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ON ASSOCIATIVE SPECTRA OF OPERATIONS

SEBASTIAN LIEBSCHER AND TAMÁS WALDHAUSER

Abstract. The distance of an operation from being associative can be “mea-
sured” by its associative spectrum, an appropriate sequence of positive integers.

Associative spectra were introduced in a publication by B. Csákány and T. Wald-
hauser in 2000 for binary operations (see [1]). We generalize this concept to
2 ≤ p-ary operations, interpret associative spectra in terms of equational the-
ories, and use this interpretation to find a characterization of fine spectra, to

construct polynomial associative spectra, and to show that there are continuum
many different spectra. Furthermore, an equivalent representation of bracketings
is studied.

1. Introduction

B. Csákány and T. Waldhauser introduced associative spectra for binary operations
in[1]. The main focus point in their paper was the spectrum of groupoids with two or
three elements.

In this paper, we generalize first in Section 2 the definition of associative spectrum
to 2 ≤ p-ary operations with the help of special unary terms, which will be called brack-
etings. Enumerations are used to distinguish between the variable symbols in a brack-
eting. Using these enumarations it is possible to define a reduct ModBrack − IdBrack of
the well-known Galois-connection Mod− Id. The Galois-closed sets on the side of
the identities are called fine spectra, which is a refinement of the notion of associative
spectrum. Finally, some useful operations on bracketings are defined which are needed
in the characterization of fine spectra. In Section 3 we give the characterization of fine
spectra and a first application of it, a generalization of the generalized associative law.
After that, insertion tuples are developed as an equivalent representation of bracket-
ings in Section 4. With the help of these tuples the explicit formula of the generalized
Catalan numbers is proven, where the generalized Catalan numbers count brack-
etings of a given length. In Section 5 three different polynomial spectra are presented
which solve Problem 3 in [1]. The lattice of fine spectra is studied in Section 6. The
covering relation, the atoms and the coatoms of this lattice are described. Further-
more, it is shown that there are continuum many different spectra. In Section 7 we
look at some examples of finite groupoids (one of them has a polynomial spectrum
from Section 5). It is shown that every finally associative spectrum appears as the
fine spectrum of a finite groupoid. We conclude in Section 8 with the formulation of
a few open problems.

2. Definitions and notation

The algebra of p-ary bracketings is defined as the term algebra

T(p) :=
(
Tω(x), ω

T(p)
)
,

where p is a natural number greater or equal to 2, the alphabet is {x} and the signature
is {ω} with ω as a p-ary operation symbol.
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Table 1. Binary bracketings, their tree correspondences and their
insertion tuples

We call the (unary) terms t ∈ Tω(x) p-ary bracketings or simply bracketings if p is
known. The occurrence number |t|ω of a bracketing t ∈ Tω(x) is defined as the number
of occurrences of the operation symbol ω in t. The following trivial equalities hold:

|x|ω = 0 and ∀t1, . . . , tp ∈ Tω(x) : |ωt1 . . . tp|ω = 1 +

p∑

k=1

|tk|ω .

The length |t| of a bracketing t ∈ Tω(x) is defined as the number of occurrences of the
variable symbol x in t. It is an easy observation to show that |t| = (p − 1) · |t|ω + 1
holds for all bracketings t ∈ Tω(x). The length could be defined recursively too:

|x| = 1 and ∀t1, . . . , tp ∈ Tω(x) : |ωt1 . . . tp| =

p∑

k=1

|tk| .

Bracketings with occurrence number n can be viewed as trees with branching factor
p, n inner nodes and (p− 1) · n+ 1 leafs (because the symbols ω are the inner nodes
and the symbols x are the leafs). We denote by

B(p)
n := { t ∈ Tω(x) | |t|ω = n}

the set of all bracketings with occurrence number n. The length function, which
transforms occurrence numbers into lengths, is given by

ℓ(p) : N −→ N+

n 7−→ (p− 1) · n+ 1.

For example, the first binary bracketings are given in Table 1 (insertion tuples are
defined in Definition 4.2).

In the next step we want to distinguish between the variable symbols x in a brack-
eting. Therefore, we define the enumerations εj : Tω(x) −→ Tω(X) by term induction
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as follows, where T(p)(X) =
(
Tω(X), ωT(p)(X)

)
is the term algebra over the alphabet

X = {xi | i ∈ N+ }:

• ∀j ∈ N+ : εj (x) = xj ;
• ∀t1, . . . , tp ∈ Tω(x) ∀j ∈ N+ : εj (ωt1 . . . tp) = ωεj1 (t1) . . . εjp (tp) with jm :=

j +
∑m−1

k=1 |tk|.

It is obvious that εj (t) contains exactly the variable symbols
{
xj , . . . , xj+|t|−1

}
. As

an example we look again at some binary bracketings:

εj(ωωxxx) = ωωxjxj+1xj+2 , εj(ωxωxx) = ωxjωxj+1xj+2.

For a simpler notation we denote by

Λ(p) := { (s, t) ∈ Tω(x)× Tω(x) | |s|ω = |t|ω}

the relation of all bracketings with the same occurrence number. It is an easy obser-
vation that Λ(p) is a congruence relation of T(p). Further on, we will denote pairs
(s, t) ∈ Λ(p) simply by s ≈ t and we will call them identities. From the example
above we know that these identities can be interpreted via enumaration as generalized
associativity conditions.

