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In a carrier flow based permeation system the measured permeation curve is the convolution of two processes:
the intrinsic permeation process and the transfer of the permeated molecules through the measuring system. The
latter one is quantified by the instrument response function (IRF). The possibility of calculating the IRF from
permeation curves measured at various volumetric flow rates of the carrier gas is examined. The results are in
partial agreement with preliminary expectations: the dependency of the calculated IRF on the volumetric flow

rate of the carrier gas indeed follows roughly the expected tendency; however it is not completely independent
from the physical properties of the measured membrane sample. This discrepancy can most probably be at-
tributed to the imperfect design of the applied permeation cell. Overall it is expected that the proposed method
for determining the instrument transfer function is a valuable tool for improving the design of permeation

measuring systems.

1. Introduction
1.1. Carrier flow based permeation measurements

A carrier flow based gas permeation system (Fig. 1) [1] consists of a
diffusion cell (marked with the abbreviation DC in Fig. 1), which is
divided into two chambers, the feed and receiving chamber, which are
hermetically separated by the measured membrane sample. The op-
eration of the system has two phases. During the purging phase the
entire inner volume of the gas handling of the system is purged by the
carrier gas (i.e. high purity nitrogen in the present case). During the
measurement phase, which is initialised by electronically controlled
switching of the magnetic valve (marked as MV in Fig. 1) the feed
chamber is purged with the feed gas (either pure carbon-dioxide or
methane in the present case) while the receiving chamber is purged
with the carrier gas. Molecules permeated through the membrane from
the feed chamber into the receiving chamber are swept into a detection
unit, i.e. in our case a photoacoustic cell (marked as PAC in Fig. 1) by
the carrier gas flow controlled by a mass flow controller (marked as
MEC in Fig. 1).

In order to differentiate the permeated molecules from the mole-
cules of the carrier gas the applied detection method has to be selective.
Among the possible methods Beer-Lambert law based optical absorp-
tion measurement techniques are fairly popular [2], as well as

photoacoustic (PA) detection, which is a special type of optical ab-
sorption method that already has been applied successfully in per-
meation measurements [3-5]. Previous research has shown that a
properly optimised PA system outperforms conventional optical ab-
sorption detection techniques as far as the minimum detectable con-
centration and the response time is concerned [6].

A permeation curve (marked in the following as cy(t)) describes the
dependence of concentration of the permeating molecules measured
within the detection unit as a function of time elapsed since the start of
the feed gas purging. By applying a numerical fitting method on the
experimentally determined c(t), the permeation parameters of the
measured membrane (D, S and P i.e. the diffusivity, the solubility and
the permeability, respectively) can be calculated [7]. For this, one could
fit either the entire permeation curve or only its late, steady state part.
The latter, referred to as time-lag method, is mathematically a much
simpler procedure and therefore it is widely applied [8]. On the other
hand, the full curve fitting was already shown to be less influenced by
measurement errors and artefacts [5], therefore it is preferable.

1.2. Distortion of the permeation curve due to the measuring system
It is important to emphasise that from the theory of diffusion (see

e.g. [7]) one cannot deduce an exact mathematical expression for c,(t)
but rather for the theoretical curve jr(t), which is the temporal variation
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Fig. 1. Schematic of the carrier gas and photoacoustic detection unit based
membrane permeation measurement system. The following abbreviations are
used: MV: magnetic valve, MFC: mass flow controller, DC: diffusion cell, DL:
diode laser light source, PAC: photoacoustic detection cell.

of the permeation flux of the molecules through unit area of the
membrane. For simple permeation processes the latter one can be
written as [7]:
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where P = D-S, p is the partial pressure of the feed gas maintained
within the feed chamber and [ is the thickness of the membrane sample.
Therefore, a phenomenological relationship should be introduced,
which relates the theoretically calculated jr(t) to the experimentally
measured cp(1):
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where A is the surface area of the membrane and Q. is the volumetric
flow rate of the carrier gas. Q. appears in the denominator in Eq. (2)
because the carrier gas flow not only transfers the permeated molecules
from the receiving chamber to the detection cell but it actually also
dilutes their concentration and the degree of dilution at first approx-
imation is inversely proportional to Q.. The function h(Q,z), which can
be seen as an instrument response function [9], represents the influence
of the measuring system on the measured permeation curve. In Eq. (2)
the mathematical operator of convolution (convolution and deconvo-
lution are marked with the sign of * and 1, respectively) expresses the
fact that the two processes (i.e. the permeation through the membrane
and the transport of the permeated molecules to the point of detection)
are separable, which also means that under ideal conditions jz(t) is
independent of Q. and h(Q.z) is independent of the material para-
meters (i.e. D, S, P and 1) of the measured membrane. The outstanding
importance of Eq. (2) is that once h(Q.z) is determined and if it is
proven to be independent from the measured membrane sample and the
feed gas, then there is the possibility of calculating back from the
measured permeation curve (cp(t)) the permeation flux though the
membrane (jr(t)) as:

O CICEICR) -
and thus the distorting effect of the measuring system can be eliminated
and from the deduced jr(t) curve the permeation parameters of the
measured membrane can be determined accurately.

