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Abstract

Background: Fluid resuscitation remains a cornerstone in the management of acute
bleeding. According to Starling's “Three-compartment model”, four-times more
crystalloids have the same volume effect as colloids. However, this volume-
replacement ratio remains a controversial issue as it may be affected by the
degradation of the endothelial glycocalyx layer, a situation often found in the
critically ill. Our aim was to compare colloid and crystalloid based fluid resuscitation
during an experimental stroke volume index (SVI) guided hemorrhage and
resuscitation animal model.

Methods: Anesthetized and mechanically ventilated pigs were randomized to
receive a colloid (Voluven®,HES, n=15) or crystalloid (Ringerfundin®,RF, n=15) infusion.
Animals were bled till baseline SVI (Tbsl) dropped by 50% (T0), followed by
resuscitation until initial SVI was reached (T4) in four steps. Invasive hemodynamic
measurements, blood gas analyses and laboratory tests were performed at each
assessment points. Glycocalyx degradation markers (Syndecan-1/hematocrit ratio,
Glypican/hematocrit ratio) were determined at Tbsl, T0 and T4.

Results: Similar amounts of blood were shed in both groups (HES group: 506±159
mls blood, RF group: 470±127 mls blood). Hemodynamic changes followed the
same pattern without significant difference between the groups. Animals received
significantly less resuscitation fluid in the HES compared to the RF-group: 425 [320-
665], vs 1390 [884-1585] mls, p <0.001. The volume replacement ratio was 0.92 [0.79-
1.54] for HES; and 3.03 [2.00-4.23] for the RF-group (p <0.001). There was no
significant difference between the groups in the glycocalyx degradation markers.

Conclusion: In this moderate bleeding-resuscitation animal model the volume-
replacement ratio for crystalloids and colloids followed similar patterns as predicted
by Starling's principle, and the glycocalyx remained intact. This indicates that in acute
bleeding events, such as trauma or during surgery, colloids may be beneficial as
hemodynamic stability may be achieved more rapidly than with crystalloids.
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Background
Acute bleeding is a perilous condition requiring immediate intervention before

hypoperfusion leads to severe organ damage and multiple organ dysfunction. In

addition to the surgical control of bleeding, fluid resuscitation remains one of the most

important life-saving interventions. The use of colloids and crystalloids for resuscitation

of bleeding patients has previously remained controversial with no definitive answer for

the best course of action [1–4]. In trauma patients, hemorrhage has been proposed as

the second most common contributing cause of death within 48 h following the injury

[5, 6]. In a multi-center analysis by Hoyt et al., hemorrhage was the primary cause of

intraoperative death in 82% of patients with major trauma [7]. To avoid the lethal

consequences of severe bleeding, intravenous fluid resuscitation is the first line of treat-

ment, which has to be fast and efficient.

Fundamentally, crystalloids or colloids can be used for this purpose. However, ever

since colloids appeared on the scene, debate over their efficacy and potential

advantages over crystalloids has continued. According to Starling’s “three-compartment

model,” crystalloids, with their sodium content similar to that of the serum, are distrib-

uted in the extracellular space, while colloids should remain intravascularly due to their

large molecular weight. Therefore, theoretically four times more crystalloids should

have the same volume expanding effect as colloids [8]. However, crystalloid overload

can also have detrimental effects; therefore, using the right kind of fluid in appropriate

amounts at the right time might improve patient outcome [9].

Nevertheless, several studies including thousands of critically ill patients have

seemingly disapproved the Starling principle [10–15], concluding that there were only

marginal differences in the administered volume of crystalloid and colloid solutions.

However, these results might have been affected by the fact that most of the included

patients were septic in whom the endothelial glycocalyx layer is often found to be

impaired or destroyed, resulting in increased capillary permeability. Hence, colloids

may disappear into the interstitial space in larger volumes than when the glycolcalyx is

intact [16, 17]. Furthermore, as reported in recent prospective studies [18, 19], non-sur-

vivor trauma patients also had significantly higher circulating syndecan-1

concentrations than survivors, indicating an impairment in the endothelial glycocalyx

[16, 20, 21]. These results suggest that critical illness in general predisposes the patient

to glycocalyx damage; hence, the volume-replacement ratio of crystalloids and colloids

may be different from what would have been expected.