We call an algebra A to the signature {ω} a p-ary groupoid and denote it by
A ∈ Alg (ω). Now we can define a reduct of the well-known Galois-connection
Mod− Id. Let |=Brack⊆ Alg (ω)× Λ(p) be defined as

A |=Brack s ≈ t :⇐⇒ A |= (ε1 (s) , ε1 (t)) .

Because of the full invariance of IdA it is obvious that

A |=Brack s ≈ t =⇒ ∀j ∈ N+ : A |= (εj (s) , εj (t)) .

The Galois-closed sets are given for any Σ ⊆ Λ(p) and K ⊆ Alg (ω) by

• ModBrack Σ := {A ∈ Alg (ω) | ∀s ≈ t ∈ Σ : A |=Brack s ≈ t}, which is of course
a special variety that has additional properties (see open problems);

• IdBrack K :=
{
s ≈ t ∈ Λ(p)

∣∣ ∀A ∈ K : A |=Brack s ≈ t
}
, which is a reduct of

the equational theory of K.

We will further on denote any Σ ⊆ Λ(p) equivalently by the sequence

(Σn)n∈N
:=
(
Σ ∩ (B(p)

n ×B(p)
n )
)
n∈N

.

For a p-ary groupoid A we define two different spectra:

• the fine spectrum of A: σ (A) := IdBrack A, or equivalently (see above)

(σn (A))n∈N with σn (A) = σ (A) ∩ (B
(p)
n ×B

(p)
n );

• the associative spectrum of A: (sn (A))n∈N
:=
(∣∣B(p)

n /σn (A)
∣∣)

n∈N
.

We say that A is associative iff s2 (A) = 1. The following two observations are trivial.

Proposition 2.1. If A ∈ Alg (ω) is a subgroupoid or a homomorphic image of B ∈
Alg (ω), then

σ (A) ⊇ σ (B) and ∀n ∈ N : sn (A) ≤ sn (B) .

Proposition 2.2. If A ∈ Alg (ω) and B ∈ Alg (ω) are isomorphic or antiisomorphic,
then their spectra coincide:

σ (A) = σ (B) .

Finally, we define some useful operations for bracketings:

• γi : Tω(x) −→ Tω(x) (i = 1, . . . , p) is defined as

γi : Tω(x) −→ Tω(x)
t 7−→ ωt1 . . . tp

with ti = t and tk = x for all k ∈ {1, . . . , p} \ {i}. So γi(t) = ωx . . . x t x . . . x
is the insertion of t at the i-th position in ωx . . . x.
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• For the definition of βi (i ∈ N+) we need some auxiliary functions αi:

αi : X −→ Tω(x)

xk 7−→

{
ωx . . . x ∈ B

(p)
1 , if k = i;

x, otherwise.

Denote (here and further on) by α#
i : Tω(X) −→ Tω(x) the unique homomor-

phism that continues αi. Then βi is defined as

βi : Tω(x) −→ Tω(x)

t 7−→ α#
i (ε1 (t)) .

So βi(t) is the insertion of ωx . . . x at the i-th symbol x in t (if present).

It is easy to check that for any bracketing t ∈ B
(p)
n the resulting bracketings γi (t)

(i = 1, . . . , p) and βi (t) (i = 1, . . . , ℓ(p)(n)) are in B
(p)
n+1.

To put these operators together we define for any positive natural number n ∈ N

the implication operator δn as follows:

δn : EqB
(p)
n −→ EqB

(p)
n+1

π 7−→

(⋃
ξ∈{γ1,...,γp,β1,...,βℓ(p)(n)

}
{ξ (s) ≈ ξ (t) | s ≈ t ∈ π}

)∗

,

where EqB
(p)
n denotes the set of equivalence relations on B

(p)
n and τ∗ denotes the

transitive closure of τ .

3. Characterization of fine spectra

Our main goal is to characterize the Galois-closed sets IdBrack K and the fine
spectra of arbitrary groupoids.

First we need three preparatory lemmata. The first one shows a recursion formula
for the operators βi.

Lemma 3.1. For all k ∈ {1, . . . , p} and for all t1, . . . , tp ∈ Tω(x) with i ∈ {1, . . . , |tk|}
we have:

ω t1 . . . tk−1 βi (tk) tk+1 . . . tp = βj (ωt1 . . . tp) ,

where j := i+
∑k−1

l=1 |tl|.

The proof is left to the reader; it is just a transformation of the insertion index.
The next statement shows that all bracketings can be obtained with the operators βi

starting with x.

Lemma 3.2. For all n ∈ N we have

B
(p)
n+1 =

{
βi (t)

∣∣∣ t ∈ B(p)
n , i = 1, . . . , ℓ(p)(n)

}
.

This follows directly from the previous lemma by induction on n.

Lemma 3.3. If Σ ⊆ Λ(p) is an equivalence relation that is closed under the implication
operator, i.e. ∀n ∈ N : δn (Σn) ⊆ Σn+1, then

s ≈ t ∈ Σ =⇒ α# (ε1(s)) ≈ α# (ε1(t)) ∈ Σ

holds for all α : X −→ Tω(x).

