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Abstract

In this study, the general formula for λ-additive measure of union of n sets
is introduced. Here, it is demonstrated that the well-known Poincaré formula
of probability theory may be viewed as a limit case of our general formula.
Moreover, it is also explained how this novel formula along with an alterna-
tively parameterized λ-additive measure can be applied in theory of belief- and
plausibility measures, and in theory of rough sets.
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1. Introduction

In many situations, the application of traditional additive measures is not
sufficient to describe the uncertainty appropriately. Therefore, new demands
have arisen for not necessarily additive, but monotone (fuzzy) measures. Since
these measures play an important role in describing various phenomena, there
has been an increasing interest in them (see, e.g. [13, 14, 24, 10, 8]). Undoubt-
edly, one of the most widely applied class of monotone measures is the class
of λ-additive measures (Sugeno λ-measures) [22]. Although there are many
theoretical and practical articles (see, e.g. [11, 12, 2, 1, 18]) that discuss the
λ-additive measure, its properties and its applicability, there are no papers deal-
ing with the general form of λ-additive measure of union of n sets. Our study
seeks to fill this gap. Namely, here, we will prove that if X is a finite set,
A1, . . . , An ∈ P(X), n ≥ 2, Qλ is a λ-additive measure on X and λ 6= 0, then

Qλ

(
n⋃

i=1

Ai

)
=

=
1

λ




n∏

k=1


 ∏

1≤i1<···<ik≤n
(1 + λQλ (Ai1 ∩ · · · ∩Aik))




(−1)k−1

− 1


 ,

(1)
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Jónás)

Preprint submitted to Information Sciences



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

where P(X) denotes the power set of X. Taking into account the fact that the
fuzzy measures and the fuzzy measure related aggregation are important topics,
it is worth mentioning that the formula in Eq. (1) may also be viewed as an
aggregation related to the λ-additive measure, which is a fuzzy measure.

The well-known Poincaré formula of probability theory is

Pr

(
n⋃

i=1

Ai

)
=

n∑

k=1

(−1)k−1
∑

1≤i1<···<ik≤n
Pr (Ai1 ∩ · · · ∩Aik) , (2)

where Pr is a probability measure on X and A1, . . . , An ∈ P(X). Here, we will
demonstrate that the Poincaré formula of probability theory given in Eq. (2)
may be viewed as a limit case of the general formula of λ-additive measure of
union of n sets given in Eq. (1).

It is an acknowledged fact that the λ-additive measure is strongly connected
with the belief- and plausibility measures of Dempster-Shafer theory (see, e.g.
[24, 9, 5, 21, 7, 3, 17]), and with the theory of rough sets (see, e.g. [6, 26, 25,
16, 19, 20]). Hence, our formula for the λ-additive measure of union of n sets
may play an important role in these areas of computer science.

The rest of this paper is structured as follows. In Section 2, we will introduce
our new result regarding the λ-additive measure of union of n sets. In Section 3,
we will discuss how our new formula along with an alternatively parameterized
λ-additive measure can be applied in theory of belief- and plausibility measures
and in theory of rough sets. Lastly, in Section 4, we will give a short summary
of our findings and highlight our future research plans including the possible
application of our results in network science.

In this study, we will use the common notations ∩ and ∪ for the intersection
and union operations over sets, respectively. Also, will use the notation A for
the complement of set A.

2. The general Poincaré formula

Relaxing the additivity property of the probability measure, the λ-additive
measures were proposed by Sugeno in 1974 [22].

Definition 1. The function Qλ : P(X)→ [0, 1] is a λ-additive measure (Sugeno
λ-measure) on the finite set X, iff Qλ satisfies the following requirements:

(1) Qλ(X) = 1

(2) for any A,B ∈ P(X) and A ∩B = ∅,

Qλ(A ∪B) = Qλ(A) +Qλ(B) + λQλ(A)Qλ(B), (3)

where λ ∈ (−1,∞) and P(X) is the power set of X.

Note that if X is an infinite set, then the continuity of function Qλ is also
required. From now on, P(X) will denote the power set of the finite set X and
Qλ will always denote a λ-additive measure on X.
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In order to prove the next results, let us consider a fixed λ ∈ (−1,∞) and
the corresponding strictly increasing bijection hλ : [0, 1]→ [0, 1], given via

hλ(x) =





(1 + λ)x − 1

λ
, if λ 6= 0

x, if λ = 0

with inverse θλ = h−1λ : [0, 1]→ [0, 1], given via

θλ(y) =





ln(1 + λy)

ln(1 + λ)
, if λ 6= 0

y, if λ = 0.

