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Modeling and Long-term Forecasting Demand in Spare

Parts Logistics Businesses

Abstract

In order to provide high service levels, companies competing in the elec-

tronics manufacturing sector need to ensure the availability of spare parts

for repair and maintenance operations. This paper examines the purchase

life-cycles of electronic spare parts and presents a new way of modeling and

forecasting spare part demand for electronic commodities in the spare parts

logistics services. The presented modeling methodology is founded on the

assumption that the purchase life-cycles of spare parts can be described by a

curve with short term fluctuations around it. For this purpose, a flexible De-

mand Model Function is introduced. The proposed forecasting method uses

a knowledge discovery-based approach that is built upon the combined appli-

cation of analytic and soft computational techniques and is able to indicate

the turning points of the purchase life-cycle curve. The novelty lies in the fact

that the model function has certain characteristics which support describing

and interpreting the demand trend as a function of time. The application of

our methodology is mainly advantageous in long-term forecasting, it can be

especially useful in supporting purchase planning decisions in the ramp-up

and declining phases of purchase life-cycles of product specific spare parts. A

demonstrative example is used to illustrate the applicability of the proposed

methodology. Its forecasting capability is compared to those of some widely
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applied methods in business practice. From the results, the new method may

be viewed as a viable alternative spare part demand forecasting technique in

spare part logistics sector.

Keywords: spare part logistics; electronic aftermarket

services; purchase life-cycle forecasting; knowledge discovery;

clustering time series

1. Introduction

Customers have rising expectations concerning the quality and reliabil-

ity of electronic products and associated services. As the in-warranty and

out-of-warranty repairs play a dominant role, maintenance processes and

the level of aftermarket services are significant factors of competitiveness in

the electronic industry. In accordance with that, a well-established spare

part management system is an effective way to enhance customer loyalty.

Spare part demand forecasting is of crucial importance for maintenance sys-

tems, however, it is a complex issue due to the following reasons: in case

of most electronic products the number of managed spare parts may often

be high (Cohen and Agrawal, 2006), spare part demand patterns are usually

lumpy or intermittent (Boylan and Syntetos, 2010), high responsiveness is

required (Murphy et al., 2004), and there is a risk of spare part obsolescence

(Solomon et al., 2000).

Spare parts can be characterized by their own life-cycles which is

associated with the life-cycle of the final products that utilize them

(Fortuin and Martin, 1999). Spare part life-cycle can be divided into three

different phases with special characteristics for spare part demand (Fortuin,

2
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1980). The purchase life-cycle (PLC) curve of an electronic spare part typ-

ically consists of three characteristic phases: an increasing first phase, a

quasi-constant second phase and a declining third phase. Figure 1 depicts

an example for the time series Dt that represents weekly demand for a spare

part (t = 1, 2, . . . , 250).

0 20 40 60 80 100 120 140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

t

D
t

Figure 1: A typical demand time series of a spare part

In this paper a new way of modeling and forecasting electronic spare part

demand is addressed and discussed. Stipan et al. (2000) points out that the

commodity nature of modern electronic products dictates their operational

life. Groen et al. (2004) emphasize that already available reliability data of

different, yet similar products could be utilized for products under (re)desing

by considering that these will typically have similar reliability characteristics.

Therefore, reliability-related and technological data can be taken into account

when estimating reliability features of new products. Following this, we may

assume that the reliability characteristics of electronic spare parts of the

same commodity are similar. The trend curves of time series representing

3
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the demands for spare parts can be considered as purchase life-cycles (PLC)

of spare parts.

The introduced comparative forecasting methodology regarding lumpy

spare part demand is based on knowledge discovery techniques. By com-

bining analytic and fuzzy clustering techniques, spare part demand for new

electronic products is forecasted based on the life-cycles of spare part de-

mands of end-of-life (EOL) products. The paper investigates the life-cycles

of spare parts that are supplied to the repair network by companies which

provide the so-called spare part logistics (SPL) as a service. The method

presented in this paper can be used to typify the PLC curves of EOL spare

parts that belong to the same commodity category (e.g. motherboards, power

supply units etc.). The presented modeling methodology is founded on the

assumption that the purchase life-cycles of spare parts can be described by

a curve with short-term fluctuations around it, and this model curve has the

following characteristics:

(i) the curve is unimodal; that is, first it is increasing, then comes a plateau

and finally it is decreasing

(ii) the curve can have maximum two inflexion points, one in the increasing

and one in the decreasing phase

(iii) the curve can be zero or positive, both at the start and at the end

(iv) transformations allow this curve to fit required heights and locations.

The remaining of the paper is organized as follows. In Section 2, we

report some related works encountered in the literature. Section 3 describes

the methodology framework. Section 4 presents the modeling methodology

of demand time series. Section 5 presents and industrial application and the

4
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goodness of the forecasting methodology is evaluated. In Section 6, main

findings are discussed and some conclusive remarks and limitations of the

study are pointed out.

2. Literature review

Due to the rapid progress in the electronic industry, new electronic prod-

ucts are constantly being launched to the market, the time of which can be

measured in weeks and months rather than years, which results in shortening

product life-cycles and delivery times. As a result, a typical consumer elec-

tronic product may go through all of its life-cycle stages within a year or less.

Accordingly, the final order is now typically placed within a year after pro-

duction kick-off (Pourakbar et al., 2012; Teunter and Fortuin, 1999). Short-

ening innovation cycles result in shortening production periods which means

that in case of an increasing number of durable products original equipment

manufacturers (OEMs) must provide spare parts for legal and service reasons.

This end-of-life service period may last for many years (Teunter and Fortuin,

1999). Therefore, trends in technological lifetimes, particularly that of elec-

tronic parts are important to OEMs that must perform long support life

applications (Sandborn et al., 2011). Forecasting the expected demand for a

certain period of time with one or more spare parts is a relevant target in an

organization dealing with spare part logistics.

The above mentioned phenomena require the management of demand and

inventory also for parts for which historical demand or failure data are not

available (Boylan and Syntetos, 2010). Spare part classification, spare part

management and spare part demand forecasting is a hot issue in the rel-

5
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evant literature (Gajpal et al., 1994; Huiskonen, 2001; Boone et al., 2008;

Boylan and Syntetos, 2010; Kennedy et al., 2002; Bacchetti and Saccani,

2012). Many studies focusing on spare part demand have resulted in specific

methods in the last decades.

Time series demand forecasting methods have been widely applied to

spare parts. Traditional time series methods are usually highly dependent

on historical data, which can be incomplete, imprecise and ambiguous. These

uncertainties are likely to hinder forecasting accuracy, thus limiting the ap-

plicability of these methods. Traditional forecasting techniques can deal with

many forecasting cases, but cannot solve forecasting problems in which his-

torical data are given in linguistic values (Hwang et al., 1998). Fuzzy fore-

casting approaches are capable of dealing with vague and incomplete time

series data under uncertain circumstances (Song and Chissom, 1993, 1994;

Chen, 1996; Chen and Chung, 2006; Chen and Chang, 2010; Egrioglu et al.,

2011; Chen and Chen, 2011; Wang et al., 2013, 2014; Lu et al., 2014).