Proof. We choose an arbitrary but fixed identity s ≈ t ∈ Σ. Then we apply induction

on n :=
∑|s|

i=1 |α (xi)|ω: For n = 0, α : X −→ Tω(x) must map each xi on x (i =
1, . . . , |s|), thus

α# (ε1(s)) ≈ α# (ε1(t)) = s ≈ t ∈ Σ.

For the induction step from n to n + 1, let k ∈ {1, . . . , |s|} be a position where the
occurrence number is greater than 0, i.e. |α (xk)|ω > 0. By the previous Lemma 3.2,
we can find a bracketing tk and a natural number j ∈ {1, . . . , |tk|} such that

βj (tk) = α (xk) .
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Now we can define a reduct of α:

α̃ : X −→ Tω(x)

xi 7−→

{
α (xi) , if i 6= k;

tk, if i = k.

It is easy to see that
∑|s|

i=1 |α̃ (xi)|ω = n holds. With l := j+
∑k−1

m=1 |α (xm)| it can be
shown with the help of Lemma 3.1 that

βl ◦ α̃
# ◦ ε1 = α# ◦ ε1

holds. Then, together with the induction hypothesis for α̃# and the prerequisite that
Σ is closed under the implication operator, we get α# (ε1(s)) ≈ α# (ε1(t)) ∈ Σ. �

Now we are able to prove our main result, which is an analogon of the well-known
characterization of equational theories.

Theorem 3.4. For any K ⊆ Alg (ω) and Σ ⊆ Λ(p) the following hold:

(a) If Σ is an equivalence relation that is closed under the implication operator
then Σ is a congruence of T(p).

(b) IdBrack K is closed under the implication operator.
(c) If Σ is an equivalence relation that is closed under the implication operator

then IdBrack

{
T(p)/Σ

}
= Σ.

Proof.

(a) It suffices to show that for all i ∈ {1, . . . , p} , s ≈ t ∈ Σ and t1, . . . , tp ∈ Tω(x)
we have

ωt1 . . . ti−1 s ti+1 . . . tp ≈ ωt1 . . . ti−1 t ti+1 . . . tp ∈ Σ.

(The general case follows then by applying this rule repeatedly on each posi-
tion). We know that Σ is closed under the implication operator, so:

γi(s) ≈ γi(t) = ωx . . . x s x . . . x ≈ ωx . . . x t x . . . x ∈ Σ.

According to Lemma 3.2 we have a sequence of natural numbers i1, . . . , i|tp|ω
such that

tp = βi|tp|ω
◦ · · · ◦ βi1 (x) .

So it follows from Lemma 3.1 with jk := ik + p− 2 + |s| that

βj|tp|ω
◦ · · · ◦ βj1 (γi(s)) = ωx . . . x s x . . . x

(
βi|tp|ω

◦ · · · ◦ βi1 (x)
)

= ωx . . . x s x . . . x tp

holds. Similarly we have βj|tp|ω
◦· · ·◦βj1 (γi(t)) = ωx . . . x t x . . . x tp and since

Σ is closed under the implication operator, we get

ωx . . . x s x . . . x tp ≈ ωx . . . x t x . . . x tp ∈ Σ.

This construction step can be repeated, and finally we obtain

ωt1 . . . ti−1 s ti+1 . . . tp ≈ ωt1 . . . ti−1 t ti+1 . . . tp ∈ Σ.

(b) This result follows obviously from the fact that IdK is always a fully invariant
congruence relation of Tω(X) with the help of the following two equations:

ε1 (γi (t)) = ωx1 . . . xi−1 εi(t)xi+|t| . . . xp−1+|t|,

ε1 (βi (t)) = α̃#
i (ε1(t)) ,

where
α̃i : X −→ Tω(X)

xk 7−→





xk, if k < i;

ωxk . . . xk+p−1, if k = i;

xk+p−1, if k > i.
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(c) We investigate two cases: “⊆”: Let s ≈ t ∈ IdBrack

{
T(p)/Σ

}
. Then we have

T(p)/Σ |= ε1(s) ≈ ε1(t). With the full invariance of Id
{
T(p)/Σ

}
and the

function

α : X −→ T(p)/Σ
xk 7−→ [x]

that maps each xk to the equivalence class of x in Tω(x)/Σ it follows that
[s] = α# (ε1(s)) = α# (ε1(t)) = [t]. Therefore, s ≈ t is in Σ.

“⊇”: Follows directly with Lemma 3.3.

�

The following corollary summarizes the last theorem.

Corollary 3.5. For Σ ⊆ Λ(p) the following are equivalent:

(a) Σ is an equivalence relation and Σ is closed under the implication operator.
(b) IdBrack ModBrack Σ = Σ.
(c) There exists a groupoid A such that σ (A) = Σ.

As a first application of our main result we show that the general associative law
and a generalization of it hold.

Theorem 3.6. For any p-ary groupoid A the following hold:

(a) s0 (A) = s1 (A) = 1;
(b) A is associative ⇐⇒ ∀n ∈ N : sn (A) = 1;
(c) sn (A) = 1 =⇒ ∀m ∈ N,m ≥ n : sm (A) = 1 for any n ≥ 2.

