

tCb c � tBb c ∑
tCb c

i¼ tBb cþ1
f ið Þ � λið Þ2

s

σ3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n� tCb c ∑
n

i¼ tCb cþ1
f ið Þ � λið Þ2

s
(3)

Figure 2 depicts the graph of an f(t) function. Such a function is unambiguously determined by the A, B, C, and D points.

Let e be the closed half-line starting from point C (towards point D). Let us assume that instead of line segment CD, the closed half-
line e describes the third part of f(t); that is, this part of f(t) is given by point C and slope of e. It means that e can be given by points C
and E(tE, λE), where

tE ¼ tB þ tC

λE ¼ f tEð Þ (4)

In this way, function g(t) is derived from function f(t) as

g tð Þ ¼

λB � λA
tB

t þ λA; if 0 ≤ t < tB

λB; if tB ≤ t < tC
λE � λB

tB
t � tB � tCð Þ þ λE ; if tC ≤ t ≤ n

8>>>><
>>>>:

(5)
Figure 2. Graph of an f(t) function
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From Equation (5), function g(t) is unambiguously given by parameters λA, λB, λE, tB, and tC. Function g(t) can also be determined by
the h1, λB, d, l, h2 parameters as shown in Figure 3, where

h1 ¼ λA � λB
d ¼ tB

l ¼ tC � tB

h2 ¼ λE � λB

(6)

Note that due to tE= tB+ tC or tE= 2d+ l, g(t) is given by five parameters (either λA, λB, λE, tB, tC or h1, λB, d, l, h2), while f(t) is
determined by six parameters (λA, λB, λD, tB, tC and n). By this means, f(t) and g(t) model the same λ0, λ1, …, λn FRTS, but g(t) has less
parameters. The g(t) function is called the line segment model (LSM) of the λ0, λ1, …, λn FRTS (Figure 3).
3.2. The standard line segment model

Once the λA, λB, λE, tB and tC parameters of the LSM g(t) for a particular λ0, λ1, …, λn FRTS are identified, the g(t) model can be
standardized to the s : [0, 1]→ [0, 1], x↦ s(x) function by applying the following transformation:

x ¼ t

tB þ tC

s xð Þ ¼ g tB þ tCð Þxð Þ � λB
max λA; λEð Þ � λB

(7)

According to this transformation, the (x, y) coordinates of the transformed A, B, C, and E points are

xA ¼ 0; yA ¼ s xAð Þ ¼ λA � λB
max λA; λEð Þ � λB

xB ¼ tB
tB þ tC

; yB ¼ s xBð Þ ¼ 0

xC ¼ tC
tB þ tC

; yC ¼ s xCð Þ ¼ 0

xE ¼ 1; yE ¼ s xEð Þ ¼ λE � λB
max λA; λEð Þ � λB

(8)

So, the s(x) function, which we call the standard LSM (SLSM) of the λ0, λ1, …, λn FRTS, can be written as

s xð Þ ¼

�yA
xB

x þ yA; if 0 ≤ x < xB

0; if xB ≤ x < xC
yE

1� xC
x � 1ð Þ þ yE ; if xC ≤ x ≤1

8>>>><
>>>>:

(9)
Figure 3. Graph of function g(t) derived from function f(t)
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As the LSM in Equation (5) can be described by the h1, λB, d, l, h2 parameters, the SLSM in Equation (9) is determined by y1, xd, xl and
y2, where

y1 ¼ yA
xd ¼ xB

xl ¼ xC � xB

y2 ¼ yE

(10)

and as 2xd+ xl= 1,

xd ¼ 1� xl
2

(11)

It means that s(x) is given by the y1, y2 height parameters and the xl middle-length parameter as shown in Figure 4. Note that due
to Equation (11), the middle segment of s(x) (with a length of xl) is centered to the (0.5, 0) point. In what follows, let sy1;y2;xl xð Þ denote
the SLSM with the y1, y2 and xl parameters.

