
1 Introduction 

Soil moisture is a parameter that via its role in the global 

energy and water cycle is important in many natural and 

agricultural processes [5, 6, 8]. Its measurement is performed 

as scattered point measurements at a discrete interval. Many 

applications would benefit from detailed, spatially and 

temporarily continuous data on soil moisture over large areas 

over long periods. With in situ measurements, this is not 

feasible due to financial and physical constraints. Soil 

moisture derived from satellite data provides the opportunity 

to overcome these constraints. Many methods to calculate soil 

moisture have been developed and applied, but a single best 

algorithm has not been determined yet [1]. Two main 

methodologies in spaceborne remote sensing based soil 

moisture observation can be identified. The first one is based 

on measurements in the microwave part of the 

electromagnetic spectrum, while the second is based on 

thermal, visible and infrared observations[8]. 

The microwave based method uses the large difference in 

the dielectric properties of liquid water (~80) and dry soil 

(<4). This difference of the soil’s dielectrical constant results 

in a variation in emissivity from 0.95 for dry soils to 0.6 or 

less for wet soils, with changes of the corresponding 

magnitude for the soil’s reflectivity [7]. Two types of 

microwave instruments are applied in soil moisture 

measurements. The first are passive radiometers that measure 

the changes in emissivity. The second are active radiometers. 

These radars emit a pulse and measure the back scattered 

return which is a function of the soil's reflectivity. 

Microwaves have a wavelength between 1 mm and 1 meter. 

Due to their longer wavelengths, they have the capability to 

penetrate clouds, haze and rain which allows the method to be 

applied in many circumstances. However, the applicability of 

measuring soil moisture by microwave sensors is limited due 

to the poor spatial resolution of passive microwave and the 

lower temporal resolution and strong sensitivity of active 

microwave instruments to vegetation cover and surface 

roughness [6]. 

The second method to determine soil moisture is based on a 

combination of vegetation data derived from visible and near 

infra-red satellite data and thermal data. For every pixel the 

vegetation cover is derived and the surface temperature is 

calculated. Plotting these values in a two dimensional 

vegetation - temperature space results in a theoretical figure 

that resembles a triangle (Figure 1). On non-vegetated soils 

and in full vegetation areas, evaporation and transpiration 

increase as the water content rises. When soils are moist, the 

latent heat fluxes increase because of the greater absorption of 

water. This process causes sensible heat to decrease. In dry 

soils the process is the inverse of this. The radiative energy is 

not consumed in the evapotranspiration process, and the 

sensible heat increases, raising the surface temperature [8]. 

The triangle is only fully developed if all vegetation classes 

are available in the study area. The method is valid when both 

minimum and maximum surface soil wetness can be observed 

within the geographical extent of the study area. This 

assumption requires a heterogeneous study area with uniform 

atmospheric conditions. The major disadvantages of the 

triangle method are its dependency on cloud free data and 

required distribution of vegetation classes [5].  

For this study, the triangle method was selected because of 

the readily available base data and the lack of auxiliary data 

required for the calculations [4]. This makes it also relatively 

easy to automate the workflow. 
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Abstract 

Climate models predict a combined trend of higher average temperatures and less summer precipitation for the Carpathian Basin. This makes 

the region vulnerable to future droughts. Decreasing soil moisture is an important indicator for drought and therefore it is important to develop a 
method that allows for its continuous monitoring at regional scale. This study presents the development of an automatic workflow for satellite 

based soil moisture estimates which are validated using in situ ground measurements. Pre-processed MODIS normalized vegetation index maps 

are reclassified into maps with 10 normalized vegetation classes. For these areas, the land surface temperature is calculated based on the thermal 
data from the same MODIS instrument acquired at the same time. This way, for every vegetation class, temperature statistics are calculated and 

a linear relationship between the land surface temperature and soil moisture is determined based on the assumption that for equal vegetation 

classes the soil surface temperature is primarily dependent on the soil moisture content. This results in daily soil moisture index (SMI) maps.  
Regression analysis is carried out to calibrate the relative SMI values with in situ soil moisture measurements at measurement stations and to 

derive soil moisture values. Continuous calculation of soil moisture provides trend information, which can help to predict future periods of 

drought. 
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Figure 1: Theoretical vegetation-temperature triangle. 