Therefore, the main aim of the current study was to compare the volume-

replacement effects of crystalloid and colloid solutions during bleeding-resuscitation

with moderate hemorrhage in an experimental animal model.

Methods
The experiments were performed on the EU Directive 2010/63/EU for the protection of

animals used for experimental and other scientific purposes and carried out in strict

adherence to the NIH guidelines for the use of experimental animals. The experimental

project was approved by the National Scientific Ethical Committee on Animal Experimentation

(National Competent Authority), Hungary, with license number: V./142/2013. The study was

conducted in the research laboratory of the Institute of Surgical Research in a manner that did

not inflict unnecessary pain or discomfort upon the animals.
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Animals and instrumentation

Vietnamese pot-bellied pigs (n = 30) underwent a 12-h preoperative fasting period with

free access to water. The pigs were randomized into two groups: balanced crystalloid

Ringerfundin, RF group (B. Braun AG) and a colloid (Voluven®, hydroxyethyl starch

(HES)) group. Anesthesia was induced by intramuscular injection of a mixture of

ketamine (20 mg/kg) and xylazine (2 mg/kg), maintained by a continuous intravenous

propofol infusion (6 mg/kg/h i.v.), and analgesia was performed with nalbuphine

(0.1 mg/kg). Tracheal tubes were inserted in all animals, and the lungs were mechanic-

ally ventilated by Dräger Evita XL (Dräger, Lübeck, Germany). Tidal volume was

adjusted to 10 mL/kg, and the respiratory rate was initialized to keep the end-tidal

carbon dioxide and partial pressure of arterial carbon dioxide within physiological

range (35–45 mmHg). The adequacy of anesthesia was assessed by checking jaw stiff-

ness. After induction of anesthesia, catheters were inserted into the right jugular vein,

the left carotid artery, and the right femoral artery via aseptic dissection of the vessels.

For invasive hemodynamic monitoring, a transpulmonary thermodilution catheter

(PiCCO, PULSION Medical Systems SE, Munich, Germany) was placed in the right

femoral artery (3 mm). A central venous catheter was implanted into the right jugular

vein and was positioned by the guidance of intracavital ECG. Throughout bleeding,

blood was drained through a catheter from the left carotid artery to a cylinder. An

external warming device was used to retain the animals’ body temperature at 37 ± 1 °C.

Experimental protocol

We applied a model which has been tested and reported in our previous experiments

[22, 23]. The study protocol is summarized in Fig. 1. Briefly, after instrumentation,

30 min was allowed for stabilization before baseline (Tbsl) measurements were taken.

At each assessment point, hemodynamic measurements, blood gas analyses, and

laboratory tests were performed. After Tbsl, the pigs were bled until the stroke volume

index dropped to 50% of its baseline value (T0); then, measurements were repeated.

The difference of stroke volume index (SVI) at Tbsl and T0 was divided into four

equal target values, which was planned to be reached in four steps during fluid

resuscitation (T1–4) to reach the initial SVI by T4. Fluid replacement was executed with

boluses of balanced RF or HES solutions until the target SVI value was reached. After

reaching each step, 20 min was allowed for equilibrium; then, blood gas and

hemodynamic parameters were measured. All of the pigs were euthanized with sodium

pentobarbital at the end of the experiment.

Hemodynamic monitoring and blood gas sampling

Cardiac function (CFI), cardiac index (CI), left ventricular contractility (dPmax), global

end-diastolic volume (GEDI), heart rate (HR), mean arterial pressure (MAP), pulse

pressure variation (PPV), stroke volume index (SVI), and stroke volume variation

(SVV) were measured via transpulmonary thermodilution and pulse contour analysis at

baseline and at the end of each step. All hemodynamic parameters were indexed for

body surface area or body weight. Ten milliliters of less than 8 °C cold isotonic saline

was injected through the jugular catheter for thermodilution-based measurements, and

the average of three boluses recorded at the end of each interval. Central venous
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pressure (CVP) was measured via the jugular catheter in parallel with the other

hemodynamic parameters. For blood gas measurements, the right femoral artery served

as the site for arterial blood gas sampling and the catheter in the internal jugular vein

was used for taking central venous blood gas samples. These were analyzed in parallel

by co-oximetry (Cobas b 221, Roche Ltd., Basel, Switzerland) at baseline and at the end

of each resuscitation step. From these parameters, the following variables were

calculated [24]:

Oxygen consumption VO2ð Þ

VO2 ¼ CI� CaO2− Hb� 1:34� ScvO2 þ 0:003� PcvO2ð Þð Þ

Oxygen delivery DO2ð Þ

DO2 ¼ CI� Hb� 1:34� SaO2þ 0:003� PaO2ð Þ

Oxygen extraction ¼ VO2=DO2

Volume-replacement ratios were calculated by the resuscitation fluid over the total

blood loss.

Fig. 1 Schematic flowchart illustrating the experimental protocol. After baseline measurements, animals
were bled until the stroke volume index (SVI) decreased by 50% (T0). Then, measurements were repeated
and the animals were randomized into the balanced crystalloid (Ringerfundin®, RF B. Braun AG) or colloid
(Voluven®, HES) groups. The difference of the SVI Tbsl − SVI T0 was divided into four equal steps (T1–4) and
i.v. fluids were administered to reach these target values
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Glycocalyx degradation

Blood concentrations of syndecan-1 and glypican were quantified by enzyme-linked

immunosorbent assay (ELISA) (MybioSource, Inc., San Diego, USA). For this purpose,

blood samples were taken at Tbsl, T0, and T4; then, the blood was centrifuged and the

serum stored at − 80 °C.

Data analysis and statistics

For statistical analysis, Statistical Program for Social Sciences version 23.0 for Windows

(SPSS, Chicago, IL, USA) was used, and p < 0.05 was considered significant. Data are

presented as mean ± standard deviations or median and interquartile range (IQR),

respectively. For testing normal distribution, the Kolmogorov–Smirnov test was used.

Independent samples were tested by independent sample T test or Mann–Whitney U

test, as appropriate. Changes in repeated measures throughout the experiment were

tested by two-way repeated measures analysis of variance (ANOVA) with Bonferroni

post hoc comparisons. Categorical data were compared using χ2 tests. The type I error

probability associated with this test of this null hypothesis is 0.05.

Results
Out of the 30 animals, 27 survived the full experiment. Two in the HES group and one

in the RF group had a sudden cardiac arrest after induction of anesthesia for reasons

unknown. Therefore, the results of 27 animals (HES n = 13; RF n = 14) were finally

analyzed. Demographics and overall data on fluid management are summarized in

Table 1. Animals were of similar weight, height, and body surface area in both groups.

For a 50% decrease in SVI, a similar amount of blood had to be drained in both groups.

Invasive hemodynamic (PiCCO) measurements were taken at similar frequencies in

both groups. Urine output was significantly higher in the RF group.

Macro-hemodynamic effects of fluid resuscitation

Hemodynamic results were similar at Tbsl, and goals of 50% reduction in SVI were

reached by T0 in both groups (Table 2). Hemodynamic changes during the experiment

did not show clinically relevant differences between the groups. At Tbsl, the SVI values

Table 1 Demographics, blood loss, and fluid therapy

HES (n = 13) RF (n = 14) p

Weight (kg) 26.0 [22.5–28.0] 25.5 [24.0–37.0] 0.280

Height (cm) 118.0 [112.5–120.0] 115.0 [110.0–125.0] 0.981

BSA (m2) 0.91[0.855–0.97] 0.94 [0.975–1.115] 0.401

Shed blood (mL) 505.6 ± 159.3 469.7 ± 127.3 0.529

Total blood loss (mL/m2) 552.8 ± 174.9 481.1 ± 95.2 0.197

PiCCO measurements (n) 23 ± 8 25 ± 5 0.422

Saline used for PiCCO
measurements (mL)

230.0 ± 81.5 252.1 ± 58.2 0.422

Urine (mL) 450[350–626]# 759.5[421–1110] < 0.001

Data are presented as mean ± standard deviation or median [IQR]
#p < 0.05 significantly different between groups