One can see that, for a fixed x ∈ [0, 1] (respectively y ∈ [0, 1]), the function
λ 7−→ hλ(x) (respectively λ 7−→ θλ(y)) is continuous. The continuity of λ 7−→
hλ(x) at λ = 0 means that

lim
λ→0

(1 + λ)x − 1

λ
= x. (4)

Now, let us consider some fixed λ ∈ (−1,∞), λ 6= 0 and a fixed λ-additive
measure Qλ : P(X) → [0, 1]. According to [2], Qλ is representable. More
precisely, one has Qλ = hλ ◦ µ for a uniquely determined additive measure
µ : P(X)→ [0, 1]. Having this in mind, we can prove the following theorem.

Theorem 1. If X is a finite set, Qλ is a λ-additive measure on X, λ ∈ (−1,∞),
λ 6= 0 and, if A1, . . . , An ∈ P(X), n ≥ 2, one has

Qλ

(
n⋃

i=1

Ai

)
=

=
1

λ




n∏

k=1


 ∏

1≤i1<···<ik≤n
(1 + λQλ (Ai1 ∩ · · · ∩Aik))




(−1)k−1

− 1


 .

(5)

Proof. In view of the Poincaré formula, one has

µ(A) =
n∑

k=1

(−1)k−1ak, (6)

where A
def
= A1 ∪ A2 ∪ · · · ∪ An and ak

def
=

∑
1≤i1<···<ik≤n

µ (Ai1 ∩ · · · ∩Aik).

Applying hλ in both members of Eq. (6), we get

hλ(µ(A)) = Qλ(A) = hλ

(
n∑

k=1

(−1)k−1ak

)
=

=
(1 + λ)

n∑
k=1

(−1)k−1ak − 1

λ
=

n∏
k=1

((1 + λ)ak)(−1)
k−1 − 1

λ
.

(7)
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It can be seen that

(1 + λ)ak =
∏

1≤i1<···<ik≤n
(1 + λ)µ(Ai1∩···∩Aik) =

=
∏

1≤i1<···<ik≤n
(1 + λQλ (Ai1 ∩ · · · ∩Aik))

because of the identity (valid for any B ⊂ X)

(1 + λ)µ(B) = 1 + λQλ(B).

Applying this to Eq. (7), we get Eq. (5) (or Eq. (1)).

Remark 1. In the particular case when the sets A1, A2, . . . , An are mutually
disjoint, Theorem 1 gives (for λ 6= 0)

Qλ

(
n⋃

i=1

Ai

)
=

1

λ

(
n∏

i=1

(1 + λQλ(Ai))− 1

)
(8)

because only the factors for k = 1 can be different from 1 in Eq. (5).

Remark 2. The Poincaré formula can be viewed as the limit case of the formula
in Eq. (5) when λ tends to zero. Namely, in view of Eq. (4), one has for any
A = A1 ∪A2 ∪ · · · ∪An:

lim
λ→0

Qλ(A) = lim
λ→0

hλ(µ(A)) = µ(A).

3. Some applications of the results

Now, we will show how our formula for the λ-additive measure of union of
n sets can be used in some areas of computer science. Namely, we will discuss
how our results can be applied in theory of belief- and plausibility measures and
in theory of rough sets.

3.1. Application to belief- and plausibility measures

In the theory of belief functions (Dempster-Shafer theory), the belief- and
plausibility measures are defined as follows [3, 17].

Definition 2. The function Bl : P(X)→ [0, 1] is a belief measure on the finite
set X, iff Bl satisfies the following requirements:

(1) Bl(∅) = 0, Bl(X) = 1

(2) for any A1, . . . , An ∈ P(X),

Bl(A1 ∪ · · · ∪An) ≥

≥
n∑

k=1

∑

1≤i1<···<ik≤n
(−1)k−1Bl (Ai1 ∩ · · · ∩Aik) .
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Definition 3. The function Pl : P(X)→ [0, 1] is a plausibility measure on the
finite set X, iff Pl satisfies the following requirements:

(1) Pl(∅) = 0, P l(X) = 1

(2) for any A1, . . . , An ∈ P(X),

Pl(A1 ∩ · · · ∩An) ≤

≤
n∑

k=1

∑

1≤i1<···<ik≤n
(−1)k−1Pl (Ai1 ∪ · · · ∪Aik) .

