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Abstract

Using the Hartree-Fock crystal orbital method band structures of poly(G̃− C̃) and poly(Ã− T̃)

were calculated (G̃, etc. means a nucleotide) including water molecules and Na+ ions. Due

to the close packing of DNA in the ribosomes the motion of the double helix and the water

molecules around it are strongly restricted, therefore the band picture can be used. The

mobilities were calculated from the highest filled bands. The hole mobilities increase with

decreasing temperatures. They are of the same order of magnitude as those of poly(Ã) and

poly(T̃). For poly(G̃) the result is ∼5 times larger than in the poly(G̃− C̃) case.

1. Introduction

We have performed large scale calculations on DNA because according to many experi-

ments carcinogens binding to DNA or radiation hits do not act only locally but by different

mechanisms they can have also long range effects (See Ref. 1). These long range effects can

be strong if there is a hole conductivity in a DNA double helix.

Recently, using the ab initio HF crystal orbital theory we have calculated the band struc-

tures of the poly(G̃− C̃) and poly(Ã− T̃) periodic double helices. Here, G̃ stands for the

nucleotide G - S - P (S is the deoxyribose and P the phosphate group) [2].

Since in aqueous solution because of the structural distortions of the DNA helix and

especially of the fluctuation of the water molecules around the DNA double helix, the band

model is not adequate. Therefore many authors have applied different forms of hopping

theories [3, 4, 5].
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On the other hand according to high resolution X-ray investigations of DNA in the nucleo-

some is very closely packed [6, 7]. This strongly diminishes the possibilities both of structural

distortions of the DNA molecule and the fluctuations of the water molecules around it. In

our study we have applied the ab initio Hartree-Fock (HF) crystal orbital method [8, 9, 10]

taking into account also the 36◦ rotation of each base pair perpendicular to the main axis

of the helix [12] to obtain the band structures for different periodic DNA models. In the

calculations the LCAO approximation was used [11]. One should observe that the HOMO

levels of the double stranded DNA lie by about 5 eV higher than those of the single chains

[2] (in both cases with the sugar and phosphate groups and in the presence of water). This

is caused by the fact that there is a charge transfer of about 0.2e from deoxyribose to the

nucleotide base to which it is bound and these excess charges repel each other in the double

stranded cases [2].

On the basis of the obtained band structure we have computed the mobilities of the holes

(at different temperatures) belonging to the contraction-dilatation motion of the double helix

(we did not take into account the mobilities belonging to the torsional motion of the helix,

because in our earlier studies we have found that the effect of carcinogens or radiation hits

on DNA happens not only locally, but they can have also long-range effects (See [1]). For

this reason the contraction-dilatation movement of the double helix is the only important

one. Therefore we have computed only the mobility along the main axes of DNA.

2. Methods

The band structure of poly(G̃− C̃) and poly(Ã− T̃) systems were obtained using the

ab initio HF crystal orbital method in its LCAO form [8, 9, 10, 11] by applying the helical

symmetry operation [12]. For the HF calculations Clementi’s double ξ basis set was used

[13]. The unit cell was built taking the G-C and A-T nucleotides from the experimental

geometrical structure of double-stranded DNA B reported by Olson et al [14]. The negatively

charged PO−

4 groups of the nucleotides were neutralized by two Na+ ions, which positions

were optimized using the Gaussian 03 program package [15] using the HF method together

with the same Clementi’s basis set.

To determine the water structure around the nucleotides, first, a triple stacks of G̃− C̃

and Ã− T̃ in the DNA B geometry were generated. Around these systems a huge number of

water molecules were randomly placed using the Packmol program [16] and after that, their

geometries were optimized using molecular mechanics [Amber force field from the Gaussian

03 ([15])], while the nucleotide sequences were kept frozen. As next step the two outer (highest

and lowest) base pairs as well as their surrounding water molecules were eliminated. Finally,

we kept only 15 water molecules around the remaining nucleotides in both of the G̃− C̃ and

2
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Ã− T̃ cases. Accordingly, the unit cell is built by a single G̃− C̃ and Ã− T̃ nucleotide pairs

+ 2 Na+ ions + 15 water molecules (For details see Ref.-s [17, 18]). The number of k-points in

the half Brillouin zone was 12 in both cases and the number of contracted basis functions per

unit cell was 766 in the poly(G̃− C̃) case and 754 for poly(Ã− T̃). To reach self-consistency

(7-8 decimals in the total energy per unit cell) we needed about 20 iteration.