The measuring system can influence the measured permeation curve
in several ways, i.e. h(Q,,7) is dependent on several factors:

e First of all, there is a delay time (marked in the following as 7)
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during which the permeated molecules from the receiving chamber
are transported into the detection cell by the carrier gas. This delay
time can be approximated as [10]:

Vb

~

Qe C)

where V), is the total volume of the detection part of the permeation
measuring system i.e. the sum of the volumes of the receiving chamber,
the detection unit and the gas handling in-between them.

e Adsorption/desorption effects, resulting from the interaction of the
permeated molecules with the inner surfaces of the measuring
system influences both 7 and h(Q,z) [11]. Careful selection of ma-
terials of the system’s components (e.g. in many cases stainless steel)
and the application of special coating on the inner surfaces can help
to reduce the effect of adsorption/desorption. Nevertheless in
practice adsorption/desorption effects can never be completely
eliminated.

Additionally the permeation measuring system might leak to the
ambient, and the permeated molecules might diffuse into the o-rings
used for sealing. These are possible construction deficiencies, which
can also influence h(Q.z) but they can be eliminated by careful
optimisation of the permeation system (as implemented for the case
of the measuring system reported here).

In principle these effects can be incorporated into a h(Q,,z) function.
However, for an improperly designed permeation system, the processes
of permeation and measurement might not be separable at all, i.e. Egs.
(2) and (3) are not applicable, and therefore permeation measurements
with such systems are burdened with inaccuracy. Indeed recently
Verwolf et al. performed permeation measurements with various com-
mercially available permeation instruments and found large variations
in the deduced permeation parameters [12]. Based on their work it can
be assumed that the operation of these instruments lacks a method with
which first the instrument response function can be determined and
then the measured permeation curve can be corrected with h(Q.,z) in
accordance with Eq. (3). Furthermore based on their results Verwolf
et al. pointed out the importance of the performance based optimisation
of the design of the permeation cell, which should primary target the
homogenisation of the temperature and the carrier gas flow distribution
within the receiving chamber [12]. However they did not suggest a
method for verifying the appropriateness of a permeation cell design,
which is the subject of the presented work.

The usual technical solution in permeation measurements for the
suppression of the effect of h(Q.,7) on cp(t) is to increase Q. until cp(t)
becomes practically independent of Q.. This tendency of cp(t) is in-
terpreted in a way that for permeation measurements executed at high
Q. values the effect of the measurement system on c, is suppressed. The
underlying assumption can be expressed mathematically as:

h(Qc > o0, 1) =1 (5)

On one hand, the validity of Eq. (5) is a plausible assumption, which
is supported by the fact that in a series of permeation measurements it
was indeed observed that by increasing Q. the deduced permeation
parameters converge to limiting values, which are actually independent
of Q. [4]. On the other hand, performing permeation measurements
with high Q. values is not always feasible because, as it follows from Eq.
(2), there is an overall inverse proportionality between Q. and the
concentration of the permeated molecules in the detection cell.
Therefore by increasing Q. the signal to noise ratio (S/N) of the con-
centration measurement decreases and parameters can be calculated
only from noise permeation curves with large uncertainty, especially in
case of low permeability samples. Indeed in our recent publication [5]
it was shown that the S/N of the concentration measurement has to be
kept above 50 at least during the late, quasi steady-state part of the
permeation process otherwise there will be a considerable uncertainty
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(more than 10% relative error) in the deduced permeation parameters
especially when the full curve fitting method is applied. Consequently,
in order to maintain the required S/N low permeability membranes can
only be measured with low Q. values for which the limit given by Eq.
(5) is not approached and thus the distortion effect of h(Q.,z) cannot be
disregarded.