The next proposition (see, e.g. [5]) highlights an important connection be-
tween the λ-additive measure and the belief-, probability- and plausibility mea-
sures.

Proposition 1. Let X be a finite set and let Qλ be a λ-additive measure on X.
Then, on set X, Qλ is a

(1) plausibility measure if and only if −1 < λ ≤ 0

(2) probability measure if and only if λ = 0

(3) belief measure if and only if λ ≥ 0.

Proof. See [5].

3.1.1. An application connected with the ν-additive measure

Adapting the enunciation and the proof of Theorem 4.7 from [24], we get
the following proposition.

Proposition 2. Assume Qλ : P(X) → [0, 1] is a λ-additive measure,
A1, A2, . . . , An ∈ P(X) are such that

⋃n
i=1Ai = X, Ai ∩ Aj = ∅, if i 6= j,

and we know the values Qλ(Ai), i = 1, 2, . . . , n. Assume supplementarily that
n ≥ 2, Qλ(Ai) < 1 for all i = 1, 2, . . . , n and at least two distinct values Qλ(Ai)
are not null. Write S =

∑n
i=1Qλ(Ai).

Then λ is uniquely determined, namely:

(1) If S < 1, then λ > 0, hence Qλ is a belief measure.

(2) If S = 1, then λ = 0, hence Qλ is a probability measure.

(3) If S > 1, then λ < 0, hence Qλ is a plausibility measure.

From practical point of view, the number λ from above is the unique solution
of the equation (generated by Eq. (8) for

⋃n
i=1Ai = X)

λ+ 1 =
n∏

i=1

(1 + λQλ(Ai)). (8’)

This equation can be numerically solved for λ. The value of parameter λ
informs us about the ’plausibilitiness’ or ’beliefness’ of the Qλ measure.

5
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Interpretation. Let A1, . . . , An be n pairwise disjoint groups of people and let
X =

⋃n
i=1Ai be the universe of groups. Furthermore, let us assume that we have

the value of Qλ(Ai) for all i = 1, . . . , n, and the λ-additive measure is a perfor-
mance measure; that is, Qλ(Ai) represents the performance of group Ai. Here,
if
∑n
i=1Qλ(Ai) = 1, then Qλ is a probability measure. If

∑n
i=1Qλ(Ai) 6= 1,

then the solution of equation Eq. (8’) for λ informs us about the ’plausibilitiness’
or ’beliefness’ of the measure Qλ. Namely, if λ� 0, then Qλ is a ’strong’ belief
measure, which indicates that uniting all the groups into one results in a better
performing group. Similarly, if −1 < λ � 0, then Qλ is a ’strong’ plausibility
measure, which tells us that merging all the groups into one results in a worse
performing group.

It should be added here that the value of parameter λ of a λ-additive mea-
sure is in the interval (−1,∞). Since this interval is unbounded (from the right
hand side) and the zero value of λ does not divide it into two symmetric do-
mains, it is difficult to judge the ’plausibilitiness’ or ’beliefness’ of a λ-additive
measure based on the value of parameter λ. Now, we will demonstrate how the
application of an alternatively parameterized λ-additive measure, which we will
call the ν-additive measure, can be utilized to characterize the ’plausibilitiness’
or ’beliefness’ on a normalized scale. We will also outline how the application
of the ν-additive measure can simplify the numerical solution of Eq. (8’).

The next well-known proposition (see Theorem 4.6 (3) in [24]) tells us how
the λ-additive measure of a complement set can be computed.

Proposition 3. If X is a finite set and Qλ is a λ-additive measure on X, then
for any A ∈ P(X) the Qλ measure of the complement set A = X \A is

Qλ(A) =
1−Qλ(A)

1 + λQλ(A)
. (9)

Proof. See the proof of Theorem 4.6 in [24], or the proof of Theorem 2.27 in
[8].