It is well-known that the HF method gives too large band gaps and wrong energy posi-

tions for the conduction bands. In our previous work [18] we have shown that the electron

correlation can decrease the too large HF gaps with about 2 eV as well as it moves down

the conduction bands. Since, we are interested in the hole conductivity which occurs at the

upper region of the valence band, the electron correlations would not change significantly the

HF picture. One should point out that the DFT method [19] in its first form gives a too

small gap, which could be increased during the further development of this method.

To the calculation of the mobilities of poly(G̃− C̃) and poly(Ã− T̃) systems we have

started from their ab initio band structures. The valence band widths are ∼0.7 eV in the

poly(G̃− C̃) case and ∼0.3 eV in the poly(Ã− T̃) case (see Table Ia and Ib) which are

substantially broader that the thermal energy at body temperature (kBT = 8.617 · 10−5
·

310 = 2.67 · 10−2 eV). Therefore the deformation potential approximation for the mobility

calculations can be applied. One should point out that to perform a simultaneous translation

and rotation one can proceed in the same way as in the case of simple translation because in

both cases their symmetry groups have the same multiplication table (isomorphous groups).

Therefore for the helix operation we have to put the nuclei in the right positions and rotate

the basis functions (unless they are s functions) with the relevant rotation angle [12]. For

more details see [2].

For the calculation of the mobilities the deformation potential method was used [20].

In the case of 1D systems (as a single DNA double helix) the original expression for a 3D

systems had to be modified. This has been done in a previous paper [21]. The result for 1D

system in the case of hole mobilities is

µh =

√

2

π

c⊥~
2e

ε2
1hm

∗3/2
h (kBT )

1/2
(1)

Here c⊥ is the elastic constant for the contraction and dilatation of the chain. ε1h is the

deformation potential at the G or A-type upper limits of the valence bands of the poly(G̃− C̃)

and poly(Ã− T̃) systems, respectively. The deformation potential for holes is defined as:

ε1h =
δεv,u.l.

∆l
l0

;
(

l0 = 3.32 Å ∆l = ±0.2 Å
)

(2)

while m∗

h is the effective mass calculated from the dispersion curve of the corresponding

3
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valence band

1

m∗
=

1

~2
·
d2ε

dk2

∣

∣

∣

∣

kv,u.l.

. (3)

Finally, the elastic constant c⊥ was calculated from the contraction-dilatation displacement
(

∆l = ±0.02Å
)

of the two stacks using

c⊥ = l0
∂2E

∂l2

∣

∣

∣

∣

l0

l0 = 3.32 Å (4)

expression, where l is the length of the DNA double helix, E its total energy per unit cell

and l0 the stacking distance in equilibrium.

One should mention that we have taken as the equilibrium stacking distance 3.32 Å

instead of 3.36 Å (the Watson-Crick value), due to the very tight packing of the DNA

molecule in the nucleosomes [6, 7].

The condition of the applicability of the deformation potential approximation is that the

width of the bands for which it is applied should be at least four times larger than the thermal

energy (2.67 · 10−2 eV). On the other hand the valence band widths for poly(G̃− C̃) + H2O

+ Na+ are 0.69 eV and 0.21 eV for poly(Ã− T̃) + H2O + Na+ systems [2], respectively. This

means that the deformation potential method can be safely used because the thermal energy

is at least by one order of magnitude smaller than the widths of the valence bands for which

we intend to calculate the mobilities.

3. Results

In the Table I we present the conduction and valence bands of the poly(G̃− C̃) and

poly(Ã− T̃) systems in the presence of water and Na+ ions at three different stacking dis-

tances. See our previous paper [2].

Table I.

Though the known d.c. conductivity measurements on DNA provided d.c. hole con-

ductivities, it may happen in the future that due to the action of electron donors also d.c.

electronic conduction takes place through the base stacks of DNA. This is the reason that

we have included in Table I also the description of the first empty band of poly(G̃− C̃) and

poly(Ã− T̃), respectively, which are dominated by base stacks.

In Table II we give the effective masses, the elastic constants and the deformation poten-

tials which occur in Eq. (1).

Table II.

4
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Finally, in Table III the mobilities are presented at different temperatures

Table III.