If the conclusion of (c) is fulfilled then we say that A and the associative spectrum of
A are finally associative.

Proof.

(a) Absolutely clear because B
(p)
0 = {x} and B

(p)
1 = {ωx . . . x}.

(b) The direction “⇐=” is clear from the definition in Section 2. For the other
direction we suppose that A is associative. For an arbitrary natural number

n ≥ 2 let t ∈ B
(p)
n be the left associated bracketing ω . . . ωx . . . x, which means

that all symbols ω occur before the x’s. Assume we have another bracketing

s ∈ B
(p)
n . We will prove that A |=Brack s ≈ t. Since s is not left associated,

it has a subbracketing of the form ω (t1 . . . tk ω (s1 . . . sp) . . . ) , where k ≥ 1.
Then we have by associativity

A |=Brack ω (t1 . . . tk ω (s1 . . . sp) . . . ) ≈ ω (ω (t1 . . . tk s1 . . . sp−k) sp−k+1 . . . sp . . . ) .

This way one ω is moving to the left, and after finitely many such steps we
reach t, i.e. A |=Brack s ≈ t.

(c) We show this fact via contradiction: Assume that there exists a groupoid
A ∈ Alg (ω) with fine spectrum σ (A) that has the property

∃n ∈ N, n ≥ 2 : sn (A) = 1 and ∃m ∈ N,m > n : sm (A) > 1.

Then define the sequence (Σi)i∈N
in Λ(p) as follows:

Σi :=

{
B

(p)
i ×B

(p)
i , if i < n;

σi (A) , otherwise.

It is easy to see that the corresponding Σ ⊆ Λ(p) is an equivalence relation that
is closed under the implication operator. Therefore, there exists a groupoid
B ∈ Alg (ω) with σ (B) = Σ. This is a contradiction to ((b)) because s2 (B) =
1 but sm (B) > 1.

�
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4. Equivalent representation of bracketings

In this section we are going to define an equivalent representation of bracketings.
First let us look at the number of bracketings with a given occurrence number.

Definition 4.1. The generalized Catalan numbers C
(p)
n (n ≥ 0, p ≥ 1) are defined

by the following recursion:

• C
(p)
0 := 1;

• C(p)
n :=

∑

i1,...,ip∈N,
∑p

k=1 ik=n−1

( p∏

l=1

C
(p)
il

)
.

With respect to the definition of the bracketings as terms of T(p) and the properties

of the occurrence number stated in Section 2,
∣∣∣B(p)

n

∣∣∣ = C
(p)
n follows for all n ∈ N. We

know from [3] that

C(p)
n =

1

(p− 1) · n+ 1
·

(
p · n

n

)

holds for all n ∈ N. We will prove this in a more general form in Theorem 4.6.
With the same idea as above and the fact that σ (A) is a congruence relation in

T(p) we see that for any groupoid A:

∀n ∈ N+ : sn (A) ≤
∑

i1,...,ip∈N,
∑p

k=1 ik=n−1

( p∏

l=1

sil (A)
)
.

Now we are going to define an equivalent representation for bracketings which will
be useful to prove the explicit formula of the generalized Catalan numbers.

Definition 4.2. The insertion tuple of a bracketing t is the tuple IT (t) ∈ N|t|
ω whose

i-th entry is one plus the number of x’s preceding the i-th symbol ω in (the prefix
notation of) t. It can be also defined recursively as follows.

• IT (x) := ∅ ∈ N0;
• IT (ωt1 . . . tp) :=

(
1,v1, . . . ,vp

)
is the consecutive sequence of 1 and the vi

where vi is the insertion tuple of ti with an additional shift that is added to
each entry of the tuple:

vi := IT (ti) +

i−1∑

k=1

|tk| ∈ N|ti|ω .

The shift is exactly the sum of the lengths of the previous bracketings just as
in Lemma 3.1.

The insertion tuples of the first binary bracketings have been presented in Section 2.
We introduce the following notation, which we will need later. For any k ∈ N+ and
n ∈ N let

M
(p)
n,k := {u ∈ Nn | 1 ≤ ui ≤ (p− 1) · (i− 1) + k and ui ≤ uj (1 ≤ i ≤ j ≤ n)} .

The insertion tuples can be characterized as follows.

Proposition 4.3. For t ∈ B
(p)
n the following hold:

(a) IT (t) ∈ Nn.
(b) If we know the insertion tuple u := IT (t) of t, then we also know the insertion

tuple v := IT (βi (t)) of βi (t) (for i = 1, . . . , ℓ(p)(n)):

vq =





uq, if q ∈ {1, . . . , l} ;

i, if q = l + 1;

uq−1 + p− 1, if q ∈ {l + 2, . . . , n+ 1} ,

where l := max {0} ∪ {q ∈ {1, . . . , n} | uq ≤ i}.

(c) IT[B
(p)
n ] = M

(p)
n,1

(d) IT is an injective map.



8 S. LIEBSCHER AND T. WALDHAUSER

(e) The name insertion tuple is justified, because with u := IT (t) and the two
definitions t0 := x, ti := βui

(ti−1) (for i ∈ {1, . . . , n}) we have t = tn.