Now, let us assume that 0 ≤ Q(A) < 1. Then, Eq. (9) can be written as

Qλ(A) =
1−Qλ(A)

1 + λQλ(A)
=

1

1 + (1 + λ) Qλ(A)
1−Qλ(A)

. (10)

In continuous-valued logic, the Dombi form of negation with the neutral value
ν ∈ (0, 1) is given by the operator nν : [0, 1]→ [0, 1] as follows:

nν(x) =





1

1+( 1−ν
ν )

2 x
1−x

if x ∈ [0, 1)

0 if x = 1,
(11)

where x ∈ [0, 1] is a continuous-valued logic variable [4]. Note that the Dombi
form of negation is the unique Sugeno’s negation [23] with the fix point ν ∈ (0, 1).
Also, for Qλ(A) ∈ [0, 1), the formula of λ-additive measure of Qλ(A) in Eq.

6
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(10) is the same as the formula of the Dombi form of negation in Eq. (11) with
x = Qλ(A) and (

1− ν
ν

)2

= 1 + λ.

Based on the definition of λ-additive measures, λ > −1, and since

λ =

(
1− ν
ν

)2

− 1

is a bijection between (0, 1) and (−1,∞), the λ-additive measure of the com-
plement set A can be alternatively redefined as

Qλ(A) =





1

1+( 1−ν
ν )

2 Qλ(A)

1−Qλ(A)

if Qλ(A) ∈ [0, 1)

0 if Qλ(A) = 1,
(12)

where
(
1−ν
ν

)2
= 1 + λ, ν ∈ (0, 1).

Following this line of thinking, here, we will introduce the ν-additive measure
and state some of its properties.

Definition 4. The function Qν : P(X)→ [0, 1] is a ν-additive measure on the
finite set X, iff Qν satisfies the following requirements:

(1) Qν(X) = 1

(2) for any A,B ∈ P(X) and A ∩B = ∅,

Qν(A ∪B) = Qν(A) +Qν(B) +

((
1− ν
ν

)2

− 1

)
Qν(A)Qν(B), (13)

where ν ∈ (0, 1).

Note that if X is an infinite set, then the continuity of function Qν is also
required. Here, we state a key proposition that we will utilize later on.

Proposition 4. Let X be a finite set, and let Qλ and Qν be a λ-additive and
a ν-additive measure on X, respectively. Then,

Qλ(A) = Qν(A) (14)

for any A ∈ P(X), if and only if

λ =

(
1− ν
ν

)2

− 1, (15)

where λ > −1, ν ∈ (0, 1).

Proof. This proposition immediately follows from the definitions of the λ-
additive measure and ν-additive measure.

7
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If Qν is a ν-additive measure on the finite set X, then, by utilizing Eq. (12),
the Qν measure of the complement set A is

Qν(A) =





1

1+( 1−ν
ν )

2 Qν (A)
1−Qν (A)

if Qν(A) ∈ [0, 1)

0 if Qν(A) = 1.
(16)

Moreover, as the ν parameter is the neutral value of the Dombi negation operator
(see Eq. (11)), the following property of the ν-additive measure holds as well.

Proposition 5. Let X be a finite set, Qν a ν-additive measure on X and let
the set Aν be given as

Aν = {A ∈ P(X)|Qν(A) = ν},

where ν ∈ (0, 1). Then for any A ∈ Aν the Qν measure of the complement set
A is equal to ν; that is, Qν(A) = ν.

Proof. If A ∈ Aν , then Qν(A) = ν and utilizing the ν-additive complement
given by Eq. (16), we have

Qν(A) =
1

1 +
(
1−ν
ν

)2 ν
1−ν

= ν.

This result means that the ν-additive complement operation may be viewed
as a complement operation characterized by its fix point ν. Notice that the
value of parameter ν of a ν-additive measure is in the bounded interval (0, 1),
while the value of parameter λ of the corresponding λ-additive measure is in the
unbounded interval (−1,∞). It means that the parameter ν characterizes the
’plausibilitiness’ or ’beliefness’ of the ν-additive measure on a normalized scale.
Moreover, ν = 0.5, which corresponds to a probability measure, divides the
interval (0, 1) symmetrically to the parameter domains of belief- (ν ∈ (0, 0.5))
and plausibility (ν ∈ (0.5, 1)) measures. It should be also noted that when we
seek to numerically solve Eq. (8’), then we need to search for the solution in the
interval (−1,∞). However, if we utilize the corresponding ν-additive measure,
then we need to search for the value of ν in the interval (0, 1), which considerably
simplifies the numerical computation.

3.2. Application to rough sets

It is a well-known fact that the belief- and plausibility measures are con-
nected with the rough set theory (see [6, 26, 25]). Here, we will show how the
λ-additive measure is connected with the rough set theory, and how the general
formula for λ-additive measure of union of n sets can be utilized in this area of
computer science.

Later, we will use the concept of dual pair of belief- and plausibility measures.

8
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Definition 5. Let Bl and Pl be a belief measure and a plausibility measure,
respectively, on the finite set X. Then Bl and Pl are said to be a dual pair of
belief- and plausibility measures iff

Pl(A) = 1−Bl(A)

holds for any A ∈ P(X).

The concept of a rough set was introduced by Pawlak [15] as follows.

Definition 6. Let X be a finite set, and let R ⊆ X×X be a binary equivalence
relation on X. The pair (R(A), R(A)) is said to be the the rough set of A ⊆ X
in the approximation space (X,R) if

R(A) = {x ∈ X|[x]R ⊆ A}
R(A) = {x ∈ X|[x]R ∩A 6= ∅},

where [x]R is the R-equivalence class containing x.

The rough set (R(A), R(A)) can be utilized to characterize the set A by the
pair of lower and upper approximations (R(A), R(A)). The lower approximation
R(A) is the union of all elementary sets that are subsets of A, and the upper
approximation R(A) is the union of all elementary sets that have a non-empty
intersection with A. Note that the definitions of R(A) and R(A) are equivalent
to the following statement: an element of X necessarily belongs to A if all of
its equivalent elements belong to A, while an element of X possibly belongs to
A if at least one of its equivalent elements belongs to A [25]. Let the functions
q, q : P(X)→ [0, 1] be given as follows:

q(A) =
|R(A)|
|X| , q(A) =

|R(A)|
|X| (17)

for any A ∈ P(X). On the one hand, Skowron [19, 20] showed that the functions
q and q are a dual pair of belief- and plausibility measures. On the other hand,
based on Proposition 1, q and q can be represented by a dual pair of λ-additive
measures; that is,

q(A) = Qλl(A), q(A) = Qλu(A) (18)

for any A ∈ P(X), where λl ≥ 0 and −1 < λu ≤ 0. Thus, if R ⊆ X × X is
a binary equivalence relation on X, A1, . . . , An ∈ P(X), (R(Ai), R(Ai)) is the
rough set of Ai in the approximation space (X,R) and i = 1, . . . , n, then the
cardinality of the lower- and upper approximations of the set

⋃n
i=1Ai can be

computed by utilizing Eq. (17), Eq. (18) and Eq. (1) as follows:

|R(A1 ∪ · · · ∪An)| = |X|q
(

n⋃

i=1

Ai

)
=

=
|X|
λ




n∏

k=1


 ∏

1≤i1<···<ik≤n
(1 + λQλl (Ai1 ∩ · · · ∩Aik))




(−1)k−1

− 1
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|R(A1 ∪ · · · ∪An)| = |X|q
(

n⋃

i=1

Ai

)
=

=
|X|
λ




n∏

k=1


 ∏

1≤i1<···<ik≤n
(1 + λQλu (Ai1 ∩ · · · ∩Aik))




(−1)k−1

− 1


 .

4. Summary and future plans

(1) In Eq.(1), we presented the general formula for the λ-additive measure of
union of n sets.

(2) We outlined how this new formula along with an alternatively parame-
terized λ-additive measure, which we call the ν-additive measure, can be
applied in theory belief- and plausibility measures and in theory of rough
sets.

As part of our future research plans, we would like to formulate a calcu-
lus of the λ-additive measure and generalize the Bayes theorem for λ-additive
measures. We also plan to study how the λ-additive (ν-additive) measure and
the generalized Poincaré formula can be utilized in the fields of computer sci-
ence, engineering and economics. Especially, we aim to investigate the potential
applications in network science.

References

[1] X. Chen, Y.-A. Huang, X.-S. Wang, Z.-H. You, K. C. Chan, FMLNCSIM:
fuzzy measure-based lncRNA functional similarity calculation model, On-
cotarget 7 (29) (2016) 45948–45958, doi:10.18632/oncotarget.10008.
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