3.3. Clustering the SLSMs

Let

λ1;0; λ1;1;…; λ1;n1
λ2;0; λ2;1;…; λ2;n2
⋮

λm;0; λm;1;…; λm;nm

(12)

be FRTSs that we wish to cluster. The SLSM model for each FRTS can be created as discussed before.
Let

sy1i ;y2i ;xl i xð Þ (13)

be the SLSM for the λi;0; λi;1;…; λi;ni FRTS, where i=1,…,m. These SLSMs can be clustered into the C1,…, CN clusters (N ≤m) based on
their y1i, y2i, xli parameters in the three-dimensional space using the fuzzy C-means clustering method.47,48 Let Nj denote the number
of SLSMs in cluster Cj, and let Ij be the set of indexes of SLSMs that belong to cluster Cj, that is,

Ij ¼ kjsy1k ;y2k ;xlk xð Þ ∈ Cj; k ∈ 1;…;mf g
n o

(14)

where j= 1,…,N. For cluster Cj, the parameters of the cluster characteristic SLSM

sy1Cj ;y2Cj ;xlCj
xð Þ (15)

are defined as the
Figure 4. Graph of s(x)
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y1Cj ¼
1

Nj
∑
r ∈ Ij

y1r

y2Cj ¼
1

Nj
∑
r ∈ Ij

y2r

xlCj ¼
1

Nj
∑
r ∈ Ij

xl r

(16)

averages, where j=1,…,N; that is, the cluster characteristic SLSMs are the cluster centroids.
The FRTSs in Equation (12) are all complete ones; that is, they represent FRTSs of end-of-life consumer electronic products that are

not repaired anymore. In other words, each studied FRTS represents the entire failure rate history of a product type. Thus, the cluster
characteristic SLSMs represent the typical SLSMs of the FRTSs.
3.4. Fitting LSMs to a fractional failure rate time series

A fractional FRTS is not complete; that is, it will be continued in the future, and its new values are becoming known week by week.
Now, we discuss how the LSM, which fits to a fractional FRTS the best, can be generated from the characteristic SLSMs. Let λF,0,…, λF,M
be a fractional FRTS. For each sy1Cj ;y2Cj ;xlCj

xð Þ characteristic SLSM, we are looking for the αCj > 0; βCj
≥ 0 and γCj

> 0 parameters so that

gCj
: 0; αCj

� �
→ 0; 1½ �

αCj ≥M

gCj
tð Þ ¼ γCj

sy1Cj ;y2Cj ;xlCj
t

αCj

 !
þ βCj

∑
M

i¼0
gCj

ið Þ � λF;i
� �2

→min

(17)

Solution for each fitting problem in Equation (17) (j= 1,…,N) can be found by applying the generalized reduced-gradient
method.45,46 Let F(t) be the best-fitting function derived from the SLMSs based on Equation (17), that is,

F tð Þ ¼ gCk
tð Þ��

∑
M

i¼0
gCk

ið Þ � λF;i
� 	

2 ¼ min
j¼1;…;N

∑
M

i¼0
gCj

ið Þ � λF;i
� �

2

k ¼ 1;…;N

(18)

3.4.1. Predicting failure rates. Let us assume that F(t) has the α, β, and γ parameters. As α ≥ M, the F(i) values for bαc ≥ i >M can be
taken as predictions of the unknown λF,M + 1,...., λF,bαc future values; that is, the λF,M + 1,...., λF,bαc series can be taken as a possible
continuation of the λF,0,...., λF,M fractional FRTS. Figure 5 illustrates how the LSM fitting the best to the λF,0,...., λF,M fractional FRTS can
be used as a predictor.
Figure 5. Predicting failure rates
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3.5. Discovering similarities among the FRTSs

