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MINIMAL CLONES WITH FEW MAJORITY OPERATIONS

TAMÁS WALDHAUSER

Dedicated to Béla Csákány on his seventy-fifth birthday

Abstract. We characterize minimal clones generated by a majority function

containing at most seven ternary operations.

1. Introduction

A set C of finitary operations on a set A is a (concrete) clone, if it is closed under
composition of functions and contains all projections. If A = (A;F ) is an algebra,
then the set of its term functions, denoted by CloA, is a clone on A, called the clone
of the algebra A. This is the smallest clone containing F , therefore we say that F
generates CloA, and we write [F ] = CloA. Clearly, every clone arises as the clone of
an algebra: we just need to pick a generating set for the clone, and let these be the
basic operations of the algebra.

An (abstract) clone is a heterogeneous algebra that captures the compositional
structure of concrete clones [BL, Ta]. More precisely, an abstract clone C is given by

a family C(n) (n ≥ 1) of sets with distinguished elements e
(n)
i ∈ C(n) (1 ≤ i ≤ n) and

mappings

Fnk : C(n) ×
(
C(k)

)n
→ C(k), (f, g1, . . . , gn) 7→ f (g1, . . . , gn) (n, k ≥ 1) ,

such that the following three axioms are satisfied for all f ∈ C(n), g1, . . . , gn ∈ C(k),
h1, . . . , hk ∈ C(l) (n, k, l ≥ 1):

e
(n)
i (g1, . . . , gn) = gi (i = 1, . . . , n) ,

f
(
e
(n)
1 , . . . , e(n)n

)
= f,

f (g1, . . . , gn) (h1, . . . , hk) = f (g1 (h1, . . . , hk) , . . . , gn (h1, . . . , hk)) .

The notion of a subclone, clone homomorphism and factor clone can be defined in a
natural way, and the isomorphism theorems can be proved for abstract clones.

Every concrete clone can be regarded as an abstract clone if we let e
(n)
i be the i-th

n-ary projection, and Fnk (f, g1, . . . , gn) be the composition of f by g1, . . . , gn, as we

have already indicated it in the notation. We will call the elements e
(n)
i projections,

the mappings Fnk composition operations, and C(n) the n-ary part of C, even if the
elements of the abstract clone are not functions. However, every abstract clone is
isomorphic to a concrete clone, so we can always assume that the elements of the
clone are actually functions.

There is a close relationship between abstract clones and varieties; roughly speak-
ing, abstract clones are the same as varieties up to term-equivalence [Ke, LP]. To
explain this more explicitly, let us fix an abstract clone C, and a generating set F of
C. For any clone homomorphism ϕ from C to a concrete clone on some set A we can
construct the algebra A = (A;ϕ (F )) whose clone is ϕ (C). It is not hard to see that
the algebras arising this way form a variety. If we choose another set of generators,
then we get another variety which is term-equivalent to the previous one. Conversely,
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a clone can be assigned to every variety, namely the clone of the countably generated
free algebra of the variety, and these two correspondences between clones and vari-
eties are inverses of each other (up to isomorphism of clones and term-equivalence of
varieties).

If C and V correspond to each other, then subvarieties of V correspond to factor
clones of C, and the congruence lattice of C is dually isomorphic to the subvariety
lattice of V. If V is generated by A, then C ∼= CloA, and an algebra B (of the
appropriate type) belongs to V iff CloB is a homomorphic image of CloA. An im-
portant special case is when B is a subalgebra of A. In this case the restriction map
CloA→ CloB, f 7→ f |B is a surjective clone homomorphism.

All clones on a given set A form a lattice with respect to inclusion; the smallest
element of this lattice is the trivial clone, the clone of all projections on A, while
the greatest element is the clone of all finitary operations on A. These clones will be
denoted by IA andOA respectively. The elements of the trivial clone (the projections)
will be referred to as trivial functions. An abstract clone C is called trivial if C(n) ={
e
(n)
1 , . . . , e

(n)
n

}
for all n ≥ 1.

We say that C is a minimal clone, if it has exactly two subclones: the trivial clone
and C itself. In the case of concrete clones on a given set A, we can identify minimal
clones as the atoms of the clone lattice. On finite sets there are finitely many minimal
clones, and every clone contains a minimal one (cf. [PK, Qu2, Sz]).

Clearly, a nontrivial clone is minimal iff it is generated by any of its nontrivial
elements. Therefore all minimal clones are one-generated, thus they arise as clones
of algebras with a single basic operation. It is convenient to choose a function of
the least possible arity as a generator of a minimal clone. These generators are
called minimal functions: f is a minimal function iff [f ] is a minimal clone and
there is no nontrivial function in [f ] whose arity is less than the arity of f . Ac-

cording to Świerczkowski’s lemma [Sw], a minimal function must be either a unary
operation, a binary idempotent operation, a ternary majority or minority operation
or a semiprojection. Rosenberg’s theorem [Ro, Sz] characterizes minimal unary and
ternary minority operations, but for the other three types a general description of
minimal functions (or clones) seems to be far beyond reach.

There are numerous partial results that describe minimal clones or minimal func-
tions under certain assumptions, and the goal of this paper is to prove a new theorem
of this kind. In the next section we recall only a few facts about minimal clones that
we will need in the sequel; for a survey of minimal clones see [Cs3] and [Qu2]. In
Section 3 we prove a theorem about the possible symmetries of majority functions
in a minimal clone (Theorem 3.3), and in Section 4 we use this theorem to obtain
a characterization of those minimal clones generated by a majority operation which
contain at most seven ternary operations (Theorem 4.1).

2. Preliminaries

For brevity we will say that C is a majority clone if C = [f ] where f is a majority
operation, i.e. f satisfies the identities

f (x, x, y) = f (x, y, x) = f (y, x, x) = x.

First we state and prove a very special property of majority clones. This fact seems
to be folklore; usually it is derived from Rosenberg’s theorem or from Świerczkowski’s
lemma. Here we give an almost self-contained proof.

Theorem 2.1 ([Cs2]). Let C be a clone generated by a majority operation f . If every
majority operation in C generates f , then C is a minimal clone.

Proof. The key is the following observation, which can be proved by a simple induc-
tion argument [Cs2]. If g is a nontrivial operation in a clone generated by a majority
function, then g is a so-called near-unanimity operation, i.e. it satisfies the identities

g(y, x, x, . . . , x, x) = g(x, y, x, . . . , x, x) = · · · = g(x, x, x, . . . , x, y) = x.
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We show that any near-unanimity function g of arity n ≥ 4 produces a non-
trivial function of arity n − 1 by a suitable identification of its variables. Let us
suppose that g (x, x, x3, . . . , xn) is a projection. Identifying all the xis except for
xn with x, we get a projection onto x by the near-unanimity property, therefore
g (x, x, x3, . . . , xn) cannot be a projection onto xn. This can be done for any xi
instead of xn, thus g (x, x, x3, . . . , xn) has to be a projection onto x. If we sup-
pose that g (x1, x2, y, y, x5, . . . , xn) is also a projection, then a similar argument
shows that it must be a projection onto y. Now we have a contradiction, be-
cause g (x, x, y, y, x5, . . . , xn) is a projection to x and y at the same time (this is
where we use that n ≥ 4). Thus we have proved that either g (x, x, x3, . . . , xn) or
g (x1, x2, y, y, x5, . . . , xn) is nontrivial.

Now if g is an at least quaternary near-unanimity function in the clone C, then
it produces a nontrivial function of arity one less, which is again a near-unanimity
function, since it is still generated by f . Hence if this new function is still of arity
at least 4, then it produces a near-unanimity function of lesser arity too, and we
can continue this way until we end up with a near-unanimity function of arity 3,
i.e. a majority operation. Since it was supposed that every majority operation in
C generates f , we have f ∈ [g], hence C = [g], and this shows that C is a minimal
clone. �

The advantage of this property is that in order to prove the minimality of a ma-
jority clone it suffices to consider the ternary part of the clone. On a finite set this
means a finite number of functions, while in the binary and semiprojection case one
has to consider infinitely many functions.

Restricting our attention to the ternary operations of an abstract clone we get the

algebra
(
C(3);F 3

3 , e
(3)
1 , e

(3)
2 , e

(3)
3

)
. We will refer to this algebra as the ternary part of

C, and denote it briefly by C(3). This is an algebra with one quaternary and three
nullary operations satisfying the following identities.

F 3
3

(
e
(3)
i , f1, f2, f3

)
= fi (i = 1, 2, 3)

F 3
3

(
f, e

(3)
1 , e

(3)
2 , e

(3)
3

)
= f

F 3
3

(
F 3
3 (f, g1, g2, g3) , h1, h2, h3

)
=

F 3
3 (f, F 3

3 (g1, h1, h2, h3) , F 3
3 (g2, h1, h2, h3) , F 3

3 (g3, h1, h2, h3))

Now Theorem 2.1 can be formulated in the following way: A majority clone C is

minimal iff
{
e
(3)
1 , e

(3)
2 , e

(3)
3

}
is the only proper subalgebra of C(3).

As opposed to the case of binary operations and semiprojections, there are not
many examples of minimal majority functions. The simplest ones are the median
function (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x) on any lattice [PK], and the dual discriminator
function on any set [CsG, FP]. The description of minimal clones on the three-element
set given by B. Csákány [Cs1] yields some more examples.

Theorem 2.2 ([Cs1]). If f is a minimal majority function on a three-element set,
then f is isomorphic to one of the twelve majority functions shown in Table 1. These
functions belong to three minimal clones containing 1, 3 and 8 majority operations
respectively, as shown in the table.

Note that we have omitted those triples in the table where the majority rule
determines the value of the functions. Let us also observe that m1 can be defined as
the median function of the three-element chain (with the unusual order 2 < 1 < 3 or
3 < 1 < 2), and m2 is nothing else but the dual discriminator, up to a permutation
of variables (the third function in [m2] is actually the dual discriminator).

Based on this theorem, B. Csákány obtained a characterization of minimal majority
operations which are conservative [Cs2]. A function is conservative if it preserves
every subset of the underlying set (cf. [Qu1]). It is clear that if f is a conservative
minimal majority function on a set A, and B ⊆ A is a three-element subset, then
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m1 m2 m3

(1, 2, 3) 1 1 2 3 3 3 1 3 1 1 3 1
(2, 3, 1) 1 2 3 1 3 1 3 3 1 3 1 1
(3, 1, 2) 1 3 1 2 3 3 3 1 1 1 1 3
(2, 1, 3) 1 2 1 3 1 3 1 1 3 1 3 3
(1, 3, 2) 1 1 3 2 1 1 1 3 3 3 3 1
(3, 2, 1) 1 3 2 1 1 1 3 1 3 3 1 3

Table 1. Minimal majority functions on the three-element set

f |B is a minimal majority function on B. Thus f |B is isomorphic to one of the above
twelve functions. These restrictions determine f , so we can say that f is somehow
glued together from copies of the functions listed in Table 1.

We do not quote the result here, but let us note that from this description it
follows that there are only four conservative minimal majority clones up to isomor-
phism of the ternary part of the clone (but not up to isomorphism of the whole
clone; see the example in Section 3). For three of them the ternary part is isomor-

phic to [m1]
(3)
, [m2]

(3)
, [m3]

(3)
respectively, hence they contain 1, 3 and 8 majority

operations, while the fourth one contains 24 majority operations.
As the next theorem shows, the nonconservative minimal majority functions on

the four-element set are quite similar to those on the three-element set.

Theorem 2.3 ([Wa]). If f is a minimal majority function on a four-element set,
then f is either conservative, or isomorphic to one of the twelve majority functions
shown in Table 2. These functions belong to three minimal clones containing 1, 3 and
8 majority operations respectively, as shown in the table. (The middle two rows mean
that if {a, b, c} equals {1, 2, 4} or {1, 3, 4}, then the value of the functions on (a, b, c)
is 4.) Moreover, the clone generated by Mi is isomorphic to [mi].

M1 M2 M3

(1, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 1) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 1, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 1, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(1, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 1) 4 3 2 4 4 4 3 4 3 3 4 3
{1, 2, 4} 4 4 4 4 4 4 4 4 4 4 4 4
{1, 3, 4} 4 4 4 4 4 4 4 4 4 4 4 4
(4, 2, 3) 4 4 2 3 3 3 4 3 4 4 3 4
(2, 3, 4) 4 2 3 4 3 4 3 3 4 3 4 4
(3, 4, 2) 4 3 4 2 3 3 3 4 4 4 4 3
(2, 4, 3) 4 2 4 3 4 3 4 4 3 4 3 3
(4, 3, 2) 4 4 3 2 4 4 4 3 3 3 3 4
(3, 2, 4) 4 3 2 4 4 4 3 4 3 3 4 3

Table 2. Nonconservative minimal majority functions on the four-
element set

In the above examples, and actually for all known examples of minimal majority
clones, the ternary part of the clone is isomorphic to the ternary part of a conser-
vative clone. Thus we have only four examples for minimal majority clones up to
isomorphism of the ternary part of the clones, so it is natural to ask if there are
other examples at all. We investigate this question by describing minimal majority
clones with few (at most seven) ternary operations. It turns out that if C is such a
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clone, then C(3) is isomorphic to [m1]
(3)

or [m2]
(3)

. Let us note that the binary case
is studied in [LP], where binary minimal clones with at most seven binary operations
are determined.

3. Symmetries of minimal majority functions

For any abstract clone C, the symmetric group Sn acts naturally on C(n): applying
a permutation π ∈ Sn to f ∈ C(n) we get

(3.1) f
(
e
(n)
π(1), e

(n)
π(2), . . . , e

(n)
π(n)

)
.

In the case of concrete clones this means that we permute the variables of f , and we
will adopt this terminology to the abstract case, even though we cannot speak about
variables here. If f is a nontrivial operation, then so are the operations of the form
(3.1), hence Sn acts on C(3) \ I, too. Let us denote by σ(f) the stabilizer of f , i.e.
the group of permutations leaving f invariant.

If f is a majority operation, then σ(f) is a subgroup of S3, therefore it has 1, 2, 3
or 6 elements. If σ(f) ⊇ A3, then we say that f is cyclically symmetric, and if
σ(f) = S3, then we say that f is totally symmetric.

If C is a majority clone with just one majority operation, then the majority rule
and the clone axioms completely determine the structure of C(3), and it is clear from
Theorem 2.1 that in this case C is minimal. For example, [m1] is such a clone, so we
have the following theorem.

Theorem 3.1. If C is a minimal clone with one majority operation, then C(3) is

isomorphic to [m1]
(3)

.

If f is the unique majority operation in such a clone, then every nontrivial ternary
superposition of f yields f itself. In particular, f is totally symmetric, and satisfies
f (f (x, y, z) , y, z) = f (x, y, z). It is easy to check that this identity together with
the total symmetry ensures that f does not generate any nontrivial ternary operation
other than f . Thus the clones described in the above theorem are exactly the factor
clones of the clone of the variety M1 defined by the following identities:

(3.2) f (x, y, z) = f (y, z, x) = f (y, x, z) = f (f (x, y, z) , y, z) , f (x, x, y) = x.

This variety has infinitely many subvarieties, therefore there are infinitely many
nonisomorphic minimal clones with just one majority operation. To show this, we
will construct a subdirectly irreducible (in fact, simple) algebra An ∈ M1 of size n
for every n > 6. Since M1 is congruence distributive, Am /∈ HSP(An) if m > n by
Jónsson’s lemma, hence the subvarieties HSP(An) are all different, and the clones
CloAn are pairwise nonisomorphic.

Example. Let An = ({1, 2, . . . , n} ; f), where f is a totally symmetric majority
operation defined for 1 ≤ a < b < c ≤ n by

f (a, b, c) =


a if

⌈
a+c
2

⌉
< b;

b if b =
⌊
a+c
2

⌋
or b =

⌈
a+c
2

⌉
;

c if b <
⌊
a+c
2

⌋
.

Note that it suffices to define f (a, b, c) for a < b < c since f is a totally symmetric
majority function. Let us consider the elements of An as points on the real line. We
will call the points

⌊
a+c
2

⌋
and

⌈
a+c
2

⌉
the midpoints of the segment between a and c.

(Segments of even length have one midpoint, but segments of odd length have two
midpoints!) If a < b < c and b is a midpoint of the segment between a and c, then
f (a, b, c) = b, otherwise f (a, b, c) is that endpoint of this segment which is farther
from b.

It is easy to check that An ∈M1 (note that f is conservative), and we claim that
An is simple if n > 6. Let us first observe that since f is a majority operation, any
congruence class I has the following property: if at least two of a, b, c belong to I,
then f (a, b, c) ∈ I. Let us call such subsets ideals of An. If I is an ideal and a, c ∈ I,
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then I contains the midpoints of the segment between a and c. Successively taking
midpoints we can reach any point between a and c, therefore this whole segment
belongs to I, i.e. ideals are convex.

Let ϑ be a nontrivial congruence of An, and let a be the least element of An that
belongs to a non-singleton block I of ϑ. Since a is the smallest element of I, which
is a convex set with at least two elements, we must have a + 1 ∈ I. If a ≥ 4, then
f (1, a, a+ 1) = 1, and by the ideal property f (1, a, a+ 1) ∈ I. Now 2 ∈ I follows by
convexity, and then n = f (1, 2, n) ∈ I (here we need that n ≥ 5). As both 1 and n
belong to I, we have I = {1, 2, . . . , n}, i.e. ϑ is the total relation on An.

If a+ 1 ≤ n− 3, then a similar argument works: n = f (a, a+ 1, n) ∈ I, and then
1 = f (1, n− 1, n) ∈ I, therefore ϑ is the total relation again. The assumption n > 6
ensures that at least one of a ≥ 4 and a + 1 ≤ n − 3 holds, hence An is simple, as
claimed.

Let C be a majority minimal clone. To simplify the notation we will just write 1, 2
and 3 for the first, second and third ternary projections respectively, and numbers
greater than 3 will denote nontrivial elements of C(3). Our next goal is to prove that
if all majority functions in C are cyclically symmetric, then there is only one majority

operation in the clone, i.e. C(3) ∼= [m1]
(3)

. In preparation, we introduce three binary
operations on the ternary part of C.

f ∗ g = f (g (1, 2, 3) , g (2, 3, 1) , g (3, 1, 2))

f • g = f (g (1, 2, 3) , 2, 3)

f } g = f (1, g (1, 2, 3) , g (1, 3, 2))

Theorem 3.2. The operations ∗, • and } are associative, and if C is a majority
clone, then C(3) \ I is closed under them. Therefore if C(3) is finite, then it contains
a nontrivial idempotent element for each of these operations.

Proof. It is easy to check that if f and g are majority operations, then so are f ∗g, f •g
and f } g, hence C(3) \ I is closed under these three operations. Associativity can be
checked by a routine calculation using the three defining axioms of abstract clones.
We work out the details for }, the other two cases are similar. Let us compute
(f } g)} h first:

(f } g)} h = (f } g) (1, h (1, 2, 3) , h (1, 3, 2))

= f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) , g (1, h (1, 3, 2) , h (1, 2, 3))) .

For f } (g } h) we have

f } (g } h) = f (1, (g } h) (1, 2, 3) , (g } h) (1, 3, 2))

= f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) (1, 2, 3) , g (1, h (1, 2, 3) , h (1, 3, 2)) (1, 3, 2))

= f (1, g (1, h (1, 2, 3) , h (1, 3, 2)) , g (1, h (1, 3, 2) , h (1, 2, 3))) .

The last statement of the theorem follows since every finite semigroup contains
an idempotent element. Let us note that this fact is proved for the operation • in
Lemma 4.4 of [HM] and for ∗ in Theorem 2.2 of [Wa]. �

Now we are ready to prove the main result of this section. This theorem is an
analogue of a theorem of J. Dudek and J. Ga luszka which states that if a binary
minimal clone contains finitely many nontrivial binary operations all of which are
commutative, then there is just one nontrivial binary operation in the clone [DG].

Theorem 3.3. Let C be a majority minimal clone with finitely many ternary op-
erations. If every nontrivial ternary operation in C is cyclically symmetric, then C
contains only one nontrivial ternary operation, hence C(3) ∼= [m1]

(3)
.

Proof. Let C(3) = {1, 2, . . . , n}, where 1, 2, 3 are the ternary projections as before.
First let us assume that there is no totally symmetric majority function in C, i.e.
σ(f) = A3 for all f ≥ 4. By Theorem 3.2 there is a nontrivial }-idempotent, say
4}4 = 4. Since 4 is not invariant under the transposition (23), the element 4 (1, 3, 2)
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is different from 4, thus we may suppose without loss of generality that 4 (1, 3, 2) = 5.
We have 4 (1, 4, 5) = 4 } 4 = 4, hence 4 (1, 4, 5) = 4 (4, 5, 1) = 4 (5, 1, 4) = 4 because
4 is cyclically symmetric. We can compute 4 (1, 5, 4) as well, using the associativity
of composition:

4 (1, 5, 4) = 4 (1 (1, 3, 2) , 4 (1, 3, 2) , 5 (1, 3, 2)) = 4 (1, 4, 5) (1, 3, 2) = 4 (1, 3, 2) = 5.

Thus we have 4 (1, 5, 4) = 4 (5, 4, 1) = 4 (4, 1, 5) = 5 , therefore 4 preserves {1, 4, 5},
and its restriction to this set is isomorphic to m3. However, m3 generates majority
operations that are not cyclically symmetric (see Table 1), and this contradicts our
assumption that every nontrivial ternary operation of C is cyclically symmetric.

This contradiction shows that C must contain at least one totally symmetric ma-
jority function. If f and g are totally symmetric, then f • g is invariant under the
transposition (23):

(f • g) (1, 3, 2) = f (g (1, 2, 3) , 2, 3) (1, 3, 2)

= f (g (1, 3, 2) , 3, 2) = f (g (1, 2, 3) , 2, 3) = f • g.

Since f • g is nontrivial, it is also cyclically symmetric, hence σ(f • g) = S3. Thus
totally symmetric majority functions form a finite semigroup under •, so there is a
totally symmetric f ∈ C(3) \ I with f • f = f . Then f satisfies the identities in (3.2),

hence [f ]
(3) ∼= [m1]

(3)
. By the minimality of C we have [f ] = C, and this proves the

theorem. �

Corollary 3.4. If C is a majority minimal clone with 2 ≤
∣∣C(3) \ I∣∣ < ℵ0, then the

action of S3 on C(3) \ I has an orbit with at least 3 elements.

Proof. By the previous theorem there is a nontrivial operation f ∈ C(3) which is not
cyclically symmetric. Thus σ(f) has at most 2 elements, and therefore the size of the
orbit of f is 6/ |σ(f)| ≥ 3. �

4. Minimal clones with at most seven ternary operations

In this section we are going to prove the following characterization of majority
minimal clones with at most seven ternary operations.

Theorem 4.1. If C is a majority minimal clone with at most seven ternary opera-

tions, then C(3) is isomorphic to either [m1]
(3)

or [m2]
(3)

.

Since there are three ternary projections, the clones under consideration contain
1, 2, 3 or 4 majority operations. Theorem 3.1 describes the minimal clones with
one majority operation, and from Corollary 3.4 we see immediately that there is no
minimal clone with exactly two majority operations. We will deal with the cases of
three and four majority operations in two separate lemmas.

Lemma 4.2. If C is a minimal clone with three majority operations, then C(3) is

isomorphic to [m2]
(3)

.

Proof. Let C be a minimal clone with three majority functions, and let C(3) =
{1, 2, 3, 4, 5, 6}, where 1, 2, 3 are the ternary projections. Considering the orbits of
the action of S3 on {4, 5, 6} we see by Corollary 3.4 that the only possibility is that
there is just one orbit, i.e. any two nontrivial ternary operations can be obtained form
each other by cyclic permutations of variables. We can suppose that 4 (2, 3, 1) = 5
and 5 (2, 3, 1) = 6 (and then 6 (2, 3, 1) = 4).

Any composition of majority operations is again a majority operation, therefore
the set C(3) \ I = {4, 5, 6} is preserved by 4. This implies that every operation in C
preserves {4, 5, 6}, since C = [4] . Thus we have a clone homomorphism

ϕ : C → O{4,5,6}, f 7→ f |{4,5,6}.

We claim that ϕ is injective on {1, 2, 3, 4, 5, 6}. Clearly it suffices to show that
ϕ (4) 6= ϕ (5) 6= ϕ (6) 6= ϕ (4). We prove the first unequality, the other two are
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similar. Let us compute 5 (4, 5, 6) using the associativity of composition:

5 (4, 5, 6) = 4 (2, 3, 1) (4, 5, 6) = 4 (5, 6, 4)

= 4 (4 (2, 3, 1) , 5 (2, 3, 1) , 6 (2, 3, 1)) = 4 (4, 5, 6) (2, 3, 1) .

Since 4 (4, 5, 6) ∈ {4, 5, 6} and none of these three elements are invariant under
the permutation (231), we have 5 (4, 5, 6) = 4 (4, 5, 6) (2, 3, 1) 6= 4 (4, 5, 6). Thus
4|{4,5,6} 6= 5|{4,5,6} as claimed.

Now we see that C(3) is isomorphic to its image under ϕ, which is the ternary

part of a minimal clone on a three-element set. Therefore C(3) ∼= [mi]
(3)

for some
i ∈ {1, 2, 3}. The cardinality of C(3) is 6, so we must have i = 2, and the lemma is
proved. �

Remark. The previous lemma can be formulated in terms of algebras and varieties
as follows. LetM2 be the variety defined by the three-variable identities satisfied by
({1, 2, 3} ;m2). If f is a majority operation on a set A, then [f ] is a minimal clone
with exactly three majority operations iff (A; f) is term-equivalent to an element of
M2 \M1. Note that no two different subvarieties of M2 are term-equivalent, since
for any A = (A; f) ∈M2 the basic operation f is the only nontrivial ternary function
in CloA which is invariant under the transposition (23). This means that in order to
show that there are infinitely many nonisomorphic minimal clones with three majority
operations, it suffices to verify that the variety M2 has infinitely many subvarieties
that are not contained inM1. If dA is the dual discriminator function on a set A with
at least three elements, then (A; dA (z, y, x)) ∈ M2 \ M1, and by Jónsson’s lemma
we have (B; dB (z, y, x)) /∈ HSP (A; dA (z, y, x)) if A is finite and |A| < |B|. Thus the
algebras (A; dA (z, y, x)) with A = {1, 2, . . . , n} and n ≥ 3 generate pairwise different
subvarieties of M2 that are not contained in M1.

Lemma 4.3. There is no minimal clone with four majority operations.

Proof. Let us suppose that C is a minimal clone with four majority functions, and
let C(3) = {1, 2, 3, 4, 5, 6, 7}, with 1, 2, 3 being the ternary projections. Corollary
3.4 shows that there are two orbits under the action of S3 on {4, 5, 6, 7}: a three-
element and a one-element orbit. Thus one of the four nontrivial operations is totally
symmetric, the other three operations have two-element invariance groups, and the
latter three functions can be obtained from each other by cyclic permutations of their
variables. We may assume without loss of generality that 7 is totally symmetric, and
4, 5 and 6 are invariant under the transpositions (23), (13) and (12) respectively.
Then we must have 4 (2, 3, 1) = 5, 5 (2, 3, 1) = 6 and 6 (2, 3, 1) = 4.

Since any composition of majority operations is nontrivial, every operation in
C preserves {4, 5, 6, 7}. Restricting to this set, we obtain (the ternary part of) a
minimal clone on a four-element set. The operation 7 (4, 5, 6) is easily seen to be
totally symmetric: applying a permutation to 7 (4, 5, 6) will just permute 4, 5 and
6 in the arguments of 7, and this has no effect on the final value, as 7 is totally
symmetric. Since the only totally symmetric operation in C(3) is 7, we must have
7 (4, 5, 6) = 7. This means that the restriction of 7 to {4, 5, 6, 7} is a totally symmetric
minimal majority operation that is not conservative. Now Theorem 2.3 implies that
7|{4,5,6,7} is isomorphic to M1, so 7 (a, b, c) = 7 for any pairwise distinct a, b, c ∈
{4, 5, 6, 7}. Moreover, since M1 does not generate any majority operation but itself,
the operations 4, 5, 6, 7 coincide with each other on {4, 5, 6, 7}:
(4.1) f (a, b, c) = 7 if f, a, b, c ∈ {4, 5, 6, 7} and a, b, c are pairwise distinct.

In particular, we have 6 (6, 4, 5) = 7, and taking into account that 4 and 5 are obtained
from 6 by cyclic permutations of variables, this can be written as 6 ∗ 6 = 7.

In what follows, we will compute many more compositions until we get a contra-
diction by constructing a nontrivial ternary operation in C which is different from
4, 5, 6 and 7.

The operation 7 (1, 2, 7) is invariant under the transposition (12), hence it is either 6
or 7. The latter is impossible, since 7 (1, 2, 7) = 7 implies that 7 satisfies the identities
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in (3.2), and then the clone generated by 7 would contain just one nontrivial ternary
operation. Thus we have 7 (1, 2, 7) = 6, and by the total symmetry of 7 it follows
that

(4.2) 7 (1, 2, 7) = 7 (7, 1, 2) = 7 (2, 7, 1) = 6.

Let us now consider the values of 6 on (1, 2, 7) , (2, 7, 1) , (7, 1, 2). We have 6 (1, 2, 7) ∈
{6, 7} since 6 (1, 2, 7) is invariant under (12). Applying this transposition to 6 (2, 7, 1)
we obtain 6 (7, 1, 2):

6 (2, 7, 1) (2, 1, 3) = 6 (1, 7, 2) = 6 (7, 1, 2) .

Therefore either both 6 (2, 7, 1) and 6 (7, 1, 2) are equal to 6 or 7, or one of them is 4,
the other one is 5. The resulting eight possibilities are summarized in the following
table.

(4.3)

6 (1, 2, 7) 6 6 6 6 7 7 7 7
6 (2, 7, 1) 7 6 4 5 7 6 4 5
6 (7, 1, 2) 7 6 5 4 7 6 5 4

↑ ↑
Let us consider any of the eight columns, and let a, b, c be the elements in this

column. Then using the fact that 7 = 6 ∗ 6, we obtain

7 (1, 2, 7) = 6 (6 (1, 2, 7) , 6 (2, 7, 1) , 6 (7, 1, 2)) = 6 (a, b, c) .

For the two columns marked by the arrows this gives 7 (1, 2, 7) = 6 by the majority
rule. Similarly, for the first and the fifth column the majority rule yields 7 (1, 2, 7) =
7, and in the remaining four cases we get 7 (1, 2, 7) = 7 again, according to (4.1).
However, we already know from (4.2) that 7 (1, 2, 7) = 6, so one of the two possibilities
indicated by the arrows takes place. In both cases we have

(4.4) 6 (2, 7, 1) = 6.

Now we go on to collect some information about the function 7. For the reader’s
convenience, we put the number of the equation being used over the equality sign in
the following calculations.

First of all, using (4.2) and (4.4) we obtain

7 (6, 2, 7)
(4.2)
= 7 (7, 1, 2) (2, 7, 1)

(4.2)
= 6 (2, 7, 1)

(4.4)
= 6.

Permuting variables we get

7 (4, 3, 7) = 7 (6, 2, 7) (2, 3, 1) = 6 (2, 3, 1) = 4;(4.5a)

7 (5, 3, 7) = 7 (6, 2, 7) (1, 3, 2) = 6 (1, 3, 2) = 5.(4.5b)

We already know from (4.1) that 7 (4, 5, 7) = 7, and let us suppose for a moment
that 7 (4, 5, 3) = 7. Then (4.5) shows that 7 preserves {3, 4, 5, 7}, and its restric-
tion to this four-element set is a totally symmetric nonconservative minimal majority
function. Therefore it is isomorphic to M1 by Theorem 2.3. However, this is clearly
not the case. This contradiction shows that 7 (4, 5, 3) 6= 7. Let us observe that
7 (4, 5, 3) (2, 1, 3) = 7 (5, 4, 3) = 7 (4, 5, 3), i.e. 7 (4, 5, 3) is invariant under the trans-
position (12). Since 6 and 7 are the only nontrivial functions in our clone which are
invariant under (12), we must have

(4.6) 7 (4, 5, 3) = 6.

Next we calculate the value of 6 (4, 5, 3):

(4.7) 6 (4, 5, 3)
(4.2)
= 7 (1, 2, 7) (4, 5, 3)

(4.6)
= 7 (4, 5, 6)

(4.1)
= 7.

Note that 6 (3, 4, 5) (2, 1, 3) = 6 (3, 5, 4) = 6 (5, 3, 4), hence similarly to the previous
table, we can list the possible behaviours of 6 on {(4, 5, 3) , (5, 3, 4) , (3, 4, 5)}.

(4.8)

6 (4, 5, 3) 7 7 7 7
6 (5, 3, 4) 7 6 5 4
6 (3, 4, 5) 7 6 4 5

↑
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We can read 7 (4, 5, 3) from this table in the same way as we read 7 (1, 2, 7) from (4.3).
We see that 7 (4, 5, 3) = 7 in three of the four cases. However, we already know that

7 (4, 5, 3)
(4.6)
= 6, so the only possibility is the one marked by the arrow.

Finally, to reach the desired contradiction, let us consider 6 (2, 3, 6). Denoting this
composition by f , we show that f (4, 5, 3) = 5:

f (4, 5, 3) = 6 (2, 3, 6) (4, 5, 3)
(4.7)
= 6 (5, 3, 7)

(4.2)
= 7 (1, 2, 7) (5, 3, 7)

(4.5b)
= 7 (5, 3, 5) = 5.

The operation f is nontrivial, but it does not coincide with any of 4, 5, 6 or 7,
because the value of these functions on (4, 5, 3) is different from 5. Indeed, we have

4 (4, 5, 3) = 6 (5, 3, 4)
(4.8)
= 6;

5 (4, 5, 3) = 6 (3, 4, 5)
(4.8)
= 6;

6 (4, 5, 3)
(4.7)
= 7;

7 (4, 5, 3)
(4.6)
= 6.

Thus we have more than four majority operations in our clone, and this contradiction
completes the proof. �
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