Neural networks have also emerged as an alternative tool for model-

ing and forecasting due to their ability to capture the non-linearity in the

data (Chen et al., 2010a,b; Kourentzes, 2013). Recent research activities

in this area and successful forecasting applications suggest that neural net-

works can also be an important alternative for time series forecasting and are

able to compete with linear models of time series (Dong and Pedrycz, 2008;

Mukhopadhyah et al., 2012; Gutierrez et al., 2008; Hua and Zhang, 2006).

Shortcoming of neural network models, however, is the large amount of train-

ing data.

The combined application of neural networks and fuzzy systems could

6
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provide better results than classic regression models and neural net-

works in time series prediction (Armano et al., 2005; Huarng and Yu, 2006;

Chen and Wang, 2012). A distinct property of the neuro-fuzzy approaches

is that they are able to indicate the turning points of the purchase life-cycle

curve, while traditional statistical techniques lack this property.

In the field of spare part demand forecasting there is still no consensus on

which is the best forecasting method for spare parts (Bacchetti and Saccani,

2012). Only very few studies propose criteria to differentiate the fore-

casting methods for different items and only a few papers deal with the

practical applicability of methods to real cases for spare part management

(Boylan and Syntetos, 2008).

Most of the above mentioned fuzzy time series methods provide reason-

able accuracy over short periods of time, but the accuracy of time series fore-

casting diminishes sharply as the length of forecasting increases (Li et al.,

2010). Nevertheless, there is an increasing need for long-term forecasting

Simon et al. (2005), which is difficult to achieve because information is un-

available for the unknown future time steps. Li et al. (2010) propose a new

method called deterministic vector long-term forecasting (DVL). Wang et al.

(2015) propose a forecasting model combining the modified fuzzy c-means

and information granulation for solving the problem of long-term prediction

with time series. Kaushik and Singh (2013) apply long-term forecasting with

fuzzy time series and neural networks.

The installed base of a product, that is, the number of products still in

use can also be utilized to obtain forecasts (van der Heijden and Iskandar,

2013; Jalil et al., 2011; Dekker et al., 2013) An interesting installed-based

7
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approach to spare part demand modeling was provided by Kim et al. (2017)

with the ability to capture the turning point of the purchase life-cycle curve.

The primary aim of this paper is to develop a time series method that

is applicable to long-term forecasting and takes into account the uncertainty

present in the time series under investigation. Taking the PLC curves of spare

parts into consideration the trends of time series and the prediction of the

turning points between the successive characteristic phases of the purchase

life-cycle are of crucial importance in the long run.

3. The methodology framework

In this section, our method consisting of two main phases, the knowledge

discovery and the knowledge application phase is introduced. In the knowl-

edge discovery phase, a parametric demand model function (DMF) is fitted

to each full historical demand times series of end-of-life spare parts. The

demand models (DMs) of purchase life-cycle curves of end-of-life spare parts

are the fitted demand model functions. The demand models are transformed

to standardized demand models (SDMs) that may be viewed as primitives

which represent the entire set of the studied purchase life-cycle curves. Since

each parameter of a primitive has a geometric interpretation, that is, pa-

rameters of a primitive determine the shape of its curve. In the next step,

the primitives are clustered based on their parameters. Clustering results in

cluster characteristic SDMs that represent the typical standardized demand

models. The cluster characteristic SDMs may be viewed as a knowledge base

discovered from historical demand times series of EOL spare parts. Once the

typical SDMs have been identified, the knowledge that they represent may

8
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be used to predict demand for active spare parts. The active spare parts

are the ones for which there is a current demand. In the knowledge applica-

tion phase, we describe how the cluster characteristic SDMs can be used for

forecasting purposes.

The main steps of the knowledge discovery and knowledge application

phases are described in the following subsections.

3.1. Knowledge discovery phase

Inputs. We assume that we have the time series Di,t1 , Di,t2 , . . . , Di,tni
, each of

them represents the full purchase life-cycle of an end-of-life spare part, that

is, each time series contains the full historical demand for an EOL spare part

(i = 1, 2, . . . , m). Based on practical considerations, which we will discuss in

our demonstrative example, the demand values Di,t1 , Di,t2 , . . . , Di,tni
for the

ith spare part are taken on weekly basis. It allows us to use the simplified

Di,1, Di,2, . . . , Di,ni
notation for the time series Di,t1 , Di,t2 , . . . , Di,tni

.

Step 1. Fitting a demand model function to each of the Di,1, Di,2, . . . , Di,ni

historical demand time series of EOL spare parts (i = 1, . . . , m).

Step 2. Transforming the demand models to standardized demand models

the domains and ranges of which is the interval [0, 1].

Step 3. Clustering the standardized demand models based on their param-

eters by applying fuzzy c-means clustering. The clustering results in the

cluster characteristic (typical) SDMs.

3.2. Knowledge application phase

Step 4. Predicting demand for active spare parts using the typical SDMs and

the known demand history of active spare parts.

9
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Output. Long-term forecast for active spare parts demand.

4. Modeling demand time series

4.1. Construction of demand model function

The parametric model function that we wish to fit to each historical

demand time series Di,1, Di,2, . . . , Di,ni
of EOL spare parts (i = 1, . . . , m) is

based on the following g(x) function.

gµ,ω : [0, 1] → [0, 1], x 7→ gµ,ω(x)

gµ,ω(x) =







































0,
if (x = 0 and ω > 0)

or (x = 1 and ω < 0)
1

1 +
(

µ

1−µ
1−x
x

)ω , if 0 < x < 1, ω 6= 0

1,
if (x = 0 and ω < 0)

or (x = 1 and ω > 0)

, (1)

where 0 < µ < 1.

gµ,ω(x) is derived from Dombi’s kappa function that can be used as a

unary operator in fuzzy theory (Dombi, 2012a,b). It can be seen that function

gµ,ω(x) is monotonously increasing from 0 to 1 if the parameter ω is positive,

and it is monotonously decreasing from 1 to 0 if ω is negative. The function

has the value of 0.5 in the locus µ. As

dg(x)

dx

∣

∣

∣

∣

x=µ

= ω
g(x)(1− g(x))

x(1− x)

∣

∣

∣

∣

x=µ

=
ω

4

1

(1− µ)µ
, (2)

the slope of the function curve in the (µ, 0.5) point is proportional to param-

eter ω if µ is fixed.
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If |ω| 6= 1, then the curve has an inflection point in the interval (0, 1).

If |ω| = 1, then gµ,ω(x) is either convex or concave, or linear in the interval

(0, 1), depending on the value of µ. If ω = 0, then gµ,ω(x) is constant with

the value of 0.5. Main properties of function gµ,ω(x) are summarized in Table

1. Figure 2 depicts different examples of curves of function gµ,ω(x).

Table 1: Main properties of function gµ,ω(x)

ω µ monotony shape in the interval (0, 1)

0 < ω < 1 0 < µ < 1 increasing turns from concave to convex

ω = 1 0 < µ < 0.5 increasing concave

ω = 1 µ = 0.5 increasing line

ω = 1 0.5 < µ < 1 increasing convex

ω > 1 0 < µ < 1 increasing turns from convex to concave

−1 < ω < 0 0 < µ < 1 decreasing turns from convex to concave

ω = −1 0 < µ < 0.5 decreasing convex

ω = −1 µ = 0.5 decreasing line

ω = −1 0.5 < µ < 1 decreasing concave

ω < −1 0 < µ < 1 decreasing turns from concave to convex

The following l(t) and r(t) functions may be derived from function gµ,ω(x)

by applying linear transformations. The function l(t) is given by

l(t) =



























Al, if t = ts,l

Al +
Bl − Al

1 +
(

tµ,l−ts,l
te,l−tµ,l

te,l−t

t−ts,l

)ωl
, if ts,l < t < te,l

Bl, if t = te,l,

(3)

where 0 < ts,l < tµ,l < te,l; 0 < Al < Bl; ωl > 0.

11
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Figure 2: Examples of curves of function gµ,ω(x)

The function r(t) is given by

r(t) =



























Br, if t = ts,r

Ar +
Br −Ar

1 +
(

tµ,r−ts,r
te,r−tµ,r

te,r−t

t−ts,r

)−ωr
, if ts,r < t < te,r

Ar, if t = te,r,

(4)

where 0 < ts,r < tµ,r < te,r; 0 < Ar < Br; ωr > 0.

We use the notation t for the independent variable to indicate that func-

tions l(t) and r(t) are defined in the time domain, namely, in the intervals

[ts,l, te,l] and [ts,r, te,r], respectively. Function l(t) increases from Al to Bl,

while r(t) decreases from Br to Ar. The derivatives of l(t) and r(t) in the

locus tµ,l and tµ,r, respectively are as follows:

dl(t)

dt

∣

∣

∣

∣

t=tµ,l

=
ωl

4

(Bl − Al)(te,l − ts,l)

(te,l − tµ,l)(tµ,l − ts,l)
(5)

dr(t)

dt

∣

∣

∣

∣

t=tµ,r

=
ωr

4

(Br −Ar)(te,r − ts,r)

(te,r − tµ,r)(tµ,r − ts,r)
. (6)
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These mean that the slope of l(t) at tµ,l is proportional to ωl and the slope of

r(t) is proportional to ωr if tµ,l and tµ,r are fixed. Figure 3 shows an example

of each of the functions l(t) and r(t).

t

l(
t)

ts,l tµ,l te,l

Al

Al+Bl

2

Bl

t

r(
t)

ts,r tµ,r te,r

Ar

Ar+Br

2

Br

Figure 3: Examples of curves of functions l(t) and r(t)

It is worth mentioning that there is a property of function l(t) that is

related to the semantics of its parameters. For the sake of easier readability,

we will use the following simplified notation to introduce this property: a =

ts,l, b = te,l, A = Al, B = Bl, µ = tµ,l, ω = ωl. Using these notations, l(t)

may be written as

l(t) = A+
B −A

1 +
(

µ−a

b−µ
b−t
t−a

)ω . (7)

It can be proven that if a < t < b, then

B −M

M − A

l(t)−A

B − l(t)
=

(

b− µ

µ− a

t− a

b− t

)ω

, (8)

where

M =
A+B

2
, (9)
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a < µ < b;A < B;ω > 0. This property of l(t) may be interpreted as follows.

Let a and b be the start and end times of a demand growth, respectively,

and A and B the demands at a and b, respectively. Furthermore, let D(t)

denote the demand at time t. If D(t) = l(t), that is, if the demand growth

is given by function l(t), then for any time t between a and b, the demand

difference l(t)−A divided by the demand difference B − l(t) is proportional

to the power of fraction of the corresponding time differences t− a and b− t.

In our interpretation, the exponent of the power is ω, while the proportion

factor is
1

B−M
M−A

(

b− µ

µ− a

)ω

. (10)

Note that function r(t) has a similar property; that is, it can be proven that

there is an equation which has the form of (8) with a negative ω.

Using functions l(t) and r(t) with the original parameter notations and

with the B = Bl = Br > 0 settings, we define the Demand Model Function

(DMF) f(t) as follows. The Demand Model Function f(t) is given by

f(t) =



























































Al, if t = ts,l

Al +
B − Al

1 +
(

tµ,l−ts,l
te,l−tµ,l

te,l−t

t−ts,l

)ωl
, if ts,l < t < te,l

B, if te,l ≤ t ≤ tsr

Ar +
B − Ar

1 +
(

tµ,r−ts,r
te,r−tµ,r

te,r−t

t−ts,r

)−ωr
, if ts,r < t < te,r

Ar, if t = te,r

(11)

where 0 < tµ,l < te,l < ts,r < tµ,r < te,r; 0 < Al, Ar < B; ωl, ωr > 0.

The demand model function f(t) describes all the three characteristic

parts of a typical purchase life-cycle curve of an electronic spare component.

14
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The first two cases in the definition of f(t) correspond to the first increasing

phase of the purchase life-cycle curve, B represents the constant second phase

of it, while the last two cases in definition of f(t) describe the third declining

phase of the purchase life-cycle curve. It is important to emphasize that each

t

f
(t
)

ts,l
tµ,l

te,l
ts,r

tµ,r
te,r

Al

B

Ml

Mr

Ar

Figure 4: Curve of a demand model function

parameter of f(t) has a geometric interpretation, that is, parameters of f(t)

determine its shape and so they may be viewed as geometric properties of

the purchase life-cycle curve modeled by f(t). Figure 4 shows an example of

the curve of function f(t). Semantics of the parameters of model function

f(t) are as follows.

ts,l: left end of domain of f(t) (start time of the life-cycle curve)

Al: value of f(t) in the locus ts,l (left end value of f(t))

te,r: right end of domain of f(t) (end time of the life-cycle curve)

Ar: value of f(t) in the locus te,r (right end value of f(t))

B: maximum of function f(t) (constant value of f(t) in the second phase of

15
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the life-cycle curve)

tµ,l: the locus in which f(t) = Ml = (Al +B)/2

te,l: locus of the end of the left-hand side curve (end of the first phase of the

life-cycle curve)

ωl: slope of the left-hand side curve of f(t) in locus tµ,l is proportional to ωl