2. The proposed method for the determination of h(Q,7)

The basic idea of the reported work is to determine h(Q.z) from
permeation measurements performed on membrane samples, which
have permeability high enough so they can be measured both in the low
and high Q. ranges. These two ranges are defined in a way that in the
former range cy(t) has Q. dependence while in the latter range cp(t)
becomes Q. independent [4] (except that the measured permeation
curve becomes noisier with increasing Q. values). In the following su-
perscripts, low and high indicates whether the measurement is per-
formed in the former or latter range, respectively. Eq. (3) can be written
for either case and by taking into account the fact that jp(t) is in-
dependent from the actual value of Q. one gets:

low
RQ", D) 1h(QH#", 7) = g;igh +(en @™ Yew (@)

c

©

Furthermore if Q. "®" is high enough that the limit set by Eq. (5) is
approached then Eq. (6) simplifies to:
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Based on Eq. (7) one can characterise a permeation measurement
system by calculating its h(Q.7) function from permeation measure-
ments performed with test samples both in the low and high ranges of
Q. values. Clearly this procedure is applicable only if the deduced h
(Q.,7) function is found to be independent from the actual test mem-
brane and feed gas. On the other hand, once a sample independent h
(Q.,7) function is generated it facilitates accurate determination of the
permeation parameters (by Eq. (3)) even for samples with low perme-
ability, which are measurable only with low Q. values. Furthermore Eq.
(7) can also be used to determine the Residence Time Distribution
(RTD) of the permeation measuring system too, which is the probability
distribution of the amount of time that a molecule spends within the
measuring system after permeating through the membrane [10]. Var-
ious order central moments of the RTD function can be calculated
helping the better understanding of the transport processes within the
measuring system.

In the following, the applicability of the proposed method for the
determination of the instrument response function is investigated by
reanalysing previously measured permeation curves of a photoacoustic
detection based permeation measuring instrument.

3. Experimental data for reanalysis

The present work is based on measurement results from our pre-
vious publication [4]. In the following the measurement set-up of a
carrier flow based permeation system using a PA detection unit is
briefly described while further details are given in the original pub-
lication [4]. The feed gas was either methane (99.995% purity) or
carbon-dioxide (99.9995% purity). The carrier gas was nitrogen
(99.9995% purity). The minimum detectable concentration (MDC) by
the PA detection unit is 0.5 ppm and 50 ppm for methane and carbon-
dioxide, respectively. Various polymer samples were measured with
various Q. values, which however never exceeded 500 sccm (standard
cm?® per minute) as above this limit gas flow through the PA cell gen-
erates excessive acoustic noise, which increases considerably the MDC
of the system. There is a set of samples (namely the polyethylene and
the silicone rubber sample with thickness of 0.06 mm and 2.5 mm,
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Table 1
Summary of the results of permeation measurements.
Sample Feed gas D S Q"™
Diffusivity Solubility Carrier gas flow rate
[m?/s] [1/Pa] at which these
parameters were
determined [sccm]
Polyethylene CH, 1.78 x 107" 1.07 x 10”° 400
Polyethylene CO, 3.06 x 107 2.32x107° 300
Silicone rubber ~ CH,4 1.68 x107° 511 x10°° 400
Silicone rubber ~ CO, 1.85x107% 1.75x107° 200

respectively) for which the measured permeation curves and deduced
permeation parameters become Q. independent already when Q, is well
below 500 sccm, while for the other set this is not the case (see Fig. 3 in
Reference [4]). These latter set is excluded from the forthcoming ana-
lysis as the prevailing Q. dependency indicates the inapplicability of Eq.
(5) for these samples in case of Q.< 500 sccm. Therefore in the fol-
lowing only the former set of measured samples is considered. The
deduced permeation parameters of the analysed samples are shown in
Table 1 together with Q.™®*, which is the largest volumetric flow rate of
the carrier gas at which the permeation measurements are performed
and at which the listed permeation parameters are determined. Q."*" is
also used as Qr_high whenever Eq. (7) is applied for h(Q.z) determina-
tion.

On the permeation curves measured for these samples and feed
gases deconvolution was performed in accordance with Eq. (7) and the
Q. dependent transfer functions and residence time distributions were
determined.

4. Results and discussion

In Fig. 2 the calculated residence time distributions for the per-
meation measurements in case of CO, feed gas and polyethylene
membrane sample can be seen for various Q. values. Fig. 3 shows the
dependence of the various RTD moments i.e. the mean (3a) and the
variance (3b.) calculated for various membranes (PE - polyethylene, Si
— silicone rubber) and permeating analytes (CH; — methane, CO, —
carbon dioxide). Fig. 3 also indicates the calculated delay time (z) as
defined by Eq. (4) by taking account that V;,=60cm? for the present
system.

Fig. 2 shows that the calculated RTD functions become narrower
and shift toward the y-axis i.e. they converge toward a Dirac-delta
function as Q. is increasing. Indeed mathematically the deconvolution
of two identical functions is a Dirac-delta function. Accordingly the
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Fig. 2. Calculated residence time distributions for CO, permeation measure-
ments on the polyethylene membrane sample.
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Fig. 3. Mean (3a.) and variance (3b.) of the residence time distributions for
various samples and feed gases. The calculated delay time (see Eq. (4)) is also
shown on 3a.

RTD moments converge to zero as well (Fig. 3a and b). However, as
Q. approaches Q.™®, artificial oscillations in the h(Q.°*,z) function
calculated with the help of Eq. (7) occur. This is a well-known artefact
of deconvolution [13], which is caused by the increasing similarity of
the two functions on which deconvolution is applied. Due to this effect
only those ch°w values are shown in Figs. 2 and 3 for which oscillation
does not occur. Due to these artificial oscillations no further insight can
be gained about the way h(Q.°",z) approaches to a Dirac-delta function
whenever Q.°"—Q ™.

Fig. 3a illustrates that RTD mean values loosely follow the delay
time curve. However, while RTD mean (and also RTD variance) values
show only very slight dependence on the feed gas, they are clearly in-
fluenced by the measured membrane sample. From this it can be con-
cluded that for the studied permeation system it is not possible to se-
parate the permeation process and the response of the actual
permeation measuring system, i.e. the design of the system has to be
improved.

Fig. 3a shows that for samples with high permeability (i.e. silicone
rubber membrane) the measured RTD points are well below the delay
time curve, while for lower permeability sample (i.e. polyethylene
membrane) these points are fairly close to the curve. One can give a
speculative explanation for this observation, which is in agreement with
the conclusions of Verwolf et al. [12]. Most probably due to the im-
proper design of the receiving chamber of the permeation cell there are
dead volumes in it, which are not purged effectively by the carrier gas.
Therefore those permeating molecules arriving into these dead volumes
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are trapped there for a time much longer than the characteristic delay
time of the system calculated by Eq. (4). For membranes with low
permeability the permeation process is slow therefore there is sufficient
time for those trapped molecules to diffuse out from the dead volumes
into the flow channels of the carrier gas through the receiving chamber,
which is however not the case for high permeability membranes. This
effect can be interpreted as an apparent reduction of the volume of the
receiving chamber. Actually from the measured data it can be inter-
preted that about half of the volume of the receiving chamber acts as a
dead volume in case of a highly permeable sample. Obviously those
parts of the membrane, which are right above these dead volumes, give
a reduced contribution to the permeation process, which means that in
accordance with Eq. (2) the deduced permeation parameters are in-
accurate too. These findings clearly indicate the importance of the
proper permeation cell design as suggested by Verwolf et al. [12].

5. Conclusion and outlook

The instrument response function is a critical parameter of a per-
meation measuring system. It influences the measured permeation
curves (see Eq. (2)) and can be used to correct the results of permeation
measurements whenever the measurement can be performed only with
insufficiently high carrier gas volumetric flow rates (see Egs. (3) and
(7). Therefore there is a clear need for a method with which h(Q.7)
can be determined. This work proposes a method for this purpose,
which is based on the permeation measurement in a wide range of Q.
values using Eq. (7). Furthermore based on Eq. (7) residence time dis-
tribution functions can be calculated and the various order central
moments of this function gives a better insight into the transfer prop-
erties of the measuring system. However, it turns out that the proposed
method for the separation of the instrument response is applicable only
if the determined h(Q,,7) is independent from the measured membrane
sample and the feed gas, while the opposite case most probably in-
dicates the improper design of the permeation system. Consequently the
proposed method can be used to improve and verify permeation cell
design too. Indeed the results of the presented analysis indicate that our
currently used permeation cell has to be re-designed in order to elim-
inate or at least minimise dead volumes in its receiving chamber and to
homogenise the flow pattern of the carrier gas in it as much as possible.
After re-designing the permeation cell the presented analysis is planned
to be executed once again by using a larger number of membrane
samples. It is expected that with the re-designed permeation cell the
instrument response function will become independent from the mea-
sured membrane samples (or at least the dependency will be largely
suppressed), i.e. the accuracy of the deduced permeation parameters
will be considerably improved. Furthermore the design of the PA de-
tection unit is under modification too in order to surpass the 500 sccm
limit on the applicable volumetric flow rate of the carrier gas, which
currently excludes many types of membrane samples from the analysis.

Finally once there is a permeation measuring system for which h
(Q.,7) is known accurately, this opens up the possibility to study un-
conventional (non-Fickian) permeation processes too.
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