Similarities among the studied FRTSs can be characterized by using methods that are suitable to measure either the similarity or the
distance among them. Having the appropriate similarity or distance metric identified, the FRTSs can be clustered based upon it. A
good overview of the well-known time series clustering techniques is available in a study by Liao.49

In our case, the bathtub shape of the graphs of the studied FRTSs can be taken as their common property. The LSM of an FRTS is a
representation of it with the h1, λB, d, l, and h2 parameters that describe the shape of the FRTS. Following this approach, the FRTSs can
be clustered using the h1, λB, d, l, and h2 parameters, or if the length of FRTSs need to be considered, their n parameters can be taken
into account as well. Furthermore, the σ1, σ2 and σ3 RMSEs, which are measures of goodness-of-model fit, can also be considered as
model parameters and used in clustering of FRTSs a multidimensional space.

Having the SLSM generated for each FRTS, the opportunity to use the SLMSs for clustering the FRTSs presents itself. Recall that the
SLSM of an FRTS has the y1, y2, and xl parameters, but it does not have any information about the position of the FRTS graph on the
vertical axis. In other words, because of the construction of the LSMs, if there is a constant difference between corresponding values
of two FRTSs, their LSMs are identical. On the other hand, if the λB parameters of the LSMs are considered besides the y1, y2, and xl
SLSM parameters, the vertical positions of the FRTS graphs are captured through the λB parameters. By this means, the y1, y2, xl,
and λB parameters allow us to cluster the FRTSs in a four-dimensional space. If the λB parameters are close to each other, we
recommend normalizing them to the [0, 1] interval and using the normalized values for clustering. The advantage of this approach,
which we demonstrate in our case study, lies in the fact that the FRTSs can be clustered in a low-dimensional space.
4. Industrial application

The methods described in the preceding text were applied to 30 real-life FRTS of a consumer electronic product family with the
purpose of studying their similarities and typifying them. The SLSM of each FRTS was generated according to Section 3. After that,
the SLSMs were clustered – using the fuzzy C-means method – into seven clusters, based on their y1, y2, and xl parameters. Figure 6
shows the clustering results including the cluster centroids that are marked by bigger bold symbols.

Figure 7 depicts the SLSMs (thin lines) and the cluster characteristic SLSM (thick lines) belonging to each cluster formed.
We can conclude from these images that the SLSMs within a cluster are similar, while the cluster characteristic SLSMs reflect the

dissimilarities between the clusters well.

4.1. Using SLSMs to predict failure rates

The FRTS of a product type, which had not been involved in establishing the SLSMs, was selected to demonstrate how the cluster
characteristic SLSMs can be used to predict the FRTS by applying the method discussed in Section 3.4.1. This FRTS represents the
empirical failure rates of a consumer product type during 235 consecutiveweeks; that is, the time series consists of 235 data. The
SLSM-based prediction was compared with two widely applied forecasting methods: the moving average and exponential
Figure 6. Clustered standard line segment models
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smoothing. The moving average was applied with a span of five, and default weight for the exponential smoothing was computed by
fitting an ARIMA (0, 1, 1) model to the data, and back-casting was used to calculate the initial smoothed value. The mean squared
error (MSE) of predicted failure rate was calculated for each forecast period to characterize the goodness of the applied forecasting
methods. In order to evaluate the methods both in the short run and in the long run, we forecasted failure rates for 5, 10, 30, and
60weeks (periods) based on the first 10-week-long, 30-week-long, 80-week-long, and 160-week-long known fractional FRTS,
respectively. Results of these ex post predictions are summarized in Table I.

Predictions based on known FRTS fractions of first 10, 30, 80, and 160weeks were also computed for the entire time range of FRTS,
that is, for 225, 205, 105, and 85weeks, respectively. Figure 8 depicts graph of the entire FRTS and the predictions founded on its
different known fractions for its entire time range. In Figure 8, the solid gray lines, the dashed black lines, and the dashed gray lines
indicate the SLSM-based, the moving average, and the exponential-smoothing forecasts, respectively.

Table II shows the MSE values of predicted failure rates calculated for 225, 205, 105, and 85weeks of forecasts.
There are couples of notable properties of the SLSM-based predictions that can be seen in our example.
The best-fitting cluster characteristic SLSM changes as the known fraction of the studied FRTS develops; that is, predictions change

as more information is presented to the prediction model.
When only the first 10 data of FRTS are known (left-upper graph in Figure 8), the moving average and exponential-smoothing

forecasts differ very much from the real FRTS values. This is due to the fact that the failure rate curve is declining in this phase,
and these two methods give constant forecasts that are computed based on the first 10 values of a decreasing series of
Table I. Results of ex post predictions for different time ranges based on different known FRTS fractions

Fitting parameters
of best SLSM

MSE of forecast
(for the predicted time range)

Best-fitting
SLSM

Length of
fractional
FRTS

Number of
forecast
periods

Alpha Beta Gamma SLSM Moving
average

Exponential
smoothing

5 10 5 227.42 0.0116 0.0857 0.000086324 0.000327629 0.000264068
4 30 10 227.13 0.0069 0.0869 0.000020014 0.000107852 0.000051725
7 80 30 210.33 0.0207 0.0757 0.000015417 0.000016251 0.000024988
5 150 60 236.86 0.0198 0.0661 0.000016623 0.000046311 0.000050558

First column in Table I contains the index of best-fitting cluster characteristic SLSM for each prediction. Columns labeled with ‘alpha’,
‘beta’, and ‘gamma’ contain the α, β, and γ fitting parameters (described in Section 3.4.1), respectively, for the best-fitting cluster
characteristic SLSMs. For example, cluster characteristic SLSM number 5 results the best fitting based on the fractional failure rate time
series that contains failure rates of the first 10weeks.
FRTS: failure rate time series; SLSM: standard line segment model; FRTS: failure rate time series; MSE; mean squared error.
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Figure 8. Ex post predictions based on different known factions of failure rate time series

Table II. Results of ex post predictions for entire time range of FRTS based on its different known fractions

Fitting parameters of best
SLSM

MSE of forecast
(for the predicted time range)

Best-fitting
SLSM

Length of
fractional
FRTS

Number of
forecast
periods

Alpha Beta Gamma SLSM Moving
average

Exponential
smoothing

5 10 225 227.42 0.0116 0.0857 0.000152829 0.003419144 0.003017330
4 30 205 227.13 0.0069 0.0869 0.000161862 0.000390271 0.000210055
7 80 155 210.33 0.0207 0.0757 0.000047985 0.000381051 0.000265106
5 150 85 236.86 0.0198 0.0661 0.000035476 0.000361879 0.000226632

FRTS: failure rate time series; SLSM: standard line segment model; FRTS: failure rate time series; MSE; mean squared error.
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approximately 40 values. One advantage of the SLSM-based prediction is that it gives a long-term forecast and so provides an
indication on turning points of the failure rate curve. Certainly, goodness of this indication is becoming better as more data of
the curve are becoming known. In Tables I and II, the MSE values for predictions based on the first 10 and first 30 known data,
that is, for periods before the first turning point of FRTS, indicate that the SLSM-based prediction is considerably better than the
other two.

As the failure rate curve approaches its second, quasi-constant phase, the moving average and exponential smoothing deliver
similar results to the SLSM-based forecast both in the short run and in the long run.

The MSE values calculated for the predicted failure rates (Tables I and II) indicate that the SLSM-based predictions give better
results in each case that was studied in our example. From a practical point of view, we also need to mention that in the quasi-
constant phase of the failure rate curve, the differences among the three methods in terms of their goodness are small, and these
differences are more dominant in the declining and rising phases of the curve, especially in the long run.
4.2. Grouping the original empirical failure rate curves

If we wish to discover similarities among FRTSs considering not just their shape, which can be grasped through their SLSM
parameters, but their positions along the vertical axis as well, we can use the approach described in the succeeding text.

The FRTSs were clustered in the four-dimensional space based on their SLSMs and LSMs considering the y1, y2, xl, and the
normalized λB parameters. As the result of the fuzzy C-means clustering applied, 10 clusters of FRTSs were generated that are shown
in the images cluster 1 to cluster 10 (Figure 9)
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015



Figure 9. Clustered failure rate time series
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The clusters formed and shown in the images cluster 1 to cluster 10 highlight that clustering the FRTS based on the SLSMs
parameters, considering the λB parameter of each SLSM too, results in a grouping of FRTSs that reflects the similarities of FRTS within
the groups and dissimilarities between the groups well.
5. Conclusions, managerial implications, and further research plans

In this paper, we presented a hybrid technique for modeling and forecasting bathtub-shaped failure rate data of newly marketed
consumer electronics by studying repair services. Empirical failure rate curves describing the whole life cycles of on-the-market
electronic products considered as time series were applied as inputs for typifying FRTSs, based on which future reliability of
new-generation products can be predicted. Similarities among historical FRTSs are characterized by SLSM model parameters. These
parameters describe an FRTS as three connected line segments, referring to the corresponding sections of the traditional bathtub
curve. The SLSMs of FRTSs are clustered based on the model parameters as well as the FRTSs using the same parameters
supplemented with the normalized λB parameter.

In spite of the fact that SLSM with its y1, y2, and xl parameters is a simple representation of an FRTS, it can be used to
capture the main properties of FRTS of consumer electronic products. The model parameters of an FRTS carry information
about the shape of the failure rate curve, and so, clustering the SLSMs results in a typical SLSM that can be applied for
predicting the future values of the failure rate curves. In this sense, the cluster characteristic SLSMs represent the knowledge
of failure rate curves gained from historical data. From a managerial perspective, discovering similarities among empirical
failure rate curves generates value both for the repair service providers and for the original manufacturers. While ERSP
companies can use it to predict resource needs for particular repair services, the latter ones can conclude on typical reliability
characteristics of their products.
Copyright © 2015 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2015
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As the parameters of the model have a geometric interpretation as well, the proposed model has a cognitive aspect.
The case study presented in this paper justifies that the SLSMs along with the λB parameters can be used to discover similarities of

the studied failure rate curves. The introduced method is founded on a model that is mathematically simple but suites well the needs
of industrial applications.

A comparison was made to moving average and exponential smoothing, and it was observed that the results obtained from our
modeling are encouraging, and it has the potential to be a suitable alternative predicting technique.

The model’s flexibility is twofold. On the one hand, in the case of a newly marketed electronic product, we can obtain further
information about the actual failure rates in the course of time. From time to time, the typical failure rate curve that fits
the best to the actual curve may change. This kind of fitting by moving forward in the product life cycle can change and
can be revised according to new information. On the other hand, by producing more and more products, the database of
curves can be complemented, and historical failure rate curves can be clustered again, resulting in the re-identification of
typical curves as time goes on.

We should emphasize that this approach is founded on the phenomenon that the empirical failure rate curves, for which the
method is applied, are bathtub-shaped ones. We do not know yet if the same method would be appropriate for other product types
as well. One of our future research plans is to answer this question.

In the presented approach, we focused solely on properties of the failure rate curves in order to capture similarities among them.
We have not taken into consideration the functional and technological properties of the studied products; however, one can say
that products with similar functional and technological parameters presumably have similar failure rate curves. Starting from this
thought, we plan to study whether products that are functionally and technologically similar also show similarities in their SLSM
parameters. For this purpose, our future research plan is to study how effectively the product SLSMs (or LSMs) could be typified
according to clustering criteria learnt from clustering them based on their functional and technological attributes using
self-organizing feature maps.50
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