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Biological methane formation is associated with anoxic environments and the activity
of anaerobic prokaryotes (Archaea). However, recent studies have confirmed methane
release from eukaryotes, including plants, fungi, and animals, even in the absence
of microbes and in the presence of oxygen. Furthermore, it was found that aerobic
methane emission in plants is stimulated by a variety of environmental stress factors,
leading to reactive oxygen species (ROS) generation. Further research presented
evidence that molecules with sulfur and nitrogen bonded methyl groups such as
methionine or choline are carbon precursors of aerobic methane formation. Once
generated, methane is widely considered to be physiologically inert in eukaryotes,
but several studies have found association between mammalian methanogenesis
and gastrointestinal (GI) motility changes. In addition, a number of recent reports
demonstrated anti-inflammatory potential for exogenous methane-based approaches in
model anoxia-reoxygenation experiments. It has also been convincingly demonstrated
that methane can influence the downstream effectors of transiently increased
ROS levels, including mitochondria-related pro-apoptotic pathways during ischemia-
reperfusion (IR) conditions. Besides, exogenous methane can modify the outcome
of gasotransmitter-mediated events in plants, and it appears that similar mechanism
might be active in mammals as well. This review summarizes the relevant literature on
methane-producing processes in eukaryotes, and the available results that underscore
its bioactivity. The current evidences suggest that methane liberation and biological
effectiveness are both linked to cellular redox regulation. The data collectively imply
that exogenous methane influences the regulatory mechanisms and signaling pathways
involved in oxidative and nitrosative stress responses, which suggests a modulator role
for methane in hypoxia-linked pathologies.

Keywords: bioactive gases, methanogenesis, nitroxidative stress, ischemia-reperfusion, mitochondria

INTRODUCTION

Methane (CH4) is a ubiquitous, intrinsically non-toxic gas. It is a simple asphyxiant, which means
that CH4 will displace oxygen to approx. 18% in air when present at about 14% (or 140000 parts
per million by volume, ppmv) in a restricted area, but in this case hypoxia and the evolving cellular
dysfunction will be due to the increasing concentration of CH4 and the decreased O2 content in the
internal milieu and not to the chemical specificity of the gas (Boros et al., 2015).
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In the Earth’s atmosphere, which contains approx. 1.8 ppmv
CH4, a substantial part stems from the anaerobic degradation
of biomass. Large amounts are formed in the gastrointestinal
(GI) system of mammals as well, especially in ruminants, by
methanogenic Archaea (Conrad, 2009; Kirschke et al., 2013).
In these strictly anaerobic prokaryotes the terminal electron
acceptor is carbon (mainly carbon dioxide and acetate but also
other small organic compounds), and CH4 is formed from
methyl-coenzyme M by methyl coenzyme M reductase (McBride
and Wolfe, 1971; Ellermann et al., 1988). The intraluminally
generated CH4 enters the splanchnic circulation, and then
released into the breath if the partial pressure is higher than
that in the atmosphere. In humans, the endogenous CH4 can
be detected in the exhaled breath of 30–60% of adults with
traditional analytic methods, when production is defined as a
>1 ppmv increase above the ambient air level (Bond et al., 1971;
de Lacy Costello et al., 2013). Here it should be noted that
the intra- and inter-subject variability is usually very large (Pitt
et al., 1980; Peled et al., 1985; Minocha and Rashid, 1997; Levitt
et al., 2006; Roccarina et al., 2010; Sahakian et al., 2010), partly
because the pulmonary route is not exclusive and the production
is manifested not only in the exhaled air but also through other
body surfaces (Nose et al., 2005). Besides, the production of CH4
is dependent from the age, the health condition and the physical
activity of the subjects (Polag et al., 2014; Szabó et al., 2015;
Tuboly et al., 2017; Polag and Keppler, 2018), and the breath
output is influenced by splanchnic microcirculatory factors as
well (Szücs et al., 2019). In accordance with the above findings
the exhaled CH4 level in humans is always above the inhaled CH4
concentration (Keppler et al., 2016).

NON-ARCHAEAL BIOTIC FORMATION

Apart from the above, several studies have confirmed direct,
endogenous CH4 release in eukaryotes, including plants, fungi,
algae, and animals, even in the absence of microbes and
in the presence of O2 (Keppler et al., 2006; Wang et al.,
2011; Lenhart et al., 2012; Althoff et al., 2014). In plants,
“aerobic” or “non-archaeal” CH4 formation may be stimulated
by reactive oxygen species (ROS) formation, UV radiation or
inhibition of cytochrome c oxidase by sodium azide (NaN3)
(Messenger et al., 2009; Qaderi and Reid, 2009; Wishkerman
et al., 2011), and it appears that similar mechanisms might
be active in animals also (Ghyczy et al., 2008; Tuboly et al.,
2013; Boros et al., 2015). Based on these data, it was
suggested that next to microbial origin there might be other,
as yet unidentified sources for endogenous CH4 production
(Keppler et al., 2009). In this sense, most of excreted CH4
in the breath of mammals may come from intestinal archaeal
production, but a variable amount is possibly linked to non-
archaeal processes.

MECHANISM OF RELEASE

Evidences were presented that molecules with sulfur and
nitrogen bonded methyl groups such as methionine,

methionine sulfoxide, S-adenosyl methionine, dimethyl
sulfoxide or lecithin, choline, and betaine, respectively,
might be carbon precursors of CH4 formation (Ghyczy
and Boros, 2001; Ghyczy et al., 2003; Keppler et al., 2009;
Althoff et al., 2010) and potentially serve as methyl donors
for endogenous CH4 formation in eukaryotes. In this context
it has been demonstrated that CH4 is readily formed from
methionine in a model system containing iron(II/III),
H2O2 and ascorbate under ambient (∼1.000 mbar and
22◦C) and aerobic (21% O2) conditions (Althoff et al.,
2014). Further mechanistic studies in non-heme oxo-
iron(IV) models with tetra- or pentadentate ligands have
demonstrated the formation of CH4, methanol (CH3OH),
and formaldehyde (CH2O) from methionine and other
thioethers (Benzing et al., 2017). In the course of the reaction,
the thioether is oxidized by the oxo-iron(IV) species to
a sulfoxide, with a bifurcation in the next oxidation step,
either producing a sulfone or methyl radicals and sulfinic
acid derivatives. In the presence of O2, the methyl radicals
form predominantly CH3OH and CH2O, while in an O2-
depleted environment they produce CH4 (Figure 1). In the
latter case the required hydrogen radicals might be provided
by hydrogen abstraction from carbohydrates or homolytic
cleavage of hydrogen.

The role of methyl thioethers in forming CH4 in
biological systems is supported by further results, where
the organisms were supplemented with positionally
isotope-labeled methionine (Lenhart et al., 2015). These
experiments provided direct evidence that the thio-CH3
group of methionine is a parent compound of CH4 and
the highest CH4 formation rates are expected when the
availability of O2 is limited. This conclusion is in broad
agreement with previous results which showed enhanced
CH4 formation in animal cells under reduced O2 content
(Ghyczy et al., 2008).

BIOLOGICAL EFFECTS IN MAMMALS

Several studies demonstrated that CH4 might directly
modulate the signaling mechanisms of the enteric nervous
system and influences the peristaltic activity in the GI tract.
The orocecal transit and total colonic transit times are
prolonged in CH4-producer individuals, while diarrheal
conditions are negatively associated with CH4 production
(Pimentel et al., 2003; Lee et al., 2013; Triantafyllou et al.,
2014; Gottlieb et al., 2016). These findings were consistent
with the results of a series of in vivo and in vitro studies
which demonstrated that exogenous CH4 slows the velocity
of peristaltic contractions, augments the contractile force
of ileal segments, and promotes the evolution of non-
propagating contractions (Pimentel et al., 2006; Jahng
et al., 2012). Other results provided evidence that CH4
infusion at a rate that corresponded to an increase of
50 ppmv in exhaled air induces a 59% slowing down of
the intestinal transit. Furthermore, the addition of CH4
significantly increased the density of voltage-dependent
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FIGURE 1 | Simplified mechanism for oxo-iron(IV)-based formation of methane and methanol from methionine sulfoxide. The scheme is based on the results by
Althoff et al. (2014) and Benzing et al. (2017).

potassium channels in isolated colonic smooth muscle cells
(Liu et al., 2013).

ANTI-INFLAMMATORY AND
ANTI-APOPTOTIC EFFECTS DURING
ISCHEMIA-REPERFUSION

Ischemia-reperfusion (IR) conditions are usually inducing
antigen-independent inflammation, and inflammatory states
are frequently accompanied by tissue hypoxia. An anti-
inflammatory potential for CH4 was first reported in intestinal
IR experiments (Boros et al., 2012). In this study the level of
tissue ROS generation was reduced after CH4 administration,
the vascular resistance changes were only moderate, and the
local polymorphonuclear (PMN) leukocyte infiltration tended to
normalize after reperfusion. The in vitro results substantiated
the in vivo findings, and established that CH4 exposure
specifically decreases the ROS production of activated PMN
leukocytes (Boros et al., 2012). In another study normoxic
ventilation with 2.5% CH4 maintained the superficial mucosal
structure, the reperfusion-induced epithelial hyperpermeability
was significantly alleviated and the microcirculatory flow
reduction was prevented (Mészáros et al., 2017a).

Further in vitro and in vivo experimental data established
that CH4 exposure can influence the activity of xanthine
oxidoreductase (XOR) as well (Boros et al., 2012; Poles et al.,
2018). XOR is a major enzymatic source of reperfusion-induced
superoxide formation, and catalyze the reduction of nitrite to
nitric oxide (NO) under hypoxic conditions in a pH-, nitrite-,

and O2-dependent manner. In this line, an increase in CH4 input
significantly decreased the elevated intestinal XOR activity in a
rat model of intestinal IR, and in parallel, nitrotyrosine formation
was suppressed. Interestingly, the reduced XOR activity was
associated with a higher nNOS-immunopositive neuron ratio in
several sections of the GI tract. Furthermore, normoxic CH4
administration significantly decreased tissue NO levels in the
hypoxic duodenal tissue already during the ischemic phase, which
suggests that CH4 may directly modulate XOR and XOR-linked
nitrate reductase activities in the intestines (Poles et al., 2018).

Another important aspect is that methane-enriched saline
(MRS) decreased the expression levels of activated apoptosis
signal-regulating kinase 1 (ASK-1), c-Jun NH2-terminal kinase
(JNK) and the pro-apoptotic protein Bcl-2 associated X protein
(Bax), and increased the expression of the anti-apoptotic
proto-oncogene protein B cell leukemia/lymphoma-2 (Bcl-
2) proteins in a rat model of abdominal-island skin-flap
IR (Song et al., 2015). Besides, MRS significantly prolonged
the survival time of rats with myocardial ischemia induced
by ligation of the left anterior descendent coronary artery
(Chen et al., 2016). In this IR model, CH4 exerted a dose-
dependent myocardial protection, characterized by a reduced
infarct area and serum levels of myocardial necroenzymes.
The pro-inflammatory activation [evidenced by TNF-α, IL-
1β, myeloperoxidase (MPO) activity, and oxidative DNA
damage] was reduced and a satisfactory cardiac function
was maintained 4 weeks post-infarction with, among others,
improved left ventricular ejection fraction, diastolic volume and
contractility compared to non-CH4-treated animals. Again, MRS
treatment reduced the protein expression of Bax, decreased
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cytoplasmic cytochrome c content and cleaved caspase-3, and
caspase-9 levels, but markedly increased the levels of Bcl-2
and mitochondrial cytochrome c, indicating an anti-apoptotic
effect here as well.

Similar efficiency and mechanisms were demonstrated in
liver IR models; MRS or inhaled CH4 reduced hepatocyte
apoptosis (Ye et al., 2015; Strifler et al., 2016). In addition to
its anti-apoptotic properties, MRS treatment prevented the gene
expression and production of early inflammatory cytokines TNF-
α, IL-1β, and IL-6 and reduced infiltration of inflammatory
CD68 positive cells in the liver tissue. In a partial hepatic
IR model, the inhalation of normoxic CH4 preserved the
respiratory capacity of mitochondria (complex II-coupled state
III respiration) as compared to controls in the first 30 min of
reperfusion (Strifler et al., 2016).

NEUROPROTECTION IN RETINA,
SPINAL CORD, AND BRAIN

Secondary degeneration is a common event in traumatic nerve
injuries, which involves neuronal apoptosis and mitochondrial
dysfunction and among the various retinal neurons, retinal
ganglion cells (RGCs) are thought to be the most vulnerable to
IR injuries. MRS administration significantly attenuated RGCs
loss and retinal thinning 1 week after the IR challenge. The
visual function was also preserved, as demonstrated by the
measurement of visual evoked potentials (Liu et al., 2016).

Analogous effects were demonstrated after optic nerve crush
(ONC) as well (Wang R. et al., 2017). CH4 treatment significantly
improved the signs of neurodegeneration, including RGC loss
and visual dysfunction, inhibited the retinal neural apoptosis in
the ganglion cell layer, accompanied by the up-regulations of
anti-apoptotic factors (pGSK-3β, pBAD, Bcl-xL). The peroxisome
proliferator-activated receptor gamma co-activator alpha (PGC-
1α) is the master regulator of mitochondrial biogenesis,
contributing to mitochondrial gene expression and mtDNA
maintenance. Interestingly, CH4 administration after ONC
improved the reduction of functional mitochondria markers,
including citrate synthase activity and ATP content.

The nuclear factor-erythroid2 p45-related factor 2
(Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway
is one of the major cellular defense mechanisms that operates
during acute stress conditions. In another rat study with spinal
cord ischemia and systemic hypotension, CH4 supplementation
attenuated both motor and sensory deficits and increased the
expression and transcriptional activity of Nrf2 in neurons,
microglia and astrocytes in the ventral, intermediate and
dorsal gray matter of lumbar segments (Wang L. et al., 2017).
The CH4-induced time-dependent nuclear translocation of
Nrf2 protein was accompanied by the downregulation of
the Nrf2 inhibitor Keap 1 in the cytoplasmic fraction. Along
these lines, hemoxygenase-1 (HO-1), SOD, catalase, and
glutathione peroxidase were upregulated and oxidative stress
markers glutathione disulfide, superoxide, hydrogen peroxide,
malondialdehyde (MDA), 8-hydroxy-2-deoxyguanosine, and
3-nitrotyrosine were reduced (Wang L. et al., 2017).

In a similar rodent study with spinal cord injury at the T9-10
level, MRS decreased the infarct area and inflammatory cytokine
production (TNF-α, IL-1β, and IL-6 content), suppressed
microglial activation and improved hind limb neurological
function 72 h following the insult (Wang W. et al., 2017). The
protective effect of CH4 administration was demonstrated in
cerebral IR as well (Zhang et al., 2017). Inhaled CH4 reduced
MDA and TNF-α levels in the rat brain, significantly increased
Akt phosphorylation and protected against neurological
dysfunction. These effects were linked again to HO-1 activity
(Zhang et al., 2017). In this line, in a recent rat study with
complete Freund’s adjuvant (CFA)-induced chronic peripheral
inflammation MRS treatment reduced the number of infiltrated
peripheral T cells, the enhanced expression of IFN-γ and MMP-2
in the ipsilateral superficial spinal dorsal horn 10 days after
CFA treatment, and allodynia was significantly alleviated as well
(Zhou et al., 2018).

ENDOTOXEMIA AND SEPSIS

The generation of cytokines is one of the main consequences
of lipopolysaccharide (LPS)-linked cellular reactions in
various TLR4-expressing cell types. It has been shown
that CH4 dose-dependently inhibited the LPS-induced NF-
κB/mammalian mitogen-activated protein kinase (MAPK)
signals and the expression of TNF-α and IL-6 proteins
in macrophages (Zhang et al., 2016). In this study, CH4
treatment attenuated the phosphorylation of NF-κb, c-Jun
NH2-terminal kinase (JNK), extracellular signal-regulated
kinase (ERK) and P38MAPK in an IL-10-dependent manner
via the enhanced activation of PI3K/AKT signaling (Zhang
et al., 2016). Interestingly, a post-treatment regime was
also effective, and the IL-6 mRNA levels were reduced by
approximately 95% 6 h after LPS stimulation. Consistent with
the in vitro findings, the serum levels of TNF-α and IL-6 of
CH4-treated mice were significantly reduced during E. coli
bacteremia, while the PI3K/AKT/GSK-3β-mediated IL-10
expression was enhanced.

In another rat model of LPS-induced acute lung injury,
CH4 treatment improved the survival rate, reduced the
number of infiltrated inflammatory cells (PMN leukocytes and
lymphocytes), improved the lung function (the PaO2/FIO2 ratio),
pulmonary permeability and the structural damage as well (Sun
et al., 2017). Furthermore, MRS improved the 5-day survival and
organ functions in mice with cecum ligation and puncture (CLP),
and alleviated the signs of CLP-induced endoplasmic reticulum
stress-related apoptosis (GRP78/ATF4/CHOP/caspase-12) in
tubular endothelial cells in rats (Jia et al., 2018; Li et al., 2019).

MECHANISM OF ACTION

Whereas the data establish a bioactive role for CH4 the
mechanism of action is still incompletely defined, and at least
four direct and indirect mechanistic ways can be considered to
explain the results.
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Interactions With Other Gases
Firstly, the effects of increased CH4 concentrations on NO-,
CO-, and H2S-linked reactions should be taken into account
when explaining the versatile in vivo effects of exogenous CH4.
It has been shown in plants that methane-enriched water (MRW)
increases root organogenesis through the HO-1 pathway and CO
generation (Cui et al., 2015). Further, it has also been shown
that H2S and NO can also be downstream signaling molecules
involved in CH4-induced adventitious root formation (Qi et al.,
2017; Kou et al., 2018). Similar results were demonstrated in
several stress conditions coupled to redox imbalance which
confirmed that CO, NO, and H2S signaling mechanisms are
involved in the molecular basis of CH4-induced stress tolerance
in plant tissues (Han et al., 2017; Samma et al., 2017; Zhang et al.,
2018). These data clearly demonstrate the connection between
the generation of recognized gasotransmitters and the presence
of CH4 in a complex living system (Song et al., 2008; Wang et al.,
2013; Han et al., 2017; Khan et al., 2017; Samma et al., 2017; Kou
et al., 2018; Zhang et al., 2018; Figure 2).

The same datasets are not yet available in mammals, but
there are many possibilities for gas interactions in the GI tract.
Methanogen archaea in the intestinal lumen are compelled to
compete with other microorganisms, such as sulfate-reducing
bacteria for the common substrates, hence the amount of CH4
is always variable (Levitt and Bond, 1970). In this milieu the
concentration of CH4 is always dependent on the concentration
of O2 and the presence of other gaseous products, such as
molecular hydrogen (H2) to produce CH4 from CO2 (Gibson
et al., 1988). Thereafter the conversion of H2 to CH4 is associated
with the reduction of five moles of gas into one mole of gas, thus
the reaction decreases the intraluminal gas volume (Levitt and
Bond, 1970). In contrast, the breathing of nitrous oxide (N2O)
causes the expansion of CH4-containing intestinal segments
(Steffey et al., 1979), while subsequent O2 breathing reduces the
volume of the CH4-containing segment toward control volumes
(Steffey et al., 1979). H2 can also act as an electron donor for

FIGURE 2 | Interaction of biologically active gases, nitric oxide (NO), carbon
monoxide (CO), and hydrogen sulfide (H2S) with methane (CH4) in plants.
Relevant literature references (Song et al., 2008; Wang et al., 2013; Cui et al.,
2015; Han et al., 2017; Khan et al., 2017; Qi et al., 2017; Samma et al., 2017;
Kou et al., 2018; Zhang et al., 2018) are provided in the text. Similar
mechanisms may operate in mammals.

dissimilatory sulfate reduction. In this case hydrogen sulfide
(H2S) might be the primary, terminal reaction product (Gibson
et al., 1990; Christl et al., 1992). Carbon monoxide (CO) may also
induce an elevation in H2S production, while NO can interact
with H2S (Magierowski et al., 2016).

These data suggest that the final biological effect of
a gasotransmitter can be determined by multiple and
multicomponent gaseous interactions. Here it should be
added that there is a conceptual difference between the baseline
level of a bioactive gas (i.e., NO, CO, or H2S), and its de novo
release by inducer factors, as the evolving responses will be
dependent on the number of molecules and/or their reactivity in
the microenvironment.

Membrane-Associated Mechanism of
Action
Several further lines of evidence indicate that CH4 ameliorates
the function of the tissue barriers, including the blood-retinal
barrier, the blood-spinal cord barrier and the mucosal barrier
under oxido-reductive stress conditions (Wu et al., 2015; Shen
et al., 2016; Mészáros et al., 2017a). Besides, exogenous CH4
improved erythrocyte deformability at low-to-moderate shear
stress rates (Mészáros et al., 2017a). These data suggest a direct
effect on membrane-cytoskeleton junctions and/or on cell-cell
junction proteins. As compared to NO, CH4 may reach higher
concentrations when dissolved in water or colloid solutions, and
ROS generation can lead to a higher level of CH4 degradation
in the lipid environment of membranes. The apolar CH4 may
enter and dissolve in the hydrophobic non-polar lipid tails of
the phospholipid biomembranes, theoretically influencing its
physicochemical condition, which is essential for the normal
functioning of embedded proteins and ion channels. Membrane
rigidity relates to the degree of lipid peroxidation, and CH4
dissolved in biological membranes may affect this process,
thereby influencing the stereo figure of membrane proteins that
determines their accessibility and morphology.

Intracellular Reactions That Lead to
Anti-inflammatory Effects
As discussed before, higher concentrations of CH4 can lead
to anti-inflammatory responses via master switches such as
Nrf2/Keap1 or NF-κB (Wang L. et al., 2017). Recent studies
demonstrated the activation of caspase-9 and caspase-3 and
significantly increased cytochrome c release into the cytoplasm
from the mitochondria after spinal cord IR (Wang L. et al.,
2017; Wang W. et al., 2017). Increased mRNA and content of
TNF-α, IL-1β, CXCL1, and ICAM-1 were also observed in IR;
however, the increases and the apoptotic effects were blocked
by CH4 administration. Nrf2 has also been shown to have a
key role in signaling the antioxidant response element (ARE)-
mediated regulation of gene expression. As it happens, CH4
induces the time-dependent nuclear translocation of Nrf2 protein
and, in addition, the increased nuclear Nrf2 was accompanied
by the down-regulation of the Nrf2 inhibitor, Keap 1, in the
cytoplasmic fraction. This occurred in association with the
phosphorylation and nuclear translocation of the NF-κB p65
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subunit. The nucleoplasmic ratio of phospho-NF-κB p65 was
increased at 72 h post injury relative to sham-operated rats,
but this increase was inhibited by CH4 treatment. Furthermore,
after Nrf2 knockdown by intrathecal siRNA pretreatment, the
nuclear accumulation of phospho-NF-κB p65 was induced as
compared to CH4-treated rats. To sum up, lots of data point to
a direct anti-cytokine effect of CH4 through influencing NF-κB
and Nrf2 activation.

Mitochondrial Effects
Lastly, it seems that mitochondria may have a fundamental
role to connect the individual effects of distinct interventions,
providing an explanation of why CH4 supplementation may
interfere with the consequences of diverse conditions associated
with hypoxia and inflammation (Mészáros et al., 2017b). It
is well established that the antigen-independent IR stimulus
can initiate mitochondria-related intrinsic signaling pathways
of apoptosis. MRS and CH4-containing air preserved the
oxidative phosphorylation and improved the basal mitochondrial
respiration state after the onset of reperfusion in liver IR, and
cytochrome c oxidase activity together with ROS production
and hepatocyte apoptosis were also reduced (Ye et al., 2015;
Strifler et al., 2016). These findings are consistently present in
other tissues as well, such as the skin, retina, heart, and spinal
cord with IR injury and CH4 treatments (Song et al., 2015;
Chen et al., 2016; Liu et al., 2016; Zhang et al., 2016, 2017;
Wang L. et al., 2017; Wang R. et al., 2017; Wang W. et al.,
2017; Zhou et al., 2018). Based on the totality of data, it seems
plausible that exogenous CH4 confers cellular protection by the
restoration of mitochondrial function, and probably membrane
integrity through the expression of Bcl-2 family of anti-apoptotic
proteins, decreasing the release of cytochrome c and deactivating
the caspase signaling cascade.

CONCLUSION

Signaling roles were demonstrated for NO, CO, and H2S, and it
has become clear that gaseous mediators are forming complex

intracellular pathways and regulate numerous physiological
processes in cooperative ways. Whether methane itself or a
reaction product acts as the effector is an intriguing possibility.
To answer this question much more detailed studies are necessary
and should be conducted in the future. If we discuss the
available literature on the generation and biological effects of
CH4 from such aspects, the current evidences support the notion
that the bioactivity of CH4 is linked to other gasotransmitter-
mediated events. Although the results indicate a bioactive role
for higher concentrations of exogenous CH4 it should be noted
that this is not obvious for endogenous sources; and there
is still no clear-cut evidence that CH4 in the endogenously
produced concentration range (1–30 ppmv) has a role in cellular
physiology. Nevertheless, evidences are available that exogenous
CH4 is able to influence cytoprotective pathways. Besides,
sufficient evidence was accumulated to justify the exploration
of CH4 as a therapeutic agent in inflammatory disorders or
inflammation-linked pathologies. In this framework the available
data support a controller role for CH4 to reduce the inflammatory
signals toward resting conditions.
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