(determines the growth speed of the left-hand side of the life-cycle curve)

ts,r: locus of the start of the right-hand side curve (start of the third phase

of the life-cycle curve)

tµ,r: the locus in which f(t) = Mr = (Ar +B)/2

ωr: slope of the right-hand side curve of f(t) in locus tµ,r is proportional to

ωr (determines the declining speed of the right-hand side of the life-cycle

curve)

4.2. Fitting demand model functions to historical demand time series

Let

Al,i, Bi, ts,l,i, tµ,l,i, te,l,i, ωl,i, Ar,i, ts,r,i, tµ,r,i, te,r,i, ωr,i (12)

denote the parameters of the demand model function fi(t) that we wish to fit

to the demand time series Di,1, Di,2, . . . , Di,ni
of the ith end-of-life spare part,

where 0 < tµ,l,i < te,l,i < ts,r,i < tµ,r,i < te,r,i; 0 < Al,i, Ar,i < Bi; ωl,i, ωr,i > 0;

i = 1, 2, . . . , m. We determine the unknown model parameters of fi(t) by

minimizing the
ni
∑

j=1

(fi(j)−Di,j)
2 (13)

quantity using the so-called GLOBAL method which is a stochastic

global optimization procedure introduced by Csendes (see Csendes (1988);
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Csendes et al. (2008)). The GLOBAL method was implemented in the MAT-

LAB 2017b numerical computing environment. The following boundaries are

set for the unknown parameters of model function fi(t) to minimize the ob-

jective function in (13):

0 < Al,i < ∞; 0 < Bi < ∞; t
(0)
s,l,i ≤ ts,l,i ≤ t

(0)
s,l,i; t

(0)
s,l,i < tµ,l,i < t

(0)
e,r,i;

t
(0)
s,l,i < te,l,i < t

(0)
e,r,i; 0 < ωl,i < ∞; 0 < Ar,i < ∞; t

(0)
s,l,i < ts,r,i < t

(0)
e,r,i;

t
(0)
s,l,i < tµ,r,i < t

(0)
e,r,i; t

(0)
e,r,i ≤ te,r,i ≤ t

(0)
e,r,i; 0 < ωr,i < ∞.

(14)

Figure 5 shows how the model function f(t) can be fitted to variously shaped

demand time series by applying the GLOBAL method. Each model param-

eter is also shown in Figure 5.

t

f
(t
),
D

t

ts,l
tµ,l

te,l
ts,r

tµ,r
te,r

Al

B

MlMr

Ar

t

f
(t
),
D

t

ts,l
tµ,l

te,l
ts,r

tµ,r
te,r

Al

B

MlMr

Ar

t

f
(t
),
D

t

ts,l
tµ,l
te,l

ts,r
tµ,r

te,r

Al

B

Ml
Mr

Ar

t

f
(t
),
D

t

ts,l
tµ,l

te,l
ts,r

tµ,r
te,r

Al

B

Ml
Mr

Ar

Figure 5: Examples of demand model curves fitted to various demand time series

Note that the objective function in (13) can also be minimized by using

an interior point algorithm (see e.g. Waltz et al. (2006)), however, it may

17
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result in just a local minimum. In order to find the global minima by this

method, certain heuristics would be required to determine the appropriate

initial values of the model parameters.

4.3. Standardizing the fitted demand models

Once the parameters of fi(t) for the demand time series

Di,1, Di,2, . . . , Di,ni
have been identified, the model fi(t) can be stan-

dardized to the si : [0, 1] → [0, 1], x 7→ si(x) function by applying the

following transformation:

x =
t− 1

ni − 1
(15)

si(x) =
f ((ni − 1)x+ 1)−min{Al,i, Ar,i}

Bi −min{Al,i, Ar,i}
. (16)

Applying the transformation given by (15) and (16) to the model fi(t) results

in the following standardized parameters:

yl,i =
Al,i −min{Al,i, Ar,i}

Bi −min{Al,i, Ar,i}
(17)

yBi
=

Bi −min{Al,i, Ar,i}

Bi −min{Al,i, Ar,i}
= 1 (18)

xs,l,i =
ts,l,i − 1

ni − 1
=

1− 1

ni − 1
= 0 (19)

xµ,l,i =
tµ,l,i − 1

ni − 1
(20)

xe,l,i =
te,l,i − 1

ni − 1
(21)

18
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yr,i =
Ar,i −min{Al,i, Ar,i}

Bi −min{Al,i, Ar,i}
(22)

xs,r,i =
ts,r,i − 1

ni − 1
(23)

xµ,r,i =
tµ,r,i − 1

ni − 1
(24)

xe,r,i =
te,r,i − 1

ni − 1
=

ni − 1

ni − 1
= 1. (25)

It can be seen that the transformation given by (15) and (16) does not modify

ωl and ωr. Taking into account that yBi
= 1, xs,l,i = 0 and xe,r,i = 1, function

si(x) may be given by the parameters yl,i, xµ,l,i, xe,l,i, ωl,i, yr,i, xs,r,i, xµ,r,i, ωr,i:

si(x) =



























































yl,i, if x = xs,l,i

yl,i +
1− yl,i

1 +
(

xµ,l,i

xe,l,i−xµ,l,i

xe,l,i−x

x

)ωl,i
, if 0 < x < xe,l,i

1, if xe,l,i ≤ x ≤ xsr ,i

yr,i +
1− yr,i

1 +
(

xµ,r,i−xs,r,i

1−xµ,r,i

1−x
x−xs,r,i

)−ωr,i
, if xs,r,i < x < 1

yr,i, if x = 1.

(26)

si(x) is the standardized demand model (SDM) of the historical demand

time series Di,1, Di,2, . . . , Di,ni
. Note that each parameter of function si(x)

has the same geometric interpretation as the corresponding parameter of

function fi(t). Henceforward, we will use the spi
(x) notation for the SDM of

the historical demand time series Di,1, Di,2, . . . , Di,ni
, where the parameter

vector pi is

pi = (pi,1, pi,2, . . . , pi,8) = (yl,i, xµ,l,i, xe,l,i, ωl,i, yr,i, xs,r,i, xµ,r,i, ωr,i). (27)
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Owing to the standardization, one of the parameters yl,i, yr,i is zero and the

other one is positive. Function spi
(x) may be viewed as a primitive that

represents the life-cycle curve of the demand time series Di,1, Di,2, . . . , Di,ni
.