 
 

 

2 Data 

In this study the Moderate Resolution Imaging 

Spectroradiometer (MODIS) MOD11A1 and MOD13Q1 data 

products are used to calculate soil moisture and soil moisture 

index maps. Both products are derived from the same base 

data, and are therefore collected at the same time, from the 

same area and with the same geometry. The data can be 

downloaded automatically and free of charge from the USGS 

Earth Explorer website. 

The first product is the Land Surface Temperature and 

Emissivity (MOD11A1) product, which is calculated on a 

daily basis. Among others, it contains a land surface 

temperature (LST) layer with a spatial resolution of 1000 

meter and data quality layer [9]. The second product is the 

Vegetation Indices (MOD13Q1) data set, which contains a 

Normalized Difference Vegetation Index (NDVI), an 

Enhanced Vegetation Index and a data quality layer. The 

NDVI layer is a composite product storing the maximum 

NDVI value within a 16 days interval for each pixel with a 

spatial resolution of 250 meter [3]. The 16 day interval 

provides enough data to almost continuously generate NDVI 

values for every pixel, while the interval is short enough to 

represent the changes in NDVI without smoothing them out 

too much. Both data product have been radiometrically and 

atmospherically corrected by USGS [3, 9]. 

The study area is a subset of the original MODIS LST and 

NDVI images. It extends from the south of Hungary to the 

Vojvodina region in Serbia, and covers an area of about 200 x 

215 kilometres (Figure 2).  

The region is mainly agricultural although there are several 

large cities well. The climate is moderate continental, with 

cold winters and hot and humid summers with a large range of 

extreme temperatures and non-equal distribution of rainfall 

per months making the area susceptible to floods as well as 

drought [2]. A large variety of soils can be found in the 

region, ranging from blown sand and alluvial meadow soils in 

the north to chernozem in the south. The Danube and Tisza 

rivers are the main waterways in the area. Several large lakes 

serve as ecological buffers and sources for recreation and 

agricultural needs. 

 

Figure 2: Study area and the area covered by the MODIS 

NDVI image. 

 
 

 

3 Methodology 

The workflow to produce SMI maps consists of four major 

steps: (1) downloading of the data sets, (2) processing of the 

NDVI data, (3) processing of the land surface temperature 

data, (4) creation of the LST-NDVI triangle and (5) 

Calculation of the soil moisture index (SMI) maps. These 

steps have been implemented as Python scripts using ArcGIS 

geoprocessing tools (Figure 3). 

 

Figure 3: Soil moisture index map calculation workflow. 

 
1. In the first step, the MOD11A1 and the MOD13Q1 data 

is automatically downloaded from the USGS Earth 

Explorer database by a Python script that uses the 

ArcGIS geoprocessing library. Based on a start date, end 

date, a shape file defining the spatial extent and some 

definitions of output names, the script automatically 
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selects and downloads the required LST data and the 

corresponding NDVI image.  

2. The processing of the NDVI data starts with the creation 

of a mask based on the quality layer in the MOD13 

dataset. Only NDVI data of sufficient quality is extracted 

from the original dataset. From this data, a spatial subset 

is created based on the study area. The subset is 

calibrated to return to the original -1 to 1 data range for 

NDVI values. These values are then normalized to get 

the so called vegetation fraction F using: 

 

𝐹 = (
𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛

𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛
   ) 2    (1) 

 

where NDVI is the processed NDVI value, NDVImin is 

the minimum NDVI value, and NDVImax is the maximum 

value in the image. In regions where all vegetation-cover 

types are available (from bare soils to full-vegetated), the 

maximum F is associated with 100% vegetation cover. 

3. The land surface temperature data is also masked based 

on the quality layer in the dataset. The extracted data is 

then spatially subsetted and calibrated. In the final step, 

the LST data with a spatial resolution of 1000 meter is 

resampled to the 250 meter resolution of the vegetation 

fraction F data. 

4. The vegetation fraction dataset is reclassified to 10 

classes with equal class width. For each vegetation class, 

the minimum and maximum temperature values are 

derived from the LST data within the area covered by 

that class. Within each class, the linear relationship is 

determined between the LST and soil moisture index 

(SMI) value, using: 

 

𝑆𝑀𝐼 = (
𝐿𝑆𝑇𝑚𝑖𝑛 − 𝐿𝑆𝑇

𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛
) + 1        (2) 

 

where LST is the MODIS based land surface 

temperature, LSTmin is the minimum temperature in the 

particular vegetation fraction class, and LSTmax is the 

maximum temperature. 

5. Based on the established relationships, for every pixel 

within each of the 10 vegetation fraction classes, a soil 

moisture index value is calculated. Combining all 10 

SMI maps results in an SMI map for the total area. 

(Figure 6). 

 

The soil moisture index maps provide a value between 0 and 1 

indicating the relative amount of soil moisture within the area, 

where 0 indicates the lowest soil moisture and 1 means the 

highest soil moisture on a particular day. Before calibration of 

the SMI values, it is not possible to perform a quantitative 

comparison between different days. 

 

 

3.1 Validation 

To validate the calculated SMI values, the linear relationship 

between the land surface temperature and the soil moisture 

within one vegetation class is used. At the same time of the 

satellite land surface temperature measurements, soil moisture 

measurements were taken using a network of in situ 

measurements stations. If on a particular day, data from 

multiple stations is available from within one vegetation class, 

a system of linear equations can be derived and solved. 

Solving the equations provides the relationship between the 

measured LST values and the calculated soil moisture values 

SMc. When two measurement stations are available in one 

class, only the linear relationship between the two parameters 

can be determined. When more measurement stations fall into 

one vegetation class, the system of equations is 

overdetermined and the linear relationship as well as the 

coefficient of determination can be calculated using linear 

regression. This way it is possible to evaluate the relationships 

quantitatively. Figure 4 shows the validation workflow, where 

for a particular day, in each class, the SM value measured at a 

measurement station and the LST values derived from the 

satellite data are selected and stored in a validation table. 

Within this table the linear relationship between the LST and 

MS values is determined and stored. 

When the linear relationship is determined on a particular 

day, within a vegetation class it is possible to calculate the 

absolute soil moisture value SM (in v/v) instead of the soil 

moisture index SMI. 

 

Figure 4: Validation workflow. 

 
 

 

3.2 Calibration 

The linear relationship determined during the validation is 

used to calculate the soil moisture maps based on the MODIS 

LST and NDVI data (Figure 5). The LST and NDVI data are 

processed similarly as during the soil moisture index maps 

creation; taking the quality data, spatial extent of the study 

area and the calibration information into account. For each 

vegetation class, the particular parameters determining the SM 

– LST relationship are selected from the table and for each 

pixel the LST value is converted to a SM value. This results in 

an SM map for every vegetation class. During the final step, 

the separate SM maps are combined forming a SM map for 

the complete area. 
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Figure 5: Calibration workflow. 

 

 
 

 

4  Results 

Between 1 January 2014 and 4 November 2014, 206 SMI 

maps could be created. On 102 days, it was not possible to 

derive the SMI maps because of lack of high quality data. 

Usually this was due to frost, snow cover or cloud cover 

preventing the acquisition of land surface temperature images, 

or the NDVI data was of insufficient quality. In some cases 

not all vegetation classes were determined, resulting in 

incomplete definition of the vegetation-temperature triangle. 

This also prevents the calculation of the SMI map for that day.  

The SMI maps offer a qualitative overview of the 

distribution of soil moisture in the study area (Figure 6.). 

Obvious are the main rivers with surrounding forests on their 

floodplains. Also other forested areas in the south (Fruska 

Gora national park) and west (Gemenc) can clearly be seen.  

 

Figure 6: Resulting soil moisture index map of 23 may 

2014. 

 

Validation is possible on 115 days, since on those days in at 

least one vegetation class, data from at least two ground 

measurement stations is available. In 56 situations, more than 

2 in situ soil moisture measurements – surface temperature 

measurements combinations are available, therefore allowing 

to perform linear regression. The remaining 82 combinations 

are only used to determine the linear relationship.  

The coefficient of determination r2 shows a large variation, 

ranging from under 0.1 to above 0.95. Figure 7 shows the 

relationship between the satellite based SMI and the in situ 

soil moisture values for three different days.  

 

Figure 7: Example of validation results for 3 particular days in 

2014. 
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The average r2 for all days in the data set and all vegetation 

classes was 0.40. Several reasons may exist for this low value. 

First, there is a large difference between the resolution of the 

satellite measurements and the point measurements on the 

ground. One pixel of the satellite data may include a variety of 

vegetation, topography, soil types and other factors 

influencing the soil moisture values. These may not be the 

same at the position of the ground measurements station 

within the pixel. As a consequence, the ground measurements 

may not be representative for the larger area. Second, the in 

situ measurements are taken at a depth of 10 centimeter, while 

the satellite derived values are the result of LST and VI data 

on the surface. The influence of the soil moisture at 10 

centimeter on the surface may vary depending on the type and 

amount of vegetation. Also the influence of precipitation may 

show up later at the in situ measurements than at the satellite 

measurements depending on the infiltration rate. Finally, the 

accuracy of the LST values is about 1º K [9]. A small error in 

the determination of the linear relationship can result in a 

large coefficient of determination if there are only limited soil 

moisture measurements – surface temperature measurements 

combinations available. 

Evaluating the coefficient of determination per class does 

not show a trend between the amount of vegetation and the 

correlation. Combinations showing an r2 lower than 0.5 were 

not used for calibration.  

The calibration results are determined for those classes that 

are defined during the validation, other part of the maps are 

shown in gray. Figure 8 shows soil moisture maps from two 

days apart.  

 

 

5 Discussion and conclusions 

The described method based on medium resolution daily land 

surface temperature and vegetation satellite data can 

successfully generate soil moisture and soil moisture index 

maps. Validation shows that the coefficient of determination 

between the satellite based maps and the ground 

measurements varies considerably. The scale difference 

between the satellite measurements and the in situ network 

can result in large variations in the soil moisture values 

depending on the location of the measurement station within 

the pixel. A larger satellite data set and more ground 

measuring stations that are better spread over the study area 

will give better calibration possibilities. 

The aim of this study is to create an operational workflow to 

provide early warning for droughts or surface floods. For this 

purpose - the trend, instead of the exact value of soil 

moisture - is required. The error in the SM calculations is not 

dependent on the vegetation class, nor on the time of the year 

and therefor does not systematically influence the trend 

determination. 

The soil moisture maps will be generated on a regular bases 

allowing for the spatially and temporarily continuous 

monitoring of soil moisture over a larger area. Soil moisture is 

a parameter that is used in the calculation of almost all 

drought indicators. Trends in the soil moisture, combined with 

other meteorological, climatological, geomorphological and 

pedological data are expected to provide information to help 

preventing drought and surface floods. The derived soil 

moisture maps can also be used as input it for irrigation and 

drainage schemes and land reclamation and improvement 

projects. 

 

Figure 8: Soil moisture maps of 9 and 11 March 2014. 
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