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Abstract

Background: Radiotherapy is a standard treatment option for breast cancer, but it may lead to significant late
morbidity, including radiation heart damage. Breast irradiation performed individually in the supine or prone
position may aid in minimizing the irradiation dose to the heart and LAD coronary artery. A series of CT scans and
therapy plans are needed in both positions for the ‘gold standard’ decision on the preferable treatment position.
This method is expensive with respect to technology and physician workload.
Our ultimate goal is to develop a predictive tool to identify the preferable treatment position using easily
measurable patient characteristics. In this article, we describe the details of how model building and consequently
validation of the best model are done.

Methods: Different models were used: both logistic regression and multiple linear regressions were used to
estimate the LAD mean dose difference (the difference between the mean dose to the LAD in the supine position
versus prone position); predicted dose differences were analysed compared to the ‘gold standard’ values, and the
best model was selected accordingly. The final model was checked by random cross-validation. In addition to
generally used measures (ROC and Brier score), decision curves were employed to evaluate the performance of the
models.

Results: ROC analysis demonstrated that none of the predictors alone was satisfactory. Multiple logistic regression
models and the linear regression model lead to high values of net benefit for a wide range of threshold
probabilities. Multiple linear regression seemed to be the most useful model. We also present the results of the
random cross-validation for this model (i.e. sensitivity of 80.7% and specificity of 87.5%).

Conclusions: Decision curves proved to be useful to evaluate our models. Our results indicate that any of the
models could be implemented in clinical practice, but the linear regression model is the most useful model to
facilitate the radiation treatment decision. In addition, it is in use in everyday practice in the Department of
Oncotherapy, University of Szeged, Hungary.
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Background
Radiotherapy is an effective treatment for breast cancer,
but it can lead to significant late morbidity, particularly
connected to various heart diseases [1, 2]. The goal of
radiotherapy is to achieve a good therapeutic ratio, i.e. a
sufficient dose in the planning target volume but as low
as possible to normal tissues and especially to critical or-
gans at risk (OAR). Great efforts are made to minimize
the irradiation dose to the heart in general; nevertheless,
the dose to the LAD is of the utmost clinical importance
[3]. There are different approaches to protect the heart
from radiation, among which breathing control, includ-
ing the deep inspirational breast hold technique and
IMRT or partial breast irradiation, have just recently be-
come available in routine practice [4, 5]. Originally,
prone positioning was invented for the irradiation of dif-
ficult cases with large breasts, and many groups came to
favour its wide use [6–11]. Numerous studies including
ours have demonstrated that the preferable position var-
ies from patient to patient [6–8, 12–16]. Some investiga-
tions have identified patient-related predictors in favour
of a particular treatment position, while others have not.
There are studies that prefer the prone position for

heart protection in general; others did not find a relevant
benefit of prone positioning compared to supine posi-
tioning [8, 16]. Investigations have demonstrated that the
favourable treatment set-up varies from patient to patient
but have not shown patient-related characteristics to pre-
dict the favourable treatment position [8, 9, 15, 16].
Others have shown an association between breast size and
the benefit of prone positioning [8]. In our prospective
clinical experiment, we found a strong relationship be-
tween the dose to the LAD and heart and some patient-
related characteristics, such as BMI and the geography of
the breast, heart and chest wall [6, 7].
Prediction models are widely used in biomedical re-

search and other interdisciplinary fields of research.
These models are mainly based on a regression method:
if the dependent variable is continuous, then a multiple
regression model can be used, while logistic regression is
applied for categorical (often binary) dependent vari-
ables. The result of a regression model is an expected
value of the dependent variable, and the result of a (bin-
ary) logistic regression is an expected probability. When
the purpose is to make a decision and make predictions
concerning the existence of a phenomenon, such as an
illness or the necessity of an operation, the decision is
based on a carefully chosen cut-point.
There are several measures to describe the performance

of the prediction model, with the ROC curve being the
most commonly used one [17, 18]. Unfortunately, it has
the disadvantage of equally weighting false positive and
false negative decisions, whereas it may be important to
weight the different types of misclassifications differently.

Vickers has published a method which not only elimi-
nates this weakness in the ROC method, but also intro-
duces a completely different approach to derive a
measure called ‘net benefit’ to evaluate the clinical utility
of the method [19]. The value of the net benefit depends
on the cut-point chosen. We can obtain the decision
curve if we plot the net benefit in function of the cut-
point (threshold probability). Decision curves can be ef-
fectively used to compare different prediction methods
and to determine the range of the possible cut-point,
where the use of the prediction model is beneficial. We
report on how the decision curve method has been ap-
plied to evaluate different models to facilitate individual-
ized breast irradiation.
A series of CT scans and therapy plans in both posi-

tions (supine and prone) are called for to compare the
dose to the heart and LAD and to select the preferable
treatment position; we call this optimization process the
‘gold standard’ decision. This method is expensive (with
respect to both the technology and physician workload)
and involves an extra dose of radiation to the patients.
This was the motivation for creating a model to predict
the preferable position and anticipate the dose difference
between the two positions using the patient-related
characteristics noted above. In fact, this model is already
being implemented in routine radiotherapy practice at
the Department of Oncotherapy, University of Szeged,
Szeged, Hungary; in this article, we describe the details
of how model building and consequently validation of
the best model took place [6, 7].

Methods
Description of data
Various patient-related features and dosimetry data ex-
tracted from radiation treatment plans generated in both
prone and supine positions of 83 left-sided breast cancer
cases receiving postoperative whole-breast radiotherapy
were used for analyses. The details of the IRB-approved clin-
ical study have been described elsewhere [6]. LAD and heart
doses were related most strongly to body mass index (BMI)
and the geography of the heart and breast. The latter could
be characterized by the median distance between the LAD
and the chest wall (dmedian), and the heart area included in
the radiation field on a single CT scan at the middle of the
heart in the supine position (Aheart). The effect of some
other measures, such as the traditionally considered breast
size (corresponding to PTV), waist and hip circumferences,
were less important [6]. In another 55 cases, these prelimin-
ary observations showed great consistency. Detailed evalu-
ation was carried out on a total of 138 cases in this study.
Although both the LAD and heart doses were considered in
the model, since the dose to the LAD has the greatest im-
pact on clinical decision making, this parameter is presented
as the only dependent variable here.
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We considered the prone position preferable if the
LAD dose was smaller in that position than in the su-
pine position, and we defined the supine position as
preferable if the opposite was true. The dependent vari-
able was the difference in the mean dose to the LAD
(‘LAD mean dose difference’), meaning the mean dose to
the LAD in the supine position minus the mean dose to
the LAD in the prone position as derived from the radi-
ation treatment planning system. In the event of a posi-
tive LAD mean dose difference, the prone position
seemed more favourable, while the supine position was
more advantageous in the event of a negative LAD mean
dose difference. The LAD mean dose difference is a con-
tinuous dependent variable, but the decision is binary.
The ‘gold standard decision’ on the treatment position is
based on the value of the LAD mean dose difference.

Prediction models
Our early models were logistic regression-based models
using patients’ characteristics noted in the ‘Description
of data’ section. The continuous dependent variable had
to be dichotomized for the logistic regression-based
models. We coded it 0 if the prone position was pre-
ferred and 1 if the supine position was preferred, based
on the gold standard method discussed in detail above.
A hierarchical cluster analysis was performed with a
similarity measure of the Pearson correlation coefficient
to avoid multicollinearity between independent variables.
The correlations were explored between the predictors,
with poorly correlated predictors chosen for model
building. We were searching for a parsimonious model
with relatively few and uncorrelated predictors. We ap-
plied the backward and forward likelihood ratio selection
methods to select a logistic regression model.
The dependent variable was originally continuous in

our dataset; the use of binary logistic regression would
have led to a loss of information. Treating the dependent
variable as a continuous variable, we used a multiple lin-
ear regression. Higher differences are taken into account
with more weight in the regression model. Another ad-
vantage of using multiple linear regression is that the ex-
pected value of the LAD mean dose difference can also
be calculated. The decision was based on the sign of the
estimated dependent variable in the regression model.
It is well known that the results of the classifications are

overly optimistic when the classification is made on the
same dataset where the classification rule was discovered
(i.e. the training set and the test set are the same). To
identify the best model, we used an internal validation
method of data splitting as follows: the sample was divided
into two parts randomly, with 70% of the sample as the
training set for the linear regression and the resultant
model being tested on the remaining 30% of the data. The
classification results and the misclassified dose were also

noted. The process was repeated 1000 times randomly,
and it was not just the proportions of misclassified pa-
tients that were taken into account, but also the distribu-
tion of the misclassified dose.
The calculations were carried out in IBM SPSS version

24 and R (version 3.3.1).

ROC analysis
The performance of a prediction model can be evaluated
by comparing the decision to the gold standard method.
In most cases, we simply do not know the ‘truth’. The
nearest we have to it is the gold standard, so we have to
regard that as the ‘truth’. There are several measures to
describe the performance of the prediction model based
on the numbers in TP (true positive), FP (false positive),
TN (true negative) and FN (false negative) cases. The
well-known measures are sensitivity, specificity, positive
predictive value, negative predictive value, accuracy (pro-
portion of all correct diagnoses) and the Youden index
(i.e. sensitivity+specificity-1). The method involving
ROC curves is based on the measures noted above: we
plot the sensitivity in function of 1-specificity at various
threshold levels. We can also choose the optimal cut-
point based on these measures and methods. One of the
most frequently used methods for cut-point selection is
to find the maximum value of the Youden index, with
the value that maximizes the Youden index being the
cut-point. Other methods for choosing a cut-point have
been published [17, 18, 20–22].

Brier score
The Brier score, originally introduced by Glenn W.
Brier, is calculated as follows:

BS ¼ 1
N

XN

i¼1

pi−oið Þ2 ð1Þ

and the formula for the weighted Brier score is:

wBS ¼

XN

i¼1

wi pi−oið Þ2

XN

i¼1

wi

ð2Þ

where oi is the ith outcome, pi is the ith predicted prob-
ability and wi is the weight of the i

th item. If the outcome
occurs in the ith case, then oi = 1; otherwise, oi = 0. The
Brier score measures an average (or weighted average) of
squared distances between current outcomes and pre-
dicted probabilities, while lower values indicate better
predictive performance [23].
The performance of the three best predictors (BMI, area

and median distance) was evaluated by univariate logistic
regression. For example, univariate logistic regression was
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employed with BMI as the independent variable (and the
preferable treatment position as the dependent variable)
to construct a probability prediction based on the value of
BMI.

Net benefit and decision curves
Decision curve analysis is a relatively new method to
evaluate the performance of diagnostic tests and predic-
tion models. It is based on the predicted probabilities of
statistical models. The decision curve method was intro-
duced by Vickers, based on the ‘net benefit function’
[19]. A decision curve is a plot which shows the net
benefit calculated at various threshold levels. The defin-
ition of net benefit is based on the ‘utility of the predic-
tion of the method’, originally defined by Peirce as:

B ¼ p � TP−l � FP
TP þ FP þ FN þ TN

¼ p � TP−l � FP
N

ð3Þ

where p stands for the ‘profit’ of a true positive decision,
l refers to the ‘loss’ of a false positive decision, TP, FP,
TN and FN are the number of true positive, false posi-
tive, true negative and false negative decisions, respect-
ively, and N is the sample size [24].
The net benefit is defined as the benefit divided by the

profit:

NB ¼ B
p
¼ TP

N
−
l
p
FP
N

ð4Þ

In other words, the net benefit is the benefit that re-
sults from the normalization of the profit. In this aspect,
the ‘loss-to-profit ratio’ is a weighting factor to give
weight to the false positive decision compared to one
unit of benefit of the true positive decision. It is import-
ant to note that profit and loss are unknown in most ap-
plications and it is impossible to measure them. This is
common in medical decision making. One simply cannot
measure or numerically anticipate the consequences of
the true positive decision (the so-called profit of the op-
eration, for instance) or the consequences of the false
positive decision (for example, the loss of an unnecessary
operation). That is why Vickers and Elkin suggested

calculating this weighting factor (loss-to-profit ratio) as
the odds of the threshold probability. The weights of the
four possible outcomes (TP, FP, FN and TN) are not
known; still, it is possible to make an acceptable assump-
tion of the ‘loss’-to-‘profit’ ratio.
There is an important assumption by Vickers:

l
p
≔

pt
1−pt

ð5Þ

where pt is the threshold probability (or cut-point),
above which the outcome of a probability prediction
model is labelled ‘positive’ and below which it is labelled
‘negative’ [22].
If we accept this assumption, net benefit simplifies to:

NB ¼ B
p
¼ TP

N
−

pt
1−pt

FP
N

ð6Þ

The decision curve is a curve that illustrates the net
benefit in function of the threshold level pt. Using this
method, we can compare the performance of different
predictive models to show which model is more benefi-
cial in function of the threshold probability. This
method also shows the range of threshold levels where
the decision is beneficial.

Results
Primary results for the predictors
Our investigations revealed that none of the predictors
alone was sufficient for prediction. Candidate predictor
PTV had AUC-ROC of 0.722 while AUC-ROC for BMI
was 0.740, which is fair, but not sufficient for our
purposes.
The best predictor was Aheart, with AUC-ROC of

0.868. Table 1 shows the classification results of the
most important candidate predictors and the primary re-
sults of the multivariate prediction models. These values
in Table 1 are not cross-validated and based on data
from 83 patients. Table 1 presents the model selection
and the performance of the predictors alone.
Although it is possible to base recommendations on a

single predictor value, our experience suggests that the

Table 1 Classification results for the predictors and for the multivariate prediction models based on data from n = 83

Model ROC-AUC 95% Confidence interval for ROC-AUC Brier score

PTV (PTV candidate predictor only) 0.722 0.608, 0.836 0.213

BMI (BMI predictor only) 0.740 0.630, 0.850 0.201

Median distance (dmedian predictor only) 0.787 0.690, 0.884 0.189

Area (Aheart predictor only) 0.868 0.791, 0.944 0.151

Logistic regression (main effect model, Model1) 0.906 0.854, 0.959 0.124

Logistic regression (forward LR selection model, Model2) 0.900 0.848, 0.953 0.132

Linear regression (Model3) 0.903 0.850, 0.957 0.139
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predictive power of this simple approach is not satisfac-
tory. This is why we constructed a multivariate predic-
tion model.

Multivariate models
There are several complex predictive methods in statis-
tics, but our goal was to use a simple model with accept-
able predictive performance.
Among the multivariate models, the backward likeli-

hood ratio selection model was the ‘main effect model’:
area + BMI +median distance. The forward likelihood
ratio selection model was not a hierarchical model, as it
contained two interaction terms: area*BMI + area*me-
dian distance without main effects.
Multiple linear regression seemed to be the most use-

ful model with respect to the promising high AUC-ROC
of 0.903 (results in Table 1) and the advantage noted
above that the expected value of the LAD mean dose dif-
ference can also be calculated.
The results of the random cross-validation for the

multiple regression model have a sensitivity of 80.7%
and specificity of 87.5% [6].

Results of comparing the models using decision curves
We examined the performance of the three best predic-
tors alone with decision curves, and we compared them
to the models described above. None of the best three
predictors alone was comparable to the prediction
models (Fig. 1).

The decision curves for the logistic regression model
and the linear regression-based model were quite similar
to each other. We can conclude that both models lead
to high values of net benefit for a wide range of thresh-
old probabilities. In other words, it is beneficial to use
these models in respect of net benefit regardless of the
current threshold probability. These results showed that
these models can be used in clinical practice.
A bootstrap method was applied to construct 95%

confidence intervals for the net benefit at various thresh-
old levels for the main effect model [7]. 1000 bootstrap
samples were generated by Microsoft Excel with a sam-
ple size of 138 each. Net benefit values were calculated
by definition. The 2.5 and 97.5 percentiles of the net
benefit values were calculated at each threshold level.
The results are shown in Table 2.
The linear regression model is mathematically simple

and can be very easily implemented (for instance, in
Microsoft Excel). To the best of our knowledge, no simi-
lar composite models have been used to select treatment
position in radiotherapy.

Discussion
We presented different models based on patient-related
parameters to predict the preferable treatment position in
left-sided breast cancer radiotherapy and the mathemat-
ical aspects of the evaluation of the predictive power of
these models. All the predictive models performed better
than single predictors did, but the linear regression model

Fig. 1 Decision curves for the four best predictors and three multivariate models. The vertical axis represents the value of net benefit, and the
horizontal axis represents the threshold level (possible probability cut-points). Plotting net benefit in function of threshold level yields the
decision curve. In the legend, PTV, Area, Distance and BMI refer to candidate predictor PTV, predictor Aheart, predictor dmedian and predictor BMI
alone, respectively. Model1 to Model3 refer to the performance of the multivariate prediction models. Model2 is the main effect model (area +
BMI + median distance), Model2 is the forward likelihood ratio selection model with two interaction terms (area*BMI + area*median distance), and
Model3 is the linear regression-based model. This figure shows that the logistic regression models and the linear regression model lead to very
similar high values of net benefit in a wide range of threshold levels and that none of the predictors alone can lead to similarly high values of
net benefit
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was considered the most clinically relevant for quantitative
estimation.
One merit of our study is its relatively large sample

size and multivariate aspect. Decision curves and the
AUC for the ROC results were found to be similar for
the linear regression model and the two logistic regres-
sion models. Nevertheless, while the logistic regression
models weight the outcomes on a binary scale, the linear
regression model weights them in keeping with the mag-
nitude of the difference. Since the linear regression
model provides additional information, i.e. estimation of
the dose difference, we decided to use the linear regres-
sion model. Knowledge of the estimated quantitative
benefit of one or the other treatment position during
radiotherapy may provide better guidance for the phys-
ician when considering various aspects, such as reposi-
tioning accuracy, patient comfort etc.
The application of AUC-ROC and measures like sensi-

tivity and specificity is very common in radiotherapy
planning, but we have not seen the approach of using
decision curves in this field. Our investigations point to
the clinical utility of predictive models.
There are certain limitations of the linear regression

model we presented. The performance of the model is fair,
but limited to a sensitivity of 80.7% and a specificity of
87.5%. These values seemed very stable throughout the
different steps of the evaluation. Furthermore, in the next
phase of development, very similar results were also
found. In brief, a simple clinical tool which used the
model was created and tested for clinical practice [7]. This
tool estimates the difference of the expected dose values
based on the BMI and the dmedian and Aheart measured on
a CT slice at the middle of the heart. The result was com-
pared to that of the full CT series in both positions and
the dosimetric data. The comparison revealed very con-
sistent results from the simple tool and the original
method (very similar sensitivity and specificity values) [7].

One limitation might be that we assumed a linear rela-
tionship between the predictors and the dependent vari-
able. Our investigation revealed that none of the higher-
order terms (squares or cubes of the predictors) im-
proved the model at all. In other words, the linear rela-
tionship may be a target of criticism, but we found no
other simple relationship more suitable for model
building.
Zhao at el. built an SVM (support vector machine)-based

two-step decision algorithm in a sample of 198 patients
[11]. Their method is based on anatomical characteristics
measured on a prone CT series. This classified patients into
prone position radiotherapy or into another CT series in
supine position for comparison. Although the numerical
measures of the goodness of classification were impressive,
that tool provided no numerical estimation of the advan-
tage of one treatment position over the other; hence, no
optimization could be practised. With their method, one
only manage to filter out cases with an in-field heart vol-
ume over the acceptable threshold in the prone position
and with the necessity of a second CT series in the supine
position [11].
As noted earlier, although this report only discussed

the use of the LAD mean dose difference as a primary
outcome, there are other possible dependent variables,
such as the heart dose. In our clinical practice, algorithm
of the dose to the heart is also considered in a complex
decision, but only as a secondary outcome measure [7].
In most centres, the most widely applied outcome meas-
ure is the mean heart dose [8, 25, 26]. Since a linear,
non-threshold association exists between the mean heart
dose and coronary events, mean heart dose may be
regarded as an approximation of the doses to the LAD
and other coronary arteries [25, 26]. Since there is a
strong correlation between mean heart dose and LAD
dose (R = 0.87 in both positions), we believe that the pre-
dictive model presented here could be adapted to local
practice in any centre applying prone radiotherapy.
Moreover, the simple tool, which uses a single CT scan

in the supine position, combined with the dose constraints
described in everyday practice at the Department of
Oncotherapy, University of Szeged, is satisfactory and of
great utility. The linear regression-based model was also
tested in a 28-case external dataset of left-side breast can-
cer patients from Liege and showed great consistency in
our results noted above. Predicted treatment position was
correct in 24 out of 28 (accuracy: 85.7%) cases [7].

Conclusions
Our study has demonstrated that decision curves are
useful in comparing our models. Any of the models
could be implemented in clinical practice, but the linear
regression model is the most useful and stable in facili-
tating the radiation treatment decision. In addition, this

Table 2 95% confidence intervals for net benefit (logistic
regression, main effect model) at different threshold levels.
Confidence bounds are based on 1000 bootstrap samples

Threshold probability Lower bound for
net benefit

Upper bound
for net benefit

0.1 0.564 0.573

0.2 0.496 0.547

0.3 0.450 0.527

0.4 0.423 0.517

0.5 0.391 0.507

0.6 0.319 0.467

0.7 0.256 0.435

0.8 0.210 0.435

0.9 0.000 0.333
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linear regression model is already implemented in every-
day radiotherapy practice at the Department of
Oncotherapy, University of Szeged, Szeged, Hungary.
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