4. Discussion

For the HF band structures of poly(G̃− C̃) and poly(Ã− T̃) the same methods were used

as in Ref. [2]. In our previous calculation [2] the gap is 8.95 eV for the first system and 9.30

eV in the second one, respectively, while in the present one they are 9.02 eV and 10.19 eV,

respectively, (see Table I)). This is caused by the different stacking distances used: in Ref.

[2] we have taken 3.36 Å for it, while in the present paper considering the close packing in

DNA in the nucleosomes we have used for its equilibrium value 3.32 Å in the deformation

potential calculation.

The small differences in the widths of the valence bands and the base-dominant conduction

bands as well in their upper and lower limits are most probably due to the same reason

(compare Tables I and II of Ref. [2] with Table I of the present paper). Further, if one

compares the upper and lower limits of the valence band of the poly(Ã− T̃) in Ref. [2] and

the values obtained in the present calculation we observe a significant discrepancy between

them. A subsequent analysis of these results showed us that there are errors in Ref. [2] caused

by a steric hindrance due to a H2O molecule which becomes too close to the deoxyribose

binding to adenine during the helix operation (translation-rotation). Another source of this

discrepancy (but with much less influence on the valence band shift) could be the number of

the water molecules around the nucleotide base in the unit cell as well as the slightly different

stacking distance between the bases. In the present calculation we have considered 15 water

molecules and 3.32 Å as the stacking distance, while in Ref. [2] we used 18 water molecules

and 3.36 Å for the stacking distance.

The calculation of the band structures of poly(G̃− C̃) and poly(Ã− T̃) at smaller (3.30 Å)

and larger (3.34 Å) stacking distances were necessary for the calculation of the deformation

potential. The upper and lower limits as well as the band widths of valence and base-dominant

conduction bands for poly(G̃− C̃) and poly(Ã− T̃) systems are presented in Table Ia and

Ib. Considering the three different stacking distances (3.30 Å, 3.32 Å and 3.34 Å) the band

widths of both the valence and conduction bands either remain unchanged or become slightly

smaller at increasing stacking distances. At the same time, the upper and lower limits of the

valence bands and of the conduction bands in both systems slightly decrease with increasing

stacking distances. In each case the bands show monotonic behavior in the first Brillouin

zone (without any singularity) their edges fit with the limits of the first Brillouin zone (k=0

or k=12).

5
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Performing a detailed analysis of the eigenvectors we found that the crystal orbitals

belonging to the so-called base-type lowest unfilled bands (which we call conduction bands),

contain only about 60% contributions from those AO-s which belong to C or T, respectively.

The remaining 40% has sugar-phosphate backbone or Na+ character. This analysis shows

also that in the case of conduction bands there are significant overlaps between the base- and

non-base-type AO-s and these conduction bands are spread both on base- and non-base-type

molecular fragments. Finally, it should be mentioned that between the valence band and the

base-dominant conduction bands there are (as in the previous calculation [2]) in the case of

poly(G̃− C̃) 16 bands which have no contributions from the AO-s belonging to the C bases

and 13 bands for poly(Ã− T̃) where the AO-s do not belong to T.

Turning to Table II the effective masses for both poly(G̃− C̃) and poly(Ã− T̃) were cal-

culated from the dispersion curves of the valence bands. For this we have used the polynomial

interpolation technique taking a 7th order polynomial function (three k-points both at the

left and the right sides of the edge of the Brillouin zone) and taking the expression of the

effective mass given by eq. (3). Since hole conduction is the more probable in DNA, we have

calculated the quantities necessary for the computation of the deformation potentials of the

poly(G̃− C̃) and poly(Ã− T̃) systems, respectively, only for their valence bands which are

purely G- or A-type. We obtain an effective hole mass of m∗

h = −1.68me for the poly(G̃− C̃)

and m∗

h = −3.69me for the poly(Ã− T̃) system, respectively.

The deformation potentials were determined from the valence band upper limits, accord-

ing to eq. (2). The elastic constants were calculated from eq. (4) assuming a parabolic

dependence of the total electronic energy along the z axis (the long axis of the DNA double

helix). In the poly(G̃− C̃) case we have obtained for the deformation potential a value of 9.36

eV and for the elastic constant 7.38·10−2 dyn. The corresponding values for the poly(Ã− T̃)

system are 5.97 eV and 2.82·10−2 dyn, respectively.

Finally, in Table III we show the hole mobilities (in cm2/V · sec units) computed from

eq. (1) at three different temperatures: 310 K (the human body temperature), 300 K (room

temperature) and 273 (water freezing temperature) using the previously computed values

for the effective masses, deformation potentials and elastic constants. The hole mobilities

increase with decreasing temperatures as expected for both investigated systems. One should

point out that the obtained values refer only to the contraction-dilatation motion of DNA

helix.

The hole mobilities obtained in the present calculation are of the same order of magnitude

as those obtained for the previous single stranded DNA calculations [22] for poly(Ã) and

poly(T̃). Only in the case of poly(G̃) was obtained in the previous work [22] a result by a

factor of 5 larger than the one found in the present work for poly(G̃− C̃). The reason of

6
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this discrepancy can lie in the difference of the band structures of the single stranded and

double stranded DNA helices. To clear up this problem we are going to perform further

calculations. On the other hand, our mobility value obtained for the poly(G̃− C̃) system is

in a good agreement with that obtained by Grozema et al [23] using a tight-binding model

Hamiltonian, where the motion of holes is coupled to structural fluctuations of the poly(G –

C). In the “frozen” twist motion case they obtained for the mobility a value of 22 cm2/V · sec,

which has the same order of magnitude as our mobility result based on the band model.

The first dc conductivity measurements on native DNA were performed back in 1962

by Eley and Spivey [24]. From the temperature dependence of the specific conductivity,

they have found for the activation energy of conductivities 4.8 eV. This value lies not very

far from our HF+MP2 gap value calculated by the extended basis set for a C stack (6.6

eV). In an subsequent paper Porath et al [25] have performed a two point dc measurement

of a 10.4 nm (30 base pairs) long poly(G̃− C̃) double helix. In their theoretical analysis,

they conclude that at least in such a comparatively shorter distance (using a number of

experimental techniques) the charge transfer is mediated by energy bands. In recent papers

[26, 27] of the Barton group they have found charge transport in DNA of 34 nm (over 100 base

pairs) lengths. They point out that such a long distance CT cannot be explained by hopping

or superexchange mechanisms. They suppose a coherent CT mechanism if the double helix

is intact (not a simple distortion or mismatch). Coherent mechanism means in other words

the existence of energy bands.
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Table Ia. The band structures of poly(G̃− C̃) and poly(G̃− C̃) + Na+ + 15 water

molecules at different stacking distances.

Stacking 3.30 Å 3.32 Å 3.34 Å

distance

Cond. Band (C-type) - 16 impurity bands

u.l. 6.81 (k=12) 6.79 (k=12) 6.77 (k=12)

l.l. 6.51 (k=0) 6.49 (k=0) 6.47 (k=0)

w. 0.30 0.30 0.30

Valence Bands (G-type)

u.l. -2.41 (k=12) -2.53 (k=12) -2.58 (k=12)

l.l. -3.16 (k=0) -3.27 (k=0) -3.29 (k=0)

w. 0.75 0.74 0.71

Gap 8.92 9.02 9.05

Table Ib. The band structures of poly(Ã− T̃) and poly(Ã− T̃) + Na+ + 15 water

molecules at different stacking distances.

Stacking 3.30 Å 3.32 Å 3.34 Å

distance

Cond. Band (T-type) - 13 impurity bands

u.l. 6.35 (k=12) 6.32 (k=12) 6.29 (k=12)

l.l. 5.90 (k=0) 5.89 (k=0) 5.88 (k=0)

w. 0.45 0.43 0.41

Valence Bands (A-type)

u.l. -4.27 (k=12) -4.30 (k=12) -4.34 (k=12)

l.l. -4.57 (k=0) -4.60 (k=0) -4.63 (k=0)

w. 0.30 0.30 0.29

Gap 10.17 10.19 10.22

1

Table



Table II. The deformation potentials for holes (in eV-s), the elastic constants (in dyns) and

the effective masses in me-s for poly(G̃− C̃) and poly(Ã− T̃) in the presence of water and

Na+ ions.

poly(G̃− C̃) poly(Ã− T̃)

ε1h 9.36 5.97

c⊥ 7.38·10−2 2.82·10−2

m∗

h -1.68 -3.69
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Table III. The hole mobilities of poly(G̃− C̃) and poly(Ã− T̃) in the presence of water

molecules and a Na+ ion at different temperatures (in cm2/V · sec units).

poly(G̃− C̃) poly(Ã− T̃)

µ310 37.52 10.87

µ300 38.14 11.05

µ273 39.98 11.58
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