Due to the construction of the standardized demand model functions, each

parameter of a primitive has a geometric interpretation, that is, parameters

of a primitive determine the shape of its curve. This property of the stan-

dardized demand model functions allows us to cluster them based on their

parameters so that the clustering results in typical standardized demand

models (SDMs). Figure 6 shows the curve of a standardized demand model

function. yMl
and yMr

are the standardized values ofMl andMr, respectively,

that is yMl
= (yl + 1)/2, yMr

= (yr + 1)/2.

x

s
(x
)

0 xµ,l

xe,l

xs,r

xµ,r

1

yl

1

yMl

yMr

yr

Figure 6: An example of the curve of a standardized demand model function

4.4. Clustering the standardized demand models

In order to identify typical standardized demand models, we cluster the

spi
(x) models based on their parameter vectors pi by applying the fuzzy

20
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c-means clustering algorithm (Bezdek, 1981). As we employ fuzzy c-means

clustering, cluster Cq is defined as a set of those pi vectors of which mem-

bership values in Cq are the highest among all the clusters. That is,

Cq =

{

pi : µq(pi) = max
t=1,...,m

µt(pi), i ∈ {1, 2, . . . , m}

}

, (28)

where µj(pi) is the membership value of vector pi in fuzzy cluster Cj, and

if a vector pi has a 0.5 membership in two different clusters, then it is in the

cluster with lower index (j, q ∈ 1, 2, . . . , N). Let us assume that the clusters

C1,C2, . . . ,CN (N ≤ m) of standardized demand models are formed, and

let Iq be the index set of standardized demand models spi
(x) that belong to

cluster Cq (q ∈ 1, 2, . . . , N), that is,

Iq = {i : pi ∈ Cq, i ∈ {1, 2, . . . , m}} (29)

and furthermore let cq be the parameter vector of the cluster characteris-

tic standardized demand model scq(x), that is, cq is the centroid of vectors

pi for which i ∈ Iq. The function sc1(x), sc2(x), . . . , scN (x) represent the

typical standardized demand models, and as such may be viewed as represen-

tative models for the purchase life-cycles of the historical demand time series

Di,1, Di,2, . . . , Di,ni
of end-of-life spare parts (i = 1, 2, . . .m).

The typical SDMs are generated from historical time series of end-of-life

spare parts, that is, they represent historical knowledge on past demands. In

case of consumer electronic goods, the full purchase life-cycles of spare parts

of the same component commodity (such as motherboards, power-supply

units, etc.) show certain similarities (Stipan et al., 2000; Groen et al., 2004).

These similarities, on the one hand, lay the foundation of the clustering

method we discussed so far. On the other hand, they allow us to assume that
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the unknown future demand for active spare parts of a component commodity

may follow similar life-cycles to some of the typical historical purchase life-

cycles of EOL spare parts of the same component commodity. Based on

it, a potential application of the typical standardized demand models is the

prediction of future demands for active spare parts.

4.5. Using the typical standardized demand models for demand prediction

The demand time series of active spare parts, for which orders are given,

are fractional ones, that is, they will be continued in the future. Let

dF,1, . . . , dF,M denote the fractional demand time series of an active spare

part. For each typical SDM scq(x), we wish to identify the parameters

αq ≥ M , βq ≥ 0 and γq > 0 of function gq : [1, αq] → R
+ ∪ 0, t 7→ gq(t)

gq(t) = γqscq

(

t− 1

αq

)

+ βq (30)

for which

εq =
M
∑

k=1

(gq(k)− dF,k)
2 → min (31)

(q = 1, 2, . . . , N). Solution for each fitting problem described in (30) and (31)

can be found by applying the same GLOBAL method that was referenced in

section 4.2. The initial values α
(0)
q , β

(0)
q and γ

(0)
q of αq, βq and γq, respectively,

are set as

α(0)
q = M ; β(0)

q = 0; γ(0)
q = 1. (32)

The boundaries for αq, βq and γq are set as

M ≤ αq < ∞; 0 ≤ βq < ∞; 0 < γq < ∞. (33)
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Let δq be defined as

δq =
εq

N
∑

i=1

εi

. (34)

Each δq is in the [0, 1] interval, and expresses the distance between function

gq(t) and the fractional demand time series dF,1, . . . , dF,M (q = 1, 2, . . . , N).

For each q, assuming that δq > 0, let the weight wq be defined as

wq =

1
δq

N
∑

i=1

1
δi

. (35)

wq expresses the similarity between function gq(t) and the fractional demand

time series dF,1, . . . , dF,M , and let αmax be given by

αmax = max
q=1,...,N

(αq). (36)

Then we compute function F(t) as

F(t) =

N
∑

q=1

wqg
∗
q (t), (37)

where

g∗q(t) =







gq(t), if 0 ≤ t ≤ αq

0, if αq < t ≤ αmax

(38)

(q = 1, 2, . . . , N). The F(M+1), . . . ,F(⌊αmax⌋) values may be viewed as the

forecasts of the unknown dF,M+1, . . . , dF,⌊αmax⌋ values, respectively. The wq

weight determines how much the typical standardized demand model scq(x) is

considered in the forecast through the function gq(t), while αmax determines

the length of time frame in which F(t) is not identically equal to zero.
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5. A demonstrative example

Based on the introduced methodology, a software application was de-

veloped for modeling and forecasting purchase life-cycles of electronic spare

parts. In this example it is to be presented how our method was applied to

real-life demand time series.

Empirical demand time series of 120 end-of-life laptop motherboard types

were used to generate the standardized demand models. Each of the empirical

demand time series used as an input to our method represents the weekly

demands for a laptop motherboard type that is utilized as a spare part in

electronic repair services. It should be emphasized that in our example each

motherboard type is specific to a laptop type or to a set of laptop types being

released to the market together. This specificity of the motherboards makes

us assuming that their purchase life-cycles exhibit unimodal curves and so

our modeling method is applicable to this case. Notice that based on the

properties of our demand model function, it is not suitable to model multi-

modal purchase life-cycle curves. 110 time series out of the 120 were used

as training samples, while 10 time series were used for testing the method.

The standardized demand models generated from the historical demand time

series were clustered into 7 clusters by applying the fuzzy c-means algorithm.

Here, the Davies-Bouldin criterion values (Davies and Bouldin, 1979) were

used to determine the optimal number of clusters. The parameters of the

typical standardized demand models are shown in Table 2. Figure 7 shows

the curves of the clustered standardized demand models (gray lines) and

the curves of the cluster centroids that are the typical standardized demand

models (black lines). It can be seen from this figure that the cluster centroids
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Table 2: Parameters of cluster centroids

q yl xµ,l xe,l ωl yr xs,r xµ,r ωr

1 0.0000 0.1474 0.3533 1.5075 0.0000 0.5627 0.8498 1.5022

2 0.1887 0.1434 0.5843 1.4091 0.0000 0.7151 0.8418 0.9196

3 0.0000 0.4083 0.6047 1.5008 0.0000 0.8037 0.9488 0.3055

4 0.2307 0.3414 0.6896 3.4135 0.0000 0.7517 0.9045 0.6289

5 0.0000 0.2529 0.4492 2.6908 0.0000 0.6431 0.8476 1.1070

6 0.0000 0.2341 0.4985 0.8191 0.0000 0.7481 0.8397 2.1251

7 0.1120 0.1841 0.2982 2.4222 0.0000 0.6491 0.8578 2.8680

represent well the corresponding standardized demand models.
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Figure 7: Clusters of the standardized demand models
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The typical standardized demand models were used to predict future de-

mands for spare parts based on known fractions of their empirical demand

time series. Note that the historical demand time series of the studied active

spare parts are from the test sample; that is, these were not used for estab-

lishing the standardized demand models. Figure 8 shows the modeled and

predicted F(t) values (thick black line), the known fraction (thin black line)

and the unknown future values (grey line) for one of the test time series. The

unit of the time scale in Figure 8 is one week. The dashed vertical lines in

Figure 8 indicate the border between the known and unknown parts of the

demand time series. Similar plots generated for the other 9 test times series

are available in the Appendix.
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Figure 8: An example of modeling and predicting

There are a couple of properties of our modeling and predicting method
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that are substantial from perspective of companies that provide spare parts

logistics as a service. Here, these properties are to be demonstrated by using

the example in Figure 8, however, the models and predictions generated for

the other 9 test time series have very similar properties (see the Figures

A.1–A.9 in the Appendix). That is, the properties discussed here may be

viewed as the generic characteristics of our modeling and forecasting method.

The first three subplots (2 in the first row and the left hand side one in the

second row) in Figure 8 (and in each of the Figures A.1–A.9 in the Appendix)

show the cases when the demand values are known for the first 30, 100, 170

weeks, respectively. The right bottom subplot in Figure 8 (and in each of the

Figures A.1–A.9 in the Appendix) is for the case, when the demand values

are unknown only for the last 5 weeks.

Figure 8 shows how the model F(t) is developing as more and more

information on the historical demand is getting available. The left upper

graph in Figure 8 shows the case when the demand values of the studied

active spare part are known for the first 30 weeks. When the demand is

in the increasing phase of the purchase life-cycle, like in this case, the most

exciting practical question is when the life-cycle curve will reach the end

of this phase. (Note, that in this particular case, the life-cycle is at the

beginning of its increasing phase.) The curve of demand time series (gray

line) is turning from its increasing phase to its quasi constant phase at around

week 145. The curve of model function F(t) is turning from increasing to

quasi constant approximately 10 weeks earlier, that is, the model function

F(t) can indicate the turning point between the first two phases of the life-

cycle curve. This graph also demonstrates that the demand time series is
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turning from its quasi constant phase to its decreasing phase at around week

190, while the model function F(t) is doing so at around week 185. It means

that our method is able to indicate the turning points of the life-cycle curve

relatively well at early stages of the life-cycle. We also need to add that the

model function F(t) slightly overestimates the real demand in the flat phase,

and it underestimates the real demand in the decreasing phase.

The right upper graph in Figure 8 shows the result of our life-cycle curve

modeling and predicting method in the case when the demand values of the

studied active spare part are known for the first 100 weeks. In this case,

the life-cycle curve is still in the increasing phase, but here, compared to the

previous case, we have more historical information about the demand. On

the one hand, in this case, the model predicts the turning point between the

increasing and flat phases of the life-cycle curve more accurately than in the

case when the demands only for the first 30 weeks were known. On the other

hand, our model slightly overestimates the turning point between the flat

and decreasing phases of the life-cycle curve. It can be seen from this graph

that the model function F(t) slightly overestimates the real demands, but at

the same time, it is following the demand trend well. It should also be added

that the predicted turning point between the flat and decreasing phases did

not change much compared to that in the left upper plot.

In the left bottom graph, the demand values are known for the first

170 weeks, and the demand life-cycle curve is in its quasi constant phase.

Here, the predicted turning point, in which the demand time series starts

to decrease, does not change compared to its previous prediction that was

based on the first 100 known demand values. It can be seen from this graph
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that the model function F(t) follows the demand trend well, but slightly

overestimates that.

The right bottom graph shows the case when almost the complete demand

life-cycle is known. Here, the model function F(t) matches the time series

quite well.

By comparing the four model functions, it can be seen that the total

length of the predicted life-cycle does not change significantly, it is around

260. This observation is in line with the expectation that the stability of the

predicted life-cycle should be increasing as more information about the his-

torical demand is getting available. Although our method seems to perform

well in estimating the final demand date, we should also mention that there

is a structural resemblance among the examined time series that contributes

to the goodness of estimation. Namely, in our example, the time series which

fall into the same cluster have similar length and typically there is only one

or just a few clusters represented with significant weights in the aggregate

model function F(t).

5.1. Results and discussion

The F(t) function-based forecast results for the active spare parts in the

10 test samples were compared to the results of ARIMA and exponential

smoothing-based forecasts as well as to prediction results of two soft compu-

tational methods that we developed in MATLAB software and applied for

long-term demand forecasting. These latter two methods utilize Adaptive

Neuro Fuzzy Inference Systems (ANFIS) and Feedforward Neural Networks

(FNN).
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The default weight for the exponential smoothing applied here was com-

puted by fitting an ARIMA (0,1,1) model to the data, and back-casting was

used to calculate the initial smoothed value. The Hyndman and Khandakar

(2008) algorithm was used to identify the best fitting ARIMA model.

The training data set for the ANFIS and FNN methods was the same

one that we used to generate the typical standardized demand models. Both

for the ANFIS and FNN methods, each demand time series of the 110 end-

of-life electronic spare parts were split into five period long segments, and a

linear regression was applied to each of these segments. Note that setting

the segment size to five periods was based on the experience that this selec-

tion yielded the best modeling results. Owing to this approach, after data

normalization each demand time series was described by a series of slope

and intersection pairs which were used as inputs and outputs for training the

ANFIS and FNN systems. Based on this, an ANFIS and an FNN model was

generated for each demand time series. The ANFIS model-based forecast for

each fractional demand time series of the test samples was generated as the

weighted average of the predictions given by the 110 individual ANFIS mod-

els. The weights, with which the models were considered, had been computed

based on the similarities between the normalized fractional demand time se-

ries of the active spare part and the model inputs used for training. A similar

approach was used for generating the FNN model-based forecasts.

For each fractional demand time series of the test samples, 30-week-

ahead forecasts were generated by each of the above mentioned methods

(F(t) function-based, ARIMA, exponential smoothing, ANFIS, FNN), and

the mean squared error (MSE) values of the forecasts were used to compare
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the methods. These results for the first test time series (the one in Figure 8)

are summarized in Table 3. The results for the other 9 test samples are in

the Tables A.1–A.9 in the Appendix.

Table 3: MSE values of forecasts

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...50 51...80 inc. inc. 1013.2 919.6 2636.9 923.2 1027.4

2 1...100 101...130 inc. inc. 1142.8 976.1 8239.5 1150.3 1197.3

3 1...130 131...160 inc. inc./flat 903.4 2241.5 3356.9 942.1 963.2

4 1...150 150...180 flat flat 652.1 703.4 692.1 640.3 670.2

5 1...180 181...210 flat flat/dec. 1013.5 2341.6 4491.3 1251.8 1233.6

6 1...210 211...240 dec. dec. 1124.6 1098.8 8408.4 1109.8 1132.8

The PLC Phase columns in Table 3 indicate in which phase of the pur-

chase life-cycle the last known demand and the predicted demands are (inc.,

flat and dec. stand for the increasing, flat and decreasing phases, respec-

tively).

Table 3 demonstrates that our method is able to indicate relatively well

the turning points of the life-cycle curve at early stages of the purchase

life-cycle. It is worth mentioning that the traditional statistical forecasting

techniques, such as the ARIMA or the exponential smoothing do not have

such a capability. These methods are able to give reliable predictions within

certain phases of the purchase life-cycle curve, however, they cannot predict

the turning points of the curve and so they are not suitable for long-term

forecasting of demand for spare parts in spare part logistics businesses. We

should also add that this may be due to the fact that our method exploits

the similarities among the parts of a family, while the ARIMA and exponen-
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tial smoothing methods do not assume any family. These properties of the

forecasts generated by the ARIMA and exponential smoothing methods are

also visible in Table 3.

When the current demand for the studied active spare part is in its first,

increasing phase and the time period of prediction also belongs to this phase

(row 1 and row 2 in Table 3), the ARIMA method gives the most accurate

prediction. (Note that the current demand is interpreted as the latest known

demand.) Similarly, when the current demand and the time period of fore-

cast are both in the decreasing phase of the life-cycle, the ARIMA method

performs well (row 6 in Table 3). At the same time, when the current de-

mand is in the first increasing phase of the purchase life-cycle and the time

period of forecast includes the first turning point of the life-cycle curve (row

3 in Table 3), the ARIMA method does not perform well as it cannot predict

the turning point. A similar conclusion on the behavior of the ARIMA-based

forecast in the third phase of the purchase life-cycle may be drawn from row

5 in Table 3 when the time period of forecast includes the second turning

point of purchase life-cycle.

The exponential smoothing method gives a constant forecast, and so this

is suitable to model the second, quasi constant phase of the purchase life-

cycle. When the current demand is in the second phase of the purchase

life-cycle and the time period of forecast is also in this phase (row 4 in Table

3), the exponential smoothing gives accurate predictions compared to the

other studied methods. In other cases, the exponential smoothing method

gives weaker forecast results than the other studied methods.

The methods founded on machine learning techniques, fuzzy inference
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systems, artificial neural networks, or their combinations are more appro-

priate for long-term predictions. On the one hand, these methods have the

ability to indicate the turning points of the purchase life-cycle curve relatively

well (row 2 and row 5 in Table 3). On the other hand, these techniques give

similarly good forecast results as the ARIMA does when the current demand

and the demand in the time period of forecast are both in the same phase of

the purchase life-cycle (row 1, row 2, row 4 and row 6 in Table 3).

Our method may be viewed as a hybrid one that utilizes analytic curve

fitting to identify the trends of historical demand time series and fuzzy clus-

tering to recognize typical model functions. Similar to the ANFIS and FNN

methods, the F(t) function-based forecasts also have the capability to in-

dicate the turning points of the life-cycle curve relatively well. It can be

seen from Table 3 that our method has similar forecasting performance to

those of the ANFIS and FFN methods. It is worth mentioning that besides

these properties of the F(t) function-based forecasts, the typical standardized

demand models, which our forecast method is founded on, embody histori-

cal knowledge on the past purchase life-cycles, and this knowledge is linked

to the semantics of parameters of the typical standardized demand models.

The forecast results for the other 9 test time series (in the Tables A.1–A.9 in

the Appendix) also support the above-discussed properties of the examined

methods.

Table 4 contains summary statistics of the modeling results based on the

MSE values of all the examined forecasts which are detailed in Table 3 and in

the Tables A.1–A.9 in the Appendix. Table 4 shows for each method, in how

many cases out of the total 50 cases it performed the best, second best, third
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Table 4: Summary statistics of the modeling results

F(t) ARIMA Exp. S. ANFIS FNN

# of times the best 22 21 0 6 1

# of times the 2nd best 14 3 1 25 7

# of times the 3rd best 11 5 0 17 16

# of times the 4th best 3 21 0 2 25

# of times the 5th best 0 0 49 0 1

Sum of ranks 95 126 247 115 168

best, etc. The sums of ranks in this table are computed based on the ranks

from 1 through 5 representing an increasing order of the MSE values of the

forecasts. For example, the F(t) function-based method was ranked as first,

second, third, fourth and fifth in 22, 14, 11, 3 and 0 cases, respectively, and

so its sum of ranks is 22*1+14*2*11*3+3*4+0*5 = 95. Based on the sum of

ranks metric, we can conclude that the F(t) function-based method had the

best overall forecasting performance, while the ANFIS and ARIMA methods

proved to have the second and third best performances, respectively. We

should also note that if we take into account solely the number of times a

method had the best forecasting performance, then the F(t) function-based

method is the best (22 times), the ARIMA method is close to that (21 times)

and the ANFIS method is the third one (6 times). Notice that the F(t)

function-based, the ANFIS and the ARIMA methods were among the three

best methods in 47, 49 and 29 cases, respectively. This result tells us that in

the case of our example, the F(t) function-based and ANFIS methods had

similar overall forecasting performance.
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6. Conclusions

In this paper, a hybrid technique for long-term forecasting of electronic

spare parts for aftermarket repair services is presented. The proposed model-

ing methodology is founded on the assumption that the purchase life-cycles of

spare parts can be described by a curve with short-term fluctuations around

it, and this model curve has the following characteristics:

(i) the curve is unimodal; that is, first increasing, then a plateau and finally

decreasing

(ii) the curve can have maximum two inflexion points, one in the increasing

and one in the decreasing phase

(iii) the curve can be zero or positive, both at the start and at the end

(iv) transformations allow this curve to fit required heights and locations.

Long-term planning of spare part purchasing is essential for spare part

logistics providers in order to manage their inventory levels. Moreover, long-

term outlook of spare part demand should be incorporated into stocking

decisions as well. Based on the empirical results from our demonstrative

example, we can conclude that our method is mainly advantageous in long-

term forecasting, it can be especially useful in supporting purchase planning

decisions in the ramp-up and declining phases of purchase life-cycles. Similar

to fuzzy and neuro-fuzzy systems based methods the presented forecasting

methodology is able to indicate the turning points of the life-cycle curve well.

In addition to that, for the motherboard data examined in our example,

the forecasting performance of the introduce method was as good as the

performance of the studied ANFIS-based method.
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The real novelty of the introduced approach is the semantics of model

parameters of typical standardized demand models which the proposed fore-

casting methodology is built upon. Although the results obtained from our

modeling are encouraging and it has the potential to be a suitable alter-

native forecasting technique, we should mention that our method is mainly

applicable to model purchase life-cycles of product specific spare parts. This

conclusion follows from the fact that our model function is unimodal and from

the phenomenon that for product specific spare parts the demand function

is likely to be unimodal and for general spare parts it may be multi-modal.

We should also add that our conclusions are founded on the empirical results

from a demonstrative example in which we examined one spare part family.

Namely, 120 motherboard types as laptop specific spare parts were used to

test our method. As part of a future research, we plan to test our method

on other electronic spare part families. These additional investigations will

allow us to obtain more information about the characteristics of our method

and draw more generic conclusions.

The introduced model function, which is used to grasp the purchase life-

cycles of spare parts, has certain mathematical and computational properties

that lay the foundation for future researches in its applications to spare

parts demand planning. Function f(t), which is used as a demand model,

can also be considered as a filter for the studied demand time series. An

advantage of using this function as a time series filter is that function f(t) is

multiple differentiable, and so results of the filtering can be used for further

mathematical analyses. f(t) with its parameters is a function family that

we use for curve fitting. Function parameters have certain semantics that
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support describing and interpreting the demand trend as function of time.

The convexity or concavity of the increasing and decreasing phases of the

fitted model function f(t) carry information that can be useful in practical

demand planning.
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7. Appendix

Modeling and predicting results for the test samples
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Figure A.1: Test sample #2
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Figure A.2: Test sample #3
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Figure A.3: Test sample #4
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Figure A.4: Test sample #5
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Figure A.5: Test sample #6
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Figure A.6: Test sample #7
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Figure A.7: Test sample #8
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Figure A.8: Test sample #9
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Figure A.9: Test sample #10
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Table A.1: MSE values of forecasts for test sample #2

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc./flat 1244.5 2572.4 9764.9 1322.2 1389.4

2 1...90 91...120 flat flat 903.8 876.1 915.2 887.3 912.6

3 1...130 131...160 flat dec. 1127.4 2473.7 7281.2 1052.5 1170.3

4 1...160 161...190 dec. dec. 564.5 602.1 8931.1 567.1 605.2

5 1...190 191...220 dec. dec. 703.2 698.2 6931.1 712.1 735.2

Table A.2: MSE values of forecasts for test sample #3

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc. 976.5 992.5 8852.4 1003.1 1032.4

2 1...90 91...120 inc. inc./flat 1245.2 3008.1 9011.3 1212.4 1297.6

3 1...130 131...160 flat flat 842.4 866.1 902.8 871.5 880.2

4 1...160 161...190 flat flat/dec. 712.2 3556.1 7993.2 772.4 794.2

5 1...190 191...220 dec. dec. 603.2 598.2 7955.2 608.4 638.3

6 1...220 221...240 dec. dec. 563.1 602.2 7331.7 582.8 611.4

Table A.3: MSE values of forecasts for test sample #4

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...50 51...80 inc. inc. 852.2 812.5 9417.1 881.8 897.4

2 1...80 81...110 inc. inc./flat 1133.6 3321.8 9262.6 1098.4 1184.2

3 1...110 111...140 flat flat 816.4 831.8 887.2 851.5 867.1

4 1...210 211...240 flat flat/dec. 703.2 3608.2 7541.4 721.5 734.1

5 1...250 251...280 dec. dec. 631.4 601.2 7023.1 615.4 652.1
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Table A.4: MSE values of forecasts for test sample #5

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc. 1021.2 1144.3 5324.3 1089.2 1123.2

2 1...100 101...130 inc. inc. 1057.6 1034.8 6818.3 1042.1 1083.5

3 1...130 131...160 inc. inc./flat 1112.4 2218.8 5841.8 1098.3 1122.8

4 1...160 161...190 flat flat/dec. 1204.2 3818.1 4227.8 1252.1 1281.1

5 1...200 201...230 dec. dec. 1289.4 1202.2 1371.1 1259.2 1297.8

Table A.5: MSE values of forecasts for test sample #6

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc. 1021.2 987.2 8961.4 1089.2 1123.2

2 1...100 101...130 inc. inc. 963.2 991.7 6321.8 981.2 1027.6

3 1...130 131...160 inc. inc./flat 1021.2 2482.5 2519.8 1055.4 1048.8

4 1...160 161...190 flat flat/dec. 992.5 1542.8 2976.8 1059.1 1103.2

5 1...200 201...230 dec. dec. 876.4 801.3 7344.2 856.2 891.7

Table A.6: MSE values of forecasts for test sample #7

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc. 923.4 908.5 3918.2 955.2 987.6

2 1...100 101...130 inc. inc. 1067.2 1031.7 4045.8 1044.7 1103.8

3 1...130 131...160 inc. inc./flat 986.3 1014.2 1347.8 1005.2 1038.6

4 1...160 161...190 flat flat/dec. 1129.5 1323.1 1976.8 1187.1 1163.5

5 1...200 201...230 dec. dec. 1048.4 973.3 7718.1 1003.2 1067.3
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Table A.7: MSE values of forecasts for test sample #8

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc./flat 872.6 1368.2 9241.7 908.3 937.2

2 1...90 91...120 flat flat 963.2 925.4 1089.1 947.2 982.6

3 1...150 151...180 flat flat/dec. 934.1 1292.7 14227.2 963.5 958.3

4 1...180 181...210 dec. dec. 492.5 403.6 8431.1 448.2 486.3

Table A.8: MSE values of forecasts for test sample #9

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...80 81...110 inc. inc. 961.2 927.2 12013.6 991.6 956.2

2 1...110 111...140 inc. flat 863.4 1251.1 8809.8 885.2 907.3

3 1...140 141...170 flat flat 811.3 796.4 1127.2 802.4 843.2

4 1...170 171...200 flat dec. 956.2 1478.2 8695.2 998.4 978.3

5 1...200 201...230 dec. dec. 461.2 421.8 7188.1 455.2 483.4

Table A.9: MSE values of forecasts for test sample #10

Period PLC Phase MSE

Known Forecast Known Forecast F(t) ARIMA Exp. S. ANFIS FNN

1 1...60 61...90 inc. inc. 441.5 502.4 17042.9 481.2 438.4

2 1...110 111...140 inc. flat 911.8 1876.1 1115.2 897.3 952.1

3 1...170 171...200 flat flat 744.4 721.7 738.2 742.3 778.6

4 1...200 201...230 flat dec. 663.5 989.4 8990.1 682.1 679.1

5 1...230 231...260 dec. dec. 400.2 388.1 8371.4 406.1 421.9
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