Proof.

(a) This is clear from the definition.
(b) Remember that βi(t) is the insertion of ωx . . . x at the i-th symbol x in t

and that uq − 1 equals the number of x’s preceding the q-th symbol ω. The
statement becomes clear if we observe that l is the position of the last symbol
ω having less than i many x’s before it.

(c) We investigate two cases: “⊆”: Let t ∈ B
(p)
n be an arbitrary bracketing and let

u := IT(t). It is clear from the definition that 1 ≤ ui and u is monotone. For
the upper bound let us consider the i-th occurrence of the symbol ω in t. If we
delete all symbols from this ω to the end of the bracketing then we obtain the
prefix of a bracketing with occurrence number i−1 with at least one x missing.
Therefore, the number of x’s preceding this ω is at most ℓ(p)(i−1)−1. Hence,
ui ≤ ℓ(p)(i− 1).

“⊇”: We use induction on n to show this. The case n = 0 is clear, because

both sides are {∅}. For the induction step from n to n+1 let u ∈ M
(p)
n+1,1. Then

(uq)q=1,...,n ∈ M
(p)
n,1. By induction hypothesis we have a bracketing t ∈ B

(p)
n

such that IT (t) = (uq)q=1,...,n. With the help of ((b)) and the monotonicity
of IT (t) we see that IT

(
βun+1

(t)
)
= u.

(d) The entries of the insertion tuples tell us the positions of the symbols ω.
(e) It can be shown by induction on i with the help of ((b)) that

IT(ti) = (uq)q=1,...,i (i = 1, . . . , n)

holds. So we have IT(tn) = u = IT(t). Then by injectivity t = tn follows.

�

In [2] a bijection is given between bracketings and certain lattice paths called p-good
paths. We invite the reader to find a bijection between p-good paths and insertion tu-

ples. The sets M
(p)
n,k generalize insertion tuples, and the corresponding paths generalize

the p-good paths by shifting the bounding line k−1 steps up. Therefore, Theorem 4.6
can be considered as a generalization of Theorem 0.4 from [2].

Lemma 4.4. For any k ∈ N+ and n ∈ N we have

(a) |M
(p)
0,k | = 1;

(b) |M
(p)
n+1,k| =

k−1∑

l=0

|M
(p)
n,p+l|.

Proof. (a) is trivial. For (b) we partition the set M
(p)
n+1,k into the disjoint subsets

Sl :=
{
u ∈ M

(p)
n+1,k

∣∣∣ u1 = l
}

(l = 1, . . . , k).

It is easy to verify that the map

ϕl : Sl −→ M
(p)
n,k+p−l

u 7−→ (uq − (l − 1))q=2,...,n+1

is a bijection for l = 1, . . . , k. Therefore

∣∣M (p)
n+1,k

∣∣ =
k∑

l=1

∣∣M (p)
n,k+p−l

∣∣ =
k−1∑

l=0

∣∣M (p)
n,p+l

∣∣.

�

The following lemma can be shown by a straightforward induction on k.
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Lemma 4.5. For any k ∈ N+ and n ∈ N we have

k−1∑

m=0

p+m

(p− 1) · (n+ 1) +m+ 1
·

n+m∏

l=m+1

((p− 1) · (n+ 1) + l)

=
1

n+ 1
·

k

(p− 1) · (n+ 1) + k
·
n+k∏

l=k

((p− 1) · (n+ 1) + l) .

Theorem 4.6. For any k ∈ N+ and n ∈ N we have

∣∣∣M (p)
n,k

∣∣∣ =
1

n!
·

k

(p− 1) · n+ k
·
n+k−1∏

l=k

((p− 1) · n+ l)

=
k

(p− 1) · n+ k
·

(
p · n+ k − 1

n

)
.

Proof. It is a routine induction proof using the recursion formula from Lemma 4.4
and the previous Lemma 4.5. �

5. Polynomial spectra

In this section we give three different examples of polynomial spectra which solve
problem 3 in [1].

Example 5.1. Let k be a fixed natural number. We define an equivalence relation

Σ ⊆ Λ(2) as follows. For a bracketing s = ωt1t2 ∈ B
(2)
n we call t1 the left factor of s

and denote it by left (s), and we put left (x) = x (cf. [1]). For s ≈ t ∈ B
(2)
n ×B

(2)
n let

s ≈ t ∈ Σ :⇐⇒
∣∣lefti (s)

∣∣ =
∣∣lefti (t)

∣∣ for i = 1, . . . , k.

The set Σ is closed under the implication operator, thus it appears as the fine spectrum
of some groupoidA. The corresponding associative spectrum is a polynomial of degree
k:

sn (A) =

(
n− 1

k

)
+

(
n− 1

k − 1

)
+ · · ·+

(
n− 1

1

)
+

(
n− 1

0

)
.

