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Abstract—Proper recovery of test-to-code traceability links
from source code could considerably aid software maintenance.
Scientific research has already shown that this can be achieved
to an extent with a range of techniques relying on various
information sources. This includes information retrieval which
considers the natural language aspects of the source code. Latent
Semantic Indexing (LSI) is widely looked upon as the mainstream
technique of this approach. Techniques utilizing word embedding
information however also use similar data and nowadays enjoy
immense popularity in several fields of study. In this work,
we present our evaluation of both LSI and word embeddings
in aiding class level test-to-code traceability of 4 open source
software systems, the assessment relying on naming convention
information.

Index Terms—traceability, testing, test-to-code, word
embeddings

I. INTRODUCTION

Software Quality Assurance is a well-researched area,
with a serious industrial background. Although quality can
be perceived from many viewpoints, testing is one way to
gain information about the quality of a software artifact by
uncovering faulty parts of the code base. Although testing is
considered as a good practice, it cannot identify all the defects
of a software, but still, efforts should be made to cover as much
production code with tests as possible. Naturally, for larger
systems a vast amount of tests is created, tens of thousands of
tests are not uncommon in these cases.

The capability to trace software items through a variety
of software products is called traceability. In the software
engineering domain requirement traceability is the most
common problem [1], [2]. In case of a large system when
a function or feature has changed, it is often challenging to
tell which tests were assessing those part of code. This special
task is called test-to-code traceability. Although very precise
results can be achieved with naming conventions [3] and good
coding practices can ease the task, they are no solution for
every traceability problem. For instance, if the target system
already has numerous tests which lack good coding practices,
the task might be practically impossible using only naming
conventions. Automatic recovery can still be an option in these
cases in the effort of increasing software quality. The topic is
already well-known among researchers and several attempts
have been made already to cope with this problem [3], [4].

By our perception the current techniques mostly depend on
intuitive features thereby making them limited. Our approach
maps the code fragments to continuous-valued vectors so that
terms used similarly in the source code repository map to
similar vectors. We provide a method, that automatically links
test cases and production classes relying on only conceptual
information.

The contributions of our work are as follows:

• We propose a generic and efficient technique that maps
test cases to production classes

• We adapted the doc2vec technique as a traceability link
retrieval method, which to the best of our knowledge is
a novelty in software engineering

• We show that textual similarities provided by the doc2vec
technique approximates the naming convention technique
rather well

• We demonstrate that the doc2vec approach can substitute
and even outperform the LSI technique in a traceability
task
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int a, b;
for(int i=0;i<5;i++)
  a+=1;
b=a;
return b;

������
������� ?�������


�	����
������������

�����

Production
CodeTests !������

���

�������

Related Classes:

1.
2.
3.
4.

Fig. 1. A high-level illustration of our process



II. RESEARCH OBJECTIVES

In an ideal case the name of the test contains
all the needed information. Many developers for
example name their test classes after the tested
production code as [NameOfTheClassUnderTestTest]
or [TestNameOfTheClassUnderTest]. Thus, the name
automatically makes a suggestion to the tested artifact in
a structured manner and the intent of it is clear. Other
variants of naming conventions can also be found. For more
information about good coding practices, please refer to [5].

Let us consider a medium-sized software system with
thousands of test cases. As by default all test cases have targets
unknown to us, our goal is to find the code class they are
meant to test relying on conceptual information. Notice that
we have no assumptions about the names of tests, thus the
proposed approach is applicable to systems where the naming
convention is not followed while writing the test cases. To
retrieve traceability links relying only on the source code, we
utilize document embedding considering every test case and
class as an individual document and computing similarities
between them.

We used the doc2vec technique introduced by Mikolov et
al. [6]. Word embedding is getting more attention in recent
years and was applied in many scientific works. During the
search of the ideal learning settings, we tried many approaches
proposed in other works. We explain in details these settings
in later sections.
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Fig. 2. Illustration of the different doc2vec approaches

Figure 1 shows the comprehensive approach we propose.
We work with Java source files from which we extract
the required information and separate tests from code
functions. We create the LSI model and the diverse doc2vec
representations detailed in section III from test cases and
production classes. For every representation we train the
doc2vec model separately, thus each built training model is
different. The obtained vectors contain information about the
meaning, environment, and context of a word or document. On
these vectors the term similarity is already well-defined, so we
can determine class similarities. From the learned similarities

we create a ranked list of similar classes for every test case
and evaluate these results as in our previous work [4]. We
recommend classes for a test case starting from the most
similar and also examine the top 2 and top 5 most similar
classes. This approach enables our technique to also provide
the advantage of a recommendation system in contrast with a
strict one-answer based system, thus contributing with more,
potentially useful information.

Recovering test-to-code traceability links in a
recommendation system manner holds a number of benefits.
Ideally, every test case should test only a single class, but
in real life applications a unit test can assess the proper
functioning of several classes at the same time. A class
usually also relies on functionality provided by other classes
and cannot function properly without their assistance and
correctness. Consequently, a recommendation system can
highlight the test and code relationship more thoroughly.
On the other hand, too many recommendations could prove
frustrating and would not give useful information for the
developers. To keep the technique simple and balanced we
conducted experiments only with the top 2 and top 5 most
similar classes.

To investigate the benefits of the word embedding approach
we organize our experiment along the following research
questions:
RQ1: How word embeddings learned on various source code
representations perform compared to each other?
RQ2: Does external text, namely API documentation, improve
link recovery?
RQ3: How source code embeddings perform compared to
previous text-based approaches?

III. METHODOLOGY

Code representations

For the learning of word embeddings we use 3 different
representations of the code: (1) raw source code, (2) type
names from abstract syntax tree and (3) identifiers from the
abstract syntax tree as visible in Figure 2. Each one requires
different steps of pre- and post-processing. Illustrated through
a simple example we can see these representations in Figure 3.
In this section we describe these representations in detail.

1) Source Code: For a given granularity we consider a
source code fragment as a sentence. First we split [7], [8]
the text into bag of words representation along opening
brackets ("("), opening square brackets ("["), white spaces ("
"), punctuations (".") and compound words by the camel case
rule. Then we apply stemming to the words. We will refer this
representation as SRC in the upcoming sections, since in this
case we process source code as structured text files.

2) Abstract Syntax Tree: To extract this representation for
a code fragment, we initially have to construct an Abstract
Syntax Tree (AST). Next, we perform a pre-order visit from
the root and for each node we print its corresponding type.
Post-processing is not needed on the recovered sentences,
every printed node type will be a token in the learning process.
We will refer to this representation as AST in the upcoming



sections, since it only contains type names from the Abstract
Syntax Tree.

3) Identifiers: Like in the previous representation, we
extract the Abstract Syntax Tree from the source code. For
every node we consider its sub-tree and print the values of the
leaf, terminal nodes. Next for a given sentence we replace the
constant values with placeholders, corresponding to their types
and split words by camel case rule. Next we convert all words
to lower case. Similar representations are widely used in other
works as well [9], [10]. We will refer to this representation
as IDENT in the upcoming sections, since we printed out the
identifiers (which are substantially the identifiers and constants
used in the code) of the Abstract Syntax Tree.

int a = 12;

Identifier
type: SimpleName

value: a

Literal
type: IntegerLiteralExpr

value: 12

int a <INT>

Type
type: PrimitiveType

value: int

(2)

(1)

(3)

VariableDeclarationExpr

VariableDeclarator

VariableDeclarationExpr VariableDeclarator PrimitiveType SimpleName IntegerLiteralExpr

Fig. 3. Different utilized representations of the source code: from the raw
source code (1) - SRC we construct the abstract syntax tree, then we either
print the types of the nodes according to preorder visit (2) - AST, or print the
values of terminal nodes (3) - IDENT.

The publicly available JavaParser1 was used to generate
the representations. It is a lightweight tool made for the
analysis of Java code. The AST and IDENT representations
were generated separately using only the source code of the
examined projects.

Learning Document Embeddings

For a given abstraction level (i.e.: class, method) we
select a document and extract its representations (SRC,
AST and IDENT). We learn document embeddings (an M
dimensional vector) for each representation, on which we
compute similarities. For every test we detect the most
similar production methods. For finding the top-N most similar
documents, we used the multiplicative combination objective,
proposed in [11], displayed in Equation 1. Here V represents
the vocabulary, a, a* and b, b* are two pairs of words that
share a relation in a word-analogy task, while ε is used
to prevent divisions by zero. Since documents consist of
words (and doc2vec relies greatly on word2vec) this metric
relies mostly on word embeddings. This means that positive
words still contribute positively towards the similarity, negative
words negatively, but with less susceptibility to one large
distance dominating the calculation. The metric is applicable
to document level, because the doc2vec model is very similar
to word2vec: instead of using just surrounding words to predict
the next word, we also add another feature vector, which is

1https://github.com/javaparser/javaparser

unique for every sentence. This way a single word can have
different embeddings in different sentences. Thus, the formula
below can be used similarly to word2vec, the roles of the
vocabulary and the selected words are also identical.

argmax
b∗∈V

(cos(b∗, b)cos(b∗, a∗)
cos(b∗, a) + ε

)
(1)

Doc2vec is basically a fully connected neural network,
which uses a single hidden layer to learn document
embeddings. We feed the input documents to this neural
network for each representation and it computes conceptual
similarity of these documents. In our current experiments we
are not interested in every similarity, just the ones between
test cases and production methods.

IV. DATA COLLECTION

In this paper we worked with projects written in the
Java programming language. Since word embeddings are
independent from languages (and in general from any kind
of representations), the programming language of the source
code is not necesarrily important. In theory, only difference
should be in the way how AST representations are produced
and the type of the nodes. In Table I we listed the systems on
which we evaluated our approach. These are the exact same
versions of the referenced projects as in our previous paper [4]
on LSI-based test-to-code traceability.

Commons Lang2 and Commons Math3 are both modules of
the Apache Commons project. Lang provides helper utilities
for the java.lang API, while Math is a library which contains
mathematical and statistical components for problems not
available in Java programming language. JFreeChart4 is an
open source library developed in Java and currently is one
of the most widely used charting tool among developers.
Mondrian5 is an open source Online Analytical Processing
(OLAP) server system. It enables high performance analysis
on large amount of data.

The main motivation behind project selection was that for
these projects we could check whether our approach connected
the test cases with the appropriate production classes and to
compare these with our previous results. For further discussion
about evaluation see Section V. The selected systems are
also publicly available, obtaining the source code is not a
problem. Commons Lang and Commons Math are widely used
and strive to have minimal dependencies on other libraries
[12]. Starting in 1997 [13], Mondrian has a large history and
significantly less developers were involved in it compared
to Apache Commons projects. In contrast, JFreeChart’s first
release was in 2013 [14], this makes it a rather new
development. Although the shown projects are diverse, we
cannot state, that they represent every characteristics of a
general Java system. The proposed approach can be applied
to every Java system where test cases are present but our

2https://github.com/apache/commons-lang
3https://github.com/apache/commons-math
4https://github.com/jfree/jfreechart
5https://github.com/pentaho/mondrian



current evaluation can work only with systems where naming
conventions were followed.

TABLE I
SIZE AND VERSIONS OF THE SYSTEMS EXAMINED

Program Version Classes Methods Tests

Commons Lang 3.4 596 6523 2473
Commons Math 3.4.1 2033 14837 3493
JFreeChart 1.0.19 953 11594 2239
Mondrian 3.0.4.11371 1626 12186 1546

In our approach, we first separate methods from the source
code. We extract the text of the methods with the help
of the Source Meter [15] static analysis tool. We classify
these to test methods and production methods. After this,
we produce the representations specified in section III. To
construct the Abstract Syntax Tree for every source file we
used the JavaParser [16] package. Since the goal of doc2vec
is to create a numeric representation of any text regardless
of its length, we have to define what a document is in our
case. In the current experiments, we considered every class
to be a unique document. This way we produced class level
similarities between test and code classes to determine the
conceptual connections between them. In the experiments we
chose the Gensim [17] toolkit’s implementation of doc2vec.
The doc2vec model has many hyperparameters, conceivably
the most important amongst them is the embedding size [18]
(the number of neurons in the hidden layer). We experimented
with multiple size settings and found that we obtained the most
promising results with vectors of 100 dimensions. Window
size (gram window size - number of words to examine to left
and to the right) and number of epochs (number of steps for
training the model) are also essential, we set these values to
10 and 20 respectively. We worked with the distributed bag
of words (PV-DBOW) training algorithm. During the training
it can also be specified that if words appear less than a given
number will be ignored. We adjusted this setting to 2, though it
does not play a large role since in source codes a limited set of
tokens are used - it’s especially true for Abstract Syntax Tree
types. The model features a vocabulary, which keeps track of
all unique words, sorts words by frequency and after training
it can be queried to use the obtained embeddings in various
ways. Both initial learning rate and ending learning rate were
left according to the original settings of Gensim.

A. Training Set Experiments

Besides examining a diverse set of representations we also
experimented with different training corpora, on which the
doc2vec model was trained. Accordingly, we carried out three
different configurations: (1) a corpus built from every system
separately for individual learning, (2) a corpus built from a
common code base and (3) a corpus supplement with API
documentation. In this section, we describe these experiments
in details.

1) Programs Trained Separately: This is the most classic
and straightforward scenario. For a given project we train
the model on its own code base for each representation.
The size of the training set depends on the project and
it exclusively contains relevant information from the point
of the system. Siwei et al. [19] state that when training
word embeddings, the corpus domain is more important than
the corpus size, and using an in-domain corpus significantly
improves the performance. To better understand this statement,
we defined the TC metric, which denotes in general how
many tests are written for a single class: TC = Number of
Test Cases / Number of Classes. In figure 4 one can observe,
how the TC metric moves along with the computed doc2vec
results. Although we cannot draw a conclusion from the
measured values, it seems that from a bigger corpus training
the model gives a more general result, and also has a chance to
learn cross-system similarities, yet this is not a rule without
exception as we can see in the case of Mondrian. Table II
shows the results from this experiment.
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Fig. 4. Correlation between TC = Number of Test Cases / Number of Classes
and results from our approach

2) Training on Joint Corpus: In this case, we created a joint
training set from the projects listed. The size of the corpus
was 1.72 GB for AST representation, 25 MB for SRC and
770 MB for IDENT. The training time of the model also
increased a lot. The fundamental challenge was that for a
given code fragment (e.g.: class, method) its most similar pair
could be in other systems. To avoid references across different
systems, we filtered out these results. This way every system
gets matches from their own code base. To identify cross-
references for a test case we simply deleted classes of other
systems from the tests ranked list of similar classes. Without
eliminating these references we would get messy results and
the meaning of these links is also unclear. Similar filtering
was applied to test cases, because for a given test doc2vec
gives us back the most similar embeddings (considering every
sentence in the train corpus). Amongst these sentences the first
was typically the examined test case (every test is the most
similar to itself), and other test cases could also appear which
should be removed. Without eliminating these cross-references
the models performance would drop significantly, since the
evaluation only considers internal connections. Although it is



conceivable to have a test case that connects to other system,
or the same test is present in multiple systems, but these
examinations are out of scope for this paper.

3) Training on API Documentation: The training
configurations above trained the model only on a given
code representation (SRC, AST, IDENT). It means, that the
model learned natural language relationships and structure
only from some identifiers and comment snippets. Software
documentation could also provide useful semantic information
about a system [20]. Also, the corpus on which we train
the model is extremely important [21]. To examine this
idea, we picked three projects that have standard JavaDoc
documentation to train on: Commons Lang, Commons Math,
and JFreeChart. Unfortunately, we did not find a standard
JavaDoc page for Mondrian from where we could mine
contextual data automatically. We trained the model on
the three representations (discussed at length in III), then
we supplemented the corpus in two ways: (1) with a brief
description of the methods (2) with the previous sentences
and with the long package description. These information
can be found at the projects’ JavaDoc website. The brief
descriptions are listed next to each method in an HTML
table, while the package description is at the bottom of the
page. Text information was automatically extracted from
publicly accessible JavaDoc documentation websites using a
python script. Even as the two differ in fundamental ways,
we did not find big differences in the results. Still, the latter
technique still seems to suit our purpose better, so we display
these in Table III.

V. RESULTS AND DISCUSSION

In this section, we evaluate the proposed technique and
publish the results. The reader can study the results we
obtained from different representation and learning settings. In
addition, we compare the doc2vec approach with our previous
work [4], where we applied Latent Semantic Indexing (LSI)
for the same task. Table IV shows the outcomes of LSI,
while Table II and Table III show results obtained with via
embeddings. The results are summarized in Figure 5 for the
most similar classes.

According to Rompaey et al. [3] total precision can be
achieved in the test-to-code traceability task using proper name
conventions. However appropriate naming is often imperfect
and thus the employment of contextual recommendation
systems can still be relevant. The systems we listed above
are fairly well covered by proper naming conventions. To
determine test-code pairs, we defined the following simple
algorithm: the class of the test case must have the same name
as the code class it tests, having the word "Test" before or
after the name. In addition, their package hierarchy must be
the same, thus their qualified names are also matching. To
evaluate our procedure, we compared our results to the pairs
obtained through naming conventions. We calculated precision
- the proportion of correctly detected test-code pairs as can
be seen in Equation 2 where the upper part of the fraction

denotes how many tests we could retrieve, while the bottom
is the number of test cases that match the naming convention.

precision =
|relevantTest ∩ retrievedTest|

|retrievedTest|
(2)

RQ1: Word embeddings learned on various source code
representations

As detailed in previous sections, we experimented with three
source code representations and three training configurations.
In this section we evaluate them. Table II shows the results
from the featured representation, where every project was
trained separately. It can be read from the table that the IDENT
method supplied the best results by far. We found that in the
joined corpus training scenario results were irredeemably low,
we found them not to be worth highlighting. The AST and
SRC representations also resulted in much lower precision,
we did not find them worthy of further examination. Even
if these attempts have not proved to be overly successful in
recovering test-to-code links, for other tasks, for example code
clone detection they may still be applicable.

Answer to RQ1: The IDENT representation combined with
separately trained projects seems to be prevalent in finding
traceability links correctly, while other methods and scenarios
proved to be much less effective.

RQ2: Using API documentation

API documentation is a software artifact containing
instructions and information about the inspected library.
It is basically a natural text, supplemented with technical
details about the software. The goal of this experiment is to
get more insight on whether including API documentation
to the embedding learning process improves traceability
performance. We examined every representation we featured
above but in this section, we feature only the IDENT
method, which performed best in RQ1. While doc2vec showed
improvement compared to LSI, the corpus expanded with API
documentation did not increase by a lot. In Table III we can
see, that the numbers are almost the same compared to the
original measurements. Moreover, the first 2 and 5 elements
of the ranked list seem to be less useful than before. The
results at Commons Lang and Commons Math improved by
nearly 2%, at JFreeChart it dropped by 5%, which is quite
notable.

Answer to RQ2: Judging by the numbers, the inclusion
of API documentation produces similar results to the base
scenario but behaves unpredictably at some systems. Its use
can be subject to further examination but a high change in
precision is not likely.

RQ3: Source code embeddings compared to LSI-based
traceability

It is known that LSI is capable of recovering traceability
links. In this section we compare our baseline data from
[4] with the doc2vec results. The two datasets are shown in
Table IV. The LSI technique gives an average of 35% precision



TABLE II
RESULTS FEATURING THE CORPUS BUILT FROM DIFFERENT REPRESENTATIONS OF THE SOURCE CODE, SYSTEMS TRAINED SEPARATELY

SRC AST IDENT
Program doc2vectop1 doc2vectop2 doc2vectop5 doc2vectop1 doc2vectop2 doc2vectop5 doc2vectop1 doc2vectop2 doc2vectop5

Commons Lang 29.8% 45.0% 61.8% 3.8% 8.8% 28.7% 78.3% 88.4% 91.8%
Commons Math 13.9% 21.0% 33.0% 0.8% 1.7% 8.0% 40.1% 52.3% 62.9%
JFreeChart 17.3% 24.4% 34.1% 1.3% 2.9% 5.2% 42.5% 50.6% 62.0%
Mondrian 22.0% 32.8% 48.9% 0.0% 0.3% 24.6% 67.2% 68.5% 75.1%

TABLE III
RESULTS FEATURING THE CORPUS BUILT FROM THE IDENT

REPRESENTATION OF THE SOURCE CODE AND API DOCUMENTATION

Program doc2vectop1 doc2vectop2 doc2vectop5

Commons Lang 78.8% 85.9% 93.1%
Commons Math 43.9% 51.9% 65.7%
JFreeChart 42.1% 48.4% 57.7%

0.78

0.40
0.43

0.67

0.62

0.30
0.34

0.45

0.79

0.44
0.42

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

Commons Lang Commons Math JFreeChart Mondrian

doc2vec-top1 LSI-top1 doc2vec-api-top1

Fig. 5. Results featuring doc2vec and LSI techniques in text-to-code
recovering precision

in these systems, and the top 5 elements in the ranked list
increase this result by approximately 30%. Beside the LSI
results, we can view the precision provided by doc2vec. If
we compare these results we can see a significant advantage
in the latter method’s precision. The average precision of our
approach is nearly 60%, which almost doubles the results of
LSI. Although these results are quite promising, the increase
varies between systems: Commons Math gained the least with
about 10%, while the most increase appeared at Mondrian
with a remarkable 22% enhancement. As the quality of the
output significantly improved for the first match, the top 2
and top 5 results also gained more precision. The average
improvement for the top 2 is approximately 10%, while in
the top 5 is less significant. It is clear by our evaluation that
doc2vec as a standalone technique outperforms LSI, while as
a recommendation system they perform similarly. It is also
evident that there are serious differences between projects.
We believe that the developer habits and even the size of the
projects influence the results.

Answer to RQ3: Based on our data we conclude that
document embeddings can substitute other current text-based
approaches in test-to-code traceability methods and with
correct configuration even outperform them greatly.

Figure 5 shows the relationship between different
measurements in a more comprehensible perspective. The
figure showcases the results we got with the most similar
classes. It is evident that the precision values of every system
have increased.

A single result doc2vec is often not perfect, however, as a
recommendation system it gives a 73% precision on average.
Also, it produces results even where naming conventions were
not applied, although test cases that do not follow naming
conventions may also impair the results in this scenario.

VI. RELATED WORK

Traceability in software engineering is a rather well-
researched topic, relevant research is mostly in the direction
of requirements traceability or traceability of natural text
documents [1], [2] and there are even examples of test
related traceability initiatives [3], [4], [22], [23]. There are
several well-known methods [3] for test-to-code traceability
also and serious attempt has been made at combating the
problem via plugins in the development environment [24] or
via static or dynamic analysis [25]. The current state-of-the-art
techniques [26] rely on a combination of different methods.

Recommendation systems are also not new to software
engineering [27]–[29], presenting a prioritized list of most
likely solutions seems to be a more resilient approach even
in traceability research [4].

During the recent years of natural language processing,
word2vec [30] has become a very popular approach of
calculating semantic similarities between various textual
holders of information [9], [10], [21], [31]–[35]. Our current
approach differs from these in many aspects. First, we compute
document embeddings in one step, while in most cases initially
word embeddings are obtained and then the authors propagate
these to larger text body (e.g.: sentences, documents). Next,
there is no natural language corpus from the model can
learn contextual interrelations, only source code files. This
makes the learning phase more difficult and requires a good
representation of source files and an appropriate configuration
of the model.

Related research also focuses on artifacts written in natural
language and use NLP techniques for various purposes



TABLE IV
RESULT VALUES OF OUR PREVIOUS WORK COMPARED TO OUR CURRENT EXPERIMENTS USING IDENT REPRESENTATION OF SOURCE CODE

LSI doc2vec
Program LSItop1 LSItop2 LSItop5 doc2vectop1 doc2vectop2 doc2vectop5

Commons Lang 61.7% 73.6% 88.6% 78.3% 88.4% 91.8%
Commons Math 29.7% 42.3% 56.9% 40.1% 52.3% 62.9%
JFreeChart 33.5% 45.7% 62.9% 42.5% 50.6% 62.0%
Mondrian 45.2% 58.4% 73.1% 67.2% 68.5% 75.1%

and some even employ word embeddings. Int traceability
requirements traceability is usually the most popular issue.
Jin Guo et al. [33] proposed a network structure, where firstly
word embeddings are learned and then a recurrent neural
network uses these vectors to learn the sentence semantics of
requirements artifacts. Their main perceived problem seemed
to be that the architecture was only trained to process natural
language text and could not handle other types of artifacts
like source code or AST representation. Zhao et al [36]
present an approach which is based on word embeddings
to rank the recovered traceability links. In this work, an
approach named WELR was presented, which is based on
word embeddings to rank the recovered traceability links in
bug localization. Their method consists of two phases: in the
first phase input text data is being preprocessed and the model
is trained, while in the second phase they rank the traceability
links. In [32], the authors propose an architecture where
word embeddings are trained on API documents, tutorials
and reference documents, and then aggregated in order to
estimate semantic similarities between documents which they
used for bug localization purposes. Their setting was similar
to ours, although they did not take advantage of the AST
representation. Word embeddings can, in addition, be used to
find similarity between sentences/paragraphs/documents [10].
In the software engineering domain, this can also be useful in
clone detection.

Doc2vec [6] is an extension of the word2vec method dealing
with whole documents rather than single words. Although not
enjoying the immense popularity of word2vec, it is still well-
known to the scientific community [37]–[40], although they
are much less prevalent in the field of software engineering.
To the best of our knowledge, we are the first who use doc2vec
to recover traceability links.

Although natural language based methods are not the best
standalone techniques, state of the art test-to-code traceability
methods like the method provided by Qusef et al. [26], [41]
incorporate textual analysis for more precise recovery. In these
papers the authors named their method SCOTCH and have
proposed several improvements to it. Although their purpose
is similar to ours, a fundamental difference is that they used
dynamic slicing and focus on the last assert statement inside a
test case. Their approach also relies on class name similarity,
while we encoded code snippets without any assumptions on
naming conventions. However, those methods use LSI for
textual similarity evaluation, while previous evaluation of word

embedding for this purpose is not known.

VII. CONCLUSIONS

Natural language processing methods are widely applied
in software engineering research, including traceability link
recovery. In this paper, we employ word embedding methods
on source code to find test-to-code traceability links. Since
these methods are intended for natural language texts, we
first experimented with various representations of source code.
We found that AST-based identifier extraction is the most
appropriate way to learn source code embeddings. The second
idea was to enrich this representation with natural language
text from API documentation, but its usefulness is not
evident from the data we measured. Third, we compared the
source code embeddings with LSI based similarity and found
that with appropriate representation embeddings perform
better, thus presenting a valuable alternative in test-to-code
traceability research.
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