László et al. Intensive Care Medicine Experimental  (2017) 5:52 Page 5 of 18



Ta
b
le

2
H
em

od
yn
am

ic
pa
ra
m
et
er
s
du

rin
g
he

m
or
rh
ag
e
an
d
flu
id

re
su
sc
ita
tio

n

G
ro
up

T b
sl

T 0
T 1

T 2
T 3

T 4

St
ro
ke

vo
lu
m
e
in
de

x
(m

L/
m

2 )
H
ES

34
.4
±
7.
5†

16
.5
±
3.
6*

22
±
4.
7*

†
25
.8
±
5.
2*

†
30
.3
±
5.
7*

†
34
.3
±
7.
2†

RF
33

±
3.
6†

15
.4
±
2.
2*

19
.6
±
3.
8*

†
23
.9
±
4.
0*

†
28
.0
±
5.
5*

†
32
.3
±
3.
3†

C
ar
di
ac

in
de

x
(L
/m

in
/m

2 )
H
ES

3.
25

±
0.
23

†
1.
58

±
0.
27
*

2.
38

±
0.
27
*†

2.
75

±
0.
29
*†

3.
36

±
0.
34

#†
3.
99

±
0.
54

#†

RF
3.
14

±
0.
19

†
1.
84

±
0.
4*

2.
22

±
0.
43
*†

2.
52

±
0.
34
*†

2.
90

±
0.
29
*†

3.
39

±
0.
36

†

M
ea
n
ar
te
ria
lp

re
ss
ur
e
(m

m
H
g)

H
ES

12
2
±
15
.2
†

82
±
25
.9
*

11
0
±
27
.5
#†

11
4
±
24
.5
#†

12
1
±
25
.2
#†

12
3
±
23
.7
#†

RF
12
4
±
16
.6
†

69
±
17
.1
*

77
±
18
.3
*†

90
±
15
.4
*†

99
±
18
.0
*†

10
1
±
9.
9*

†

H
ea
rt
ra
te

(b
ea
ts
/m

in
)

H
ES

95
±
18
.5

10
5
±
27
.5

10
6
±
24
.3
*

10
6
±
24
.2
*

10
9
±
20
.8
*

11
7
±
16
.7
#*
†

RF
97

±
18
.4
†

11
1
±
19
.6
*

10
7
±
16
.2
*†

10
6
±
18
.7
*†

10
2
±
15
.1
†

10
2
±
13
.8
†

G
lo
ba
le
nd

-d
ia
st
ol
ic
vo
lu
m
e
(m

L/
m

2 )
H
ES

36
1
±
60
.6
†

22
2
±
36
.4
*

26
7
±
45
.2
*†

28
3
±
46
.2
* †

33
3
±
54
.2
# †

35
1
±
55
.5
# †

RF
32
9
±
46
.8
†

21
2
±
52
.5
*

23
1
±
51
.6
*†

24
9
±
40
.8
*†

28
0
±
47
.3
*†

30
0
±
42
.9
* †

St
ro
ke

vo
lu
m
e
va
ria
tio

n
(%
)

H
ES

11
.4
±
5.
9†

23
±
7.
0*

18
.1
±
6.
8*

†
13
.8
±
3.
2†

11
.7
±
4.
7†

6.
7
±
2.
7#
*†

RF
11
.7
±
3.
0†

21
.8
±
6.
0*

19
.3
±
5.
4*

16
.3
±
4.
4*

†
13
.8
±
4.
4†

10
.3
±
2.
5†

Pu
ls
e
pr
es
su
re

va
ria
tio

n
(%
)

H
ES

10
.3
±
3.
0†

24
.2
±
6.
0*

16
.6
±
3.
7#
*†

13
.1
±
3.
5†

9.
8
±
2.
0†

6.
9
±
2.
3†

RF
10
.5
±
4.
8†

24
.4
±
5.
4*

22
.1
±
6.
2*

16
.8
±
5.
7*

†
13
.8
±
5.
6*

†
10
.3
±
2.
4†

Sy
st
em

ic
va
sc
ul
ar

re
si
st
an
ce

in
de

x
(d
yn

×
s/
cm

5 /
m

2 )
H
ES

29
37

±
35
9

35
17

±
10
94

36
18

±
83
1#
*

31
83

±
65
0

27
96

±
48
3†

23
09

±
27
7*

†

RF
30
57

±
51
0

29
19

±
54
5

26
64

±
57
0

27
93

±
62
8

26
32

±
52
7*

23
45

±
43
3*

†

EV
LW

I(
m
L/
kg
)

H
ES

11
.2
2
±
5.
7†

10
.8
8
±
7.
0*

11
.6
6
±
6.
6*

12
.0
0
±
6.
1*

12
.2
2
±
7.
1

12
.6
6
±
7.
0†

RF
9.
61

±
2.
1

9.
07

±
2.
3

8.
76

±
1.
2*

8.
76

±
0.
9

8.
84

±
1.
0

9.
46

±
1.
6

dP
m
ax

(m
m
H
g/
s)

H
ES

70
3
±
18
7.
5†

61
2
±
11
8.
2*

71
7
±
12
1.
6†

77
1
±
12
5.
3†

79
1
±
14
7.
6†

81
1
±
14
4.
9*

†

RF
58
8
±
24
6.
8

58
8
±
28
6.
3

64
2
±
23
3.
0†

61
1
±
27
8.
3

63
9
±
22
9.
3

67
1
±
22
3.
8*

†

D
at
a
ar
e
pr
es
en

te
d
as

m
ea
n
±
st
an

da
rd

de
vi
at
io
n.

H
ES

=
co
llo
id

gr
ou

p,
RF

=
cr
ys
ta
llo
id

gr
ou

p
* p

<
0.
05

si
gn

ifi
ca
nt
ly

di
ff
er
en

t
fr
om

T b
sl

†
p
<
0.
05

si
gn

ifi
ca
nt
ly

di
ff
er
en

t
fr
om

T 0
# p

<
0.
05

si
gn

ifi
ca
nt
ly

di
ff
er
en

t
be

tw
ee
n
gr
ou

ps

László et al. Intensive Care Medicine Experimental  (2017) 5:52 Page 6 of 18



were similar, after bleeding SVI decreased by the planned 50% to T0 and returned to its

initial value by T4.

Kinetics of the CI, MAP, HR, and GEDI showed similar pattern in both groups with

significantly higher values in the HES group at the end of the experiment (T4). SVV

and PPV almost doubled after bleeding in both groups and then returned to baseline

values, being significantly lower in the HES group. Extravascular lung water index

showed some changes during the experiment in both groups, without any significant

differences between the groups. Contractility, as indicated by dPmax values, also

showed similar changes in both groups.

Changes in VO2/DO2 during fluid resuscitation

Blood gas parameters during hemorrhage and fluid resuscitation are summarized in

Table 3. Arterial pH was elevated in both groups due to unintentional hyperventilation

which was then corrected towards the end of the experiment. Partial pressure of arter-

ial oxygen tension and oxygen saturation remained stable and within the normal range

throughout the study. Central venous oxygen saturation fell during the bleeding phase

in both groups, but baseline values were achieved earlier in the HES group. Changes in

oxygen extraction followed a similar pattern in both groups. Venous to arterial carbon

dioxide gap increased significantly after the bleeding phase, with significantly higher

values in the RF group, and then returned to physiological values by T3 in both groups.

Volume-replacement ratios

While the hemodynamic profile was very similar, there were significant differences

between the groups in the total amount of fluid required and in the ratio of the resusci-

tation fluid over the total blood loss. Significantly more RF was used during resuscita-

tion than HES (Fig. 2). Calculating the volume-replacement ratio, it was significantly

higher in the RF group, where almost three times more RF was required to achieve the

same hemodynamic parameters (Fig. 3).

Endothelial function

Plasma concentration of syndecan-1 was significantly lower in the RF group at T0 and

T4 between Tbsl values (Fig. 4a). Values of glypican in the RF group were significantly

lower at T4 compared to Tbsl and T0 (Fig. 4b). However, the syndecan-1 hematocrit

ratio and the glypican hematocrit ratio showed no significant differences throughout

the whole experiment (Fig. 4c–d).

Discussion
The main findings of our study are that stable hemodynamic parameters were achieved

by significantly more RF than HES boluses and that the volume-replacement ratio was

more than three times higher in the RF group compared to the HES group.

The results of recently performed large controlled, randomized trials on fluid therapy

in the critically ill have resulted in the development of several reviews and guidelines

[25–27]. Despite the vast amount of evidence on this topic, the saga of the crystalloid–

colloid controversy remains an ongoing issue.
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One of these landmark trials was the SAFE study, where investigators compared the

safety of albumin to normal saline in ICU patients (n = 6997). Results showed no

significant difference between the groups in the hemodynamic resuscitation end points,

including mean arterial pressure or heart rate, although the use of albumin was associ-

ated with a significant but clinically small increase in central venous pressure. The

study showed no significant difference between albumin and normal saline regarding

28-day mortality rate or development of new organ failure [15]. SAFE was followed by

the VISEP (2008), CHEST (2012) and 6S (2012) trials [11–13]. Results showed a strong

association between acute kidney injury, increased use of renal replacement therapy,

and the use of hydroxyethyl starch solution, which was also accompanied with unfavor-

able patient outcomes. The fact that a high fraction of HES solution is deposited in the

tissues [10–14] might explain the impaired organ function. On the contrary, in the

Colloids Versus Crystalloids for the Resuscitation of the Critically Ill (CRISTAL) trial—-

which was designed to test mortality related to colloid- and crystalloid-based fluid

replacement in ICU patients—investigators detected a difference in death rate after

90 days, favoring the use of colloids. Furthermore, patients spent significantly fewer

days on mechanical ventilation and needed shorter durations of vasopressor therapy in

the colloid group compared to the crystalloid group [10].

Regarding the volume-replacement effects, in these trials, there was a similar

volume-replacement ratio for crystalloids and colloids, which is summarized in Table 4.

Based on these results, a common view was formed that starch solutions do not have

as high potency for volume expansion as crystalloids do, but carry a greater risk of

renal dysfunction and mortality. This resulted in a dramatic decrease in synthetic

colloid usage around the world.

However, it is important to note that none of these trials used detailed hemodynamic

monitoring. The administration of i.v. fluids was mainly based on the clinicians’

subjective decision, or on parameters such as heart rate, blood pressure, central venous

saturation, urine output, and lactate levels, none of which are a good predictor of fluid

responsiveness. Linton et al. nicely showed in a postoperative critical care population

that the relationship between MAP and oxygen delivery is very poor [28]. Therefore,

one cannot exclude that a considerable number of these patients were not hypovolemic

Fig. 2 Resuscitation fluid (milliliters). Data are presented as median [IQR]. p = 0.002
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Fig. 3 Volume-replacement ratio: resuscitation fluid/total blood loss. Data are presented as median [IQR]. p= 0.002

Fig. 4 Endothelial function. Plasma concentrations of syndecan-1 (a), glypican (b), syndecan-1 hematocrit ratio
(c) and the glypican hematocrit ratio (d) are delineated. Data are presented as mean ± standard deviation. HES
= colloid group, RF = crystalloid group. *p < 0.05 significantly different from Tbsl.

†p < 0.05 significantly different
from T0.

#p < 0.05 significantly different between groups
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at all and hence received fluids unnecessarily. Nevertheless, the methods for which fluid

administration was indicated in these trials, also reflects everyday practice, as was

nicely shown by a large recent observational study [29]. In this survey by Cecconi et al.,

it was revealed that fluid therapy is mainly guided by inadequate indices. Therefore,

one cannot exclude that in all the previously mentioned large trials, a considerable

proportion of patients were not hypovolemic at all. This at least in part may explain

the observed detrimental effects of hydroxyaethyl starches, as one cannot exclude that

HES was administered to normovolemic patients; hence, its side/toxic effects were

amplified. Furthermore, as it was shown in a human study with detailed blood and

plasma volume assessment, different infusion volumes, infusion rates, plasma substi-

tutes, or possibly different tracers for plasma volume measurement might lead to

different results concerning the kinetics of fluid or colloid extravasation [30] .

Our intention was to perform a bleeding-resuscitation experiment with detailed

hemodynamic monitoring, predefined end points, and a pragmatic protocol. During the

experiment, hemodynamic changes did not show clinically relevant differences between

the two groups. Kinetics of CI, SVI, MAP, HR, and GEVI showed similar patterns in

both groups with significantly higher values in the HES group at the end of the experi-

ment. The higher macro-hemodynamic values in the HES group may be due to the

more rapid hemodynamic effects of colloids in general as compared to crystalloids.

SVV and PPV almost doubled after bleeding in both groups and then returned to

baseline values, with both being significantly lower in the HES group. Contractility, as

indicated by dPmax values, also showed similar changes in both groups. In other words,

we observed a similar hemodynamic course for these animals during the experiment,

but the volume required was more than three times higher in the RF group. We

detected elevated lactate and extravascular lung water (EVLW) levels from the start.

This could have occurred during the preparation process, which may have caused some

kind of distress. Nevertheless, EVLW did not reach extremely high values and

regarding lactate, pigs can have higher blood lactate levels than humans, ranging from

0.5 to 5.5 mmol/L [31].

For decades, clinicians have based their choice of resuscitation fluids on Starling’s

well-known compartment model. According to his principle, capillaries and post-

capillary venules act as a semipermeable membrane absorbing fluid from the interstitial

space [32]; hence, the hydrostatic and oncotic pressure gradients across the semiperme-

able membrane are the principal determinants of transvascular exchange. However, this

classic model has recently been challenged [33]. One of the most important reasons

why the vasculature may behave differently than that described by Starling is the

recently discovered role of the glycocalyx in the function of the endothelium.

A web of membrane-bound glycoproteins and proteoglycans on the luminal side of

endothelium has been identified as the glycocalyx layer. This compartment consists of

many highly sulfated GAG chains providing negative charge for the endothelium. Due

to these electrostatic properties, the subglycocalyx space produces a colloid oncotic

pressure that might be an important determinant of vascular permeability and thus

fluid balance [34]. The structure and function of the endothelial glycocalyx varies

substantially among different organ systems and is affected by inflammatory conditions,

such as sepsis [35]. Theoretically, with an intact glycocalyx, the volume-replacement

ratio is markedly different for crystalloids compared to colloids and may behave as
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suggested by Starling [36]. This is also supported by other studies, including our

current experiment. In a recent trial on healthy volunteers, it was demonstrated that

after 1000 ml of crystalloid (isotonic saline) or colloid (gelatine and hydroxyaethyl

starch) infusion, the latter caused a four times greater increase in blood volume

compared to saline, and extravasation was significantly higher after saline infusion:

saline 68%, gelatine 21%, and starch 16% [37]. In our experiment in healthy pigs, we

also found similar differences between the volume expanding effects of RF and HES

solutions. This suggests that during the early phase of bleeding, when theoretically the

endothelium and the glycocalyx are intact, colloids have volume sparing effects

compared to crystalloids.

Limitations

First of all, in this model, the course of bleeding took place relatively quickly, which

was almost immediately followed by resuscitation. This scenario seldom takes place

during daily routine. Therefore, the results of the current study can only be partially

applied to clinical practice. Another limitation is that microcirculation and extravasa-

tion of fluid was not monitored or assessed in any way; hence, the measurement of

certain glycocalyx degradation molecules can only be considered as indirect indicators

of glycocalyx integrity. A more detailed evaluation would be necessary to prove our

concept that Starling’s theory worked in this model. Another limitation of our results is

that animals remained alkalotic in the HES group as a result of unintentional hyperven-

tilation at Tbsl, T0, and T1. However, whether it interfered with the results to any extent

is difficult to tell. High EVLW and lactate levels, which were elevated and remained so

throughout, indicate that animal preparation, which required a considerable length of

time, was not as gentle as meant to and may have caused some distress. Finally, the

long-term effects of fluid resuscitation on hemodynamics, renal function, and glycoca-

lyx degradation were not assessed; therefore, our results cannot help the crystalloid–

colloid debate as far as outcomes are concerned.

Conclusions
Our data provides experimental evidence that for the same hemodynamic effect, signifi-

cantly more crystalloid than colloid solution is required in healthy pigs. Furthermore,

the volume-replacement ratio was very similar to that described by Starling. Our data

also suggests that the Starling’s “three-compartment model” requires an intact endothe-

lial glycocalyx. Therefore, the clinical importance of our results is that colloids may

have a place in early resuscitation before the glycocalyx suffers impairment. Further

studies are required, both experimental and clinical, in which, in addition to detailed

hemodynamic monitoring, the function of the microcirculation and the glycolcalyx are

also assessed.
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