It is straightforward to check that δn (Σn) ⊆ Σn+1 holds for all n ∈ N. Let s ∈ B
(2)
n

be an arbitrary bracketing, and let us abbreviate
∣∣lefti (s)

∣∣ by li. Clearly we have

1 ≤ lk ≤ lk−1 ≤ · · · ≤ l2 ≤ l1 ≤ n,

where the inequalities are strict, except maybe for a couple of repeated 1s at the
beginning. We have to count how many such k-tuples exist. If the number of 1s at the
beginning is i, then we have to choose k− i different numbers from the set {2, . . . , n},
hence the number of possibilities is

(
n−1
k−i

)
. Thus we have

∣∣B(2)
n /Σn

∣∣ =
(
n− 1

k

)
+

(
n− 1

k − 1

)
+ · · ·+

(
n− 1

1

)
+

(
n− 1

0

)
,

which is indeed a polynomial of degree k.

Example 5.2. Let k ∈ N+ be an integer and define the relation Σ ⊆ Λ(p) as follows:

For an identity s ≈ t ∈ B
(p)
n ×B

(p)
n denote by u := IT(s) and v := IT(t) the insertion

tuples of the bracketings. We define Σ by

s ≈ t ∈ Σ :⇐⇒

{
s = t, if n < k;

∀i ∈ {n− k + 1, . . . , n} : ui = vi, if n ≥ k.

It holds that Σ is an equivalence relation that is closed under the implication operator.
Therefore, there exists a groupoid A such that σ (A) = Σ. The associative spectrum
of A is

sn (A) =




C

(p)
n , if n < k;

(p− 1) · (n− k) + 1

(p− 1) · n+ 1
·

(
(p− 1) · n+ k

k

)
, if n ≥ k.
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Remember that s ≈ t ∈ Σ means that the last k entries of the insertion tuples of s
and t are equal, or equivalently that the last k symbols ω are in the same place in s
and t. Therefore, it is easy to verify that δn (Σn) ⊆ Σn+1 holds for all n ∈ N.

To know the associative spectrum we have to count the insertion tuples with dif-

ferent last k entries. From Proposition 4.3 we know that IT[B
(p)
n ] = M

(p)
n,1. If we look

at the last k ≤ n entries we see that they form exactly the set M
(p)
k,(p−1)·(n−k)+1. So

the formula can be obtained from Theorem 4.6.

Example 5.3. The binary groupoid G := (Z6[Y ],⊕) (where Z6[Y ] is the polynomial
ring over Z6 in the variable Y ) with the binary operation

⊕ : Z6[Y ]2 −→ Z6[Y ]
(X1, X2) 7−→ 3Y ·X1 + 2Y ·X2

has the associative spectrum

∀n ∈ N, n ≥ 2 : sn (G) =
n2 + n− 2

2
.

Instead of Z6[Y ] another ring can be chosen which has zero divisors (in this case 3Y
and 2Y ) whose powers are all different.

In [1] the notion of left and right depth sequence were defined. Here, we only need

two special cases: for s ∈ B
(2)
n let dl(s) denote the left depth of the first variable of

s, and let dr(s) denote the right depth of the last variable of s. On the binary tree
corresponding to s one can see dl(s) as the length of the path connecting the root
and the leftmost leaf and dr(s) as the length of the path connecting the root and the
rightmost leaf. From this interpretation it is clear that for all t1, t2 ∈ Tω(x):

(1) dl(ωt1t2) = dl(t1) + 1 and dr(ωt1t2) = dr(t2) + 1.

Later it will be useful to compute these numbers from the insertion tuple u := IT(s):

dl(s) =
∣∣∣
{
q ∈ {1, . . . , n}

∣∣∣ uq = 1
}∣∣∣ ,

dr(s) =
∣∣∣
{
q ∈ {1, . . . , n}

∣∣∣ uq = ℓ(2)(q − 1)
}∣∣∣ .

It is a routine induction using (1) to check that for n > 0

(ε1(s))
G
(X1, . . . , Xn+1) = (3Y )dl(s) ·X1 + (2Y )dr(s) ·Xn+1

holds. Remember that the length function is ℓ(2)(n) = n+ 1 and that ε1(s) contains
exactly the variable symbols x1, . . . , xℓ(2)(n) such that ε1(s) can be interpreted as a

(n+ 1)-ary term.
From this it follows that the fine spectrum of G can be characterized as:

s ≈ t ∈ σ (G) ⇐⇒ dl(s) = dl(t) and dr(s) = dr(t).

To obtain the formula for the associative spectrum we have to count all possibilities
for dl(s) and dr(s). For n ≥ 2 we have the following restrictions:

dl(s) ≥ 1, dr(s) ≥ 1 and 3 ≤ dl(s) + dl(r) ≤ n+ 1.

This is pretty clear using the insertion tuple because the first entry u1 = 1 counts for
both depths, the second entry u2 can either be 1 or 2 = ℓ(2)(1) and the other entries
uk (k = 3, . . . , n) can be 1, ℓ(2)(k − 1) or something in between. It is also clear that
all such possibilities can occur. So we have

( n∑

l=1

n+ 1− l
)
− 1 =

( n∑

k=1

k
)
− 1 =

n2 + n− 2

2

possibilities.
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6. The lattice of fine spectra

The Galois-closed sets IdBrack K (K ⊆ Alg (ω)) form a complete lattice as a closure
system in P

(
Λ(p)

)
. We will denote this complete lattice by FS = (FS,∧,∨) (FS

stands for fine spectra because we know from Corollary 3.5 that the elements of this
lattice are exactly all fine spectra). To unterstand associative spectra it would be very
useful to unterstand this lattice. As a beginning we will look at the covering relation
≺.

Proposition 6.1. For any σ (A) , σ (B) ∈ FS the following holds:

σ (A) ≺ σ (B) ⇐⇒ ∃!n ∈ N : σn (A) 6= σn (B) , and for this n we have

σn (A) ≺ σn (B) in the lattice Eq
(
B

(p)
n

)
.

Proof. It is clear that the condition on the right is sufficient. For the necessity let us
assume that σ (A) ≺ σ (B). If σ (A) and σ (B) differ at least at two positions, say
σn (A) 6= σn (B) and σm (A) 6= σm (B) for some n < m ∈ N, then

Σk :=

{
σk (A) , if k ≤ n;

σk (B) , if k > n

defines a fine spectrum that is strictly between σ (A) and σ (B) contradicting that
σ (A) ≺ σ (B). If σ (A) and σ (B) differ only at one position, say σn (A) 6= σn (B)

and σn (A) ⊀ σn (B) in the lattice Eq
(
B

(p)
n

)
, then

Σk :=

{
σk (A) , if k 6= n;

π, if k = n

defines a fine spectrum that is strictly between σ (A) and σ (B) if π ∈ Eq
(
B

(p)
n

)
is an

equivalence relation such that σn (A) < π < σn (B). �

As a consequence we the obtain the following characterization of the atoms and
coatoms of FS:

Corollary 6.2. There are no atoms in FS. For any σ (A) ∈ FS we have:

σ (A) is a coatom in FS ⇐⇒ ∀n ∈ N \ {2} : sn (A) = 1 and s2 (A) = 2.

Proof. The description for the coatoms follows from the above proposition. For the
atoms we assume that σ (A) ∈ FS is an atom in FS. From the previous proposition

we see that σn (A) is the equality relation on B
(p)
n for all but one n ∈ N. It is clear

that such a σ (A) cannot be closed under the implication operator. �

From the previous corollary we know that the number of coatoms is exactly the

number of possibilities to group p elements into two classes (because |B
(p)
2 | = p). So

we get:

Corollary 6.3. There are exactly 2p−1 − 1 coatoms in FS.

We prove that the cardinality of the set of sequences of natural numbers that arise as
associative spectra is continuum. Clearly, it cannot be more, so it suffices to construct
continuously many different spectra, and it suffices to do it in the binary case. First

we need a definition: if ωxx = (xx) is a subbracketing of s ∈ B
(2)
n , then we say that

(xx) is a pair of eggs in s. (Actually the two x’s are the eggs, see [1].)

Lemma 6.4. Let τn be the equivalence relation on B
(2)
n , where the bracketings with

at least 3 pairs of eggs form one class, and all the other bracketings are singletons.
Then τn ) δn−1 (τn−1) for all n ≥ 5.

Proof. The operators γi, βi do not decrease the number of eggs, hence δn−1 (τn−1) ⊆ τn
for all n ≥ 1. For every n ≥ 5 one can find a bracketing with occurrence number n,
which cannot be obtained by these operators from any bracketing (with occurrence
number n− 1) with at least three pairs of eggs. For example,

t = (. . . (((xx) (xx))x)x . . . x) (xx)
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is such a bracketing. Thus t is a singleton in δn−1 (τn−1), but not a singleton in τn.
This shows that δn−1 (τn−1) 6= τn if n ≥ 5.

�

Theorem 6.5. There exist 2ℵ0 different associative spectra.

Proof. Let S be the set of 0–1 sequences whose first five entries are 0. For every

a = {an}
∞
n=0 ∈ S we construct a sequence of equivalence relations σa

n ⊆ B
(2)
n × B

(2)
n

recursively:

σa
n =

{
δn−1

(
σa
n−1

)
, if an = 0;

τn, if an = 1.

Note that we do not have to define the “initial value” σa
0 since B

(2)
0 is a one-element

set. Observe also that σa
n is the equality relation on B

(2)
n for n ≤ 4 for every a ∈ S.

First we claim that σa
n ⊆ τn for every a ∈ S. This is clear for n = 0 (and also for

n = 1, 2, 3, 4), and then we can proceed by induction. Suppose that σa
n−1 ⊆ τn−1. If

an = 1, then σa
n = τn; if an = 0, then σa

n = δn−1

(
σa
n−1

)
⊆ δn−1 (τn−1) ( τn by the

previous lemma, and by the monotonicity of δn−1.
Now we can verify that σa is a fine spectrum: if an = 0, then σa

n = δn−1

(
σa
n−1

)
; if

an = 1, then σa
n = τn ) δn−1 (τn−1) ⊇ δn−1

(
σa
n−1

)
, hence Corollary 3.5 applies.

We need to check yet that different elements of S give different associative spectra.
Let a 6= b ∈ S, and suppose that ai 6= bi, say ai = 0 and bi = 1. Then we have
σa
i = δi−1

(
σa
i−1

)
⊆ δi−1 (τi−1) ( τi = σb

i . We have proved that σa
i ( σb

i , and
this means that not only the two fine spectra, but the corresponding spectra are also

different:
∣∣B(2)

i /σa
i

∣∣ >
∣∣B(2)

i /σb
i

∣∣. �

Remark 6.6. From the previous proof we see that

∀a,b ∈ S : σa ⊆ σb ⇐⇒ a ≤ b,

which means that S embeds into FS as a poset (not as a lattice!). Since S is isomorphic
to P (N), we have P (N) as a subposet in FS. On the other hand clearly FS embeds
into P

(
Λ(p)

)
∼= P (N). Therefore, FS and P (N) are equimorphic. This shows for

example, that there is a chain and an antichain of continuum cardinality in FS.

7. Spectra of finite groupoids

There are only countably many finite groupoids, hence Theorem 6.5 shows that
there are spectra which can be realized only on infinite groupoids. It would be inter-
esting to see, under what conditions a (fine) spectrum is realizable on a finite groupoid.
One obvious necessary condition: the spectrum has to be recursive (computable by
a Turing machine). If there exists N ∈ N such that σn = δn−1 (σn−1) holds for all
n > N , then the sequence σn is recursive. We conjecture that this condition is suf-
ficient in order to realize a fine spectrum on a finite groupoid (cf. Proposition 7.3).
The condition is not necessary, as the following example shows.

Example 7.1. We construct a finite groupoid with the“three-egg spectrum” τn. First
let us consider the groupoid A given by the following multiplication table.

0 1 2 3
0 0 0 0 0
1 0 0 0 1
2 0 0 1 2
3 0 1 2 2

One can prove by induction that for any bracketing s the maximal value of the cor-
responding term function sA is max (3− e, 0) where e is the number of pairs of eggs
in s. This maximal value is attained for example at sA (3, . . . , 3). This shows that
σn (A) ⊇ τn, since bracketings with at least three pairs of eggs induce constant 0 term
functions. (Actually one can verify that A |= s1 ≈ s2 iff either both s1 and s2 contain
at least three pairs of eggs, or both contain at most two pairs of eggs and these are at
the same positions in s1 and s2.)
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In order to isolate bracketings with at most two eggs, we blow up the nonzero
elements of A using the Sheffer operation on the two-element set. We present this
operation with somewhat unusual notation:

�̂ �̃

�̂ �̃ �̂

�̃ �̂ �̂

We replace each nonzero element of A with two elements: one wearing a hat, the
other one wearing a tilde, and we define the multiplication such that the numbers get
multiplied as in A, and headgears get multiplied according to the Sheffer operation.

We obtain the following seven-element groupoid Â:

0 1̂ 1̃ 2̂ 2̃ 3̂ 3̃

0 0 0 0 0 0 0 0

1̂ 0 0 0 0 0 1̃ 1̂

1̃ 0 0 0 0 0 1̂ 1̂

2̂ 0 0 0 1̃ 1̂ 2̃ 2̂

2̃ 0 0 0 1̂ 1̂ 2̂ 2̂

3̂ 0 1̃ 1̂ 2̃ 2̂ 2̃ 2̂

3̃ 0 1̂ 1̂ 2̂ 2̂ 2̂ 2̂

We did not blow up 0, hence bracketings with at least three pairs of eggs still induce

constant term functions, and thus we have σn

(
Â
)
⊇ τn. On the other hand, if s

contains at most two pairs of eggs, then sA (x1, . . . , xn) 6= 0 if x1, . . . , xn ∈
{
3̂, 3̃
}
.

This means that substituting 3̂s and 3̃s into sA we can recover all information about
hats and tildes, that is we can determine the term function corresponding to s over
the Sheffer operation. This operation is Catalan, hence from the term function we can

recover the bracketing. Consequently s is a singleton in σn(Â), hence σn(Â) = τn.

In Section 5 we gave examples for polynomial spectra using Corollary 3.5. The
groupoids that we obtained this way were infinite groupoids of the form T(p)/Σ, but
below we will construct a finite groupoid with a polynomial spectrum.

Example 7.2. Let us define a binary operation on the set A = {0, 1, . . . , k + 1} by

x · y =




0, if x = 0;
1, if x 6= 0 = y;
min (x+ 1, k + 1) , if x 6= 0 6= y.

The associative spectrum of the groupoid A=(A; ·) is a polynomial of degree k.
Indeed, let Σ be the equivalence relation defined in Example 5.1. We prove that

the fine spectrum of A is σn (A) = Σn. To avoid notational difficulties we prove it
only for k = 3; it will be clear from the proof how the construction works for arbitrary
k. To have a better view of the operation, let us write out the multiplication table.

0 1 2 3 4
0 0 0 0 0 0
1 1 2 2 2 2
2 1 3 3 3 3
3 1 4 4 4 4
4 1 4 4 4 4

First we prove that σn (A) ⊆ Σn for all n ∈ N. It suffices to show that for any

t ∈ B
(2)
n , the values of l1, l2, l3 can be read off from the term function tA corresponding
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to t. Taking a look at the multiplication table, we see immediately that x · y = 0 iff
x = 0. Therefore a product of arbitrarily many elements (with arbitrarily inserted
parentheses) equals 0 iff the first (i.e. leftmost) element is 0. We record this fact with
the following (hopefully intuitive) notation, where ∗ symbolises an arbitrary nonzero
element:

(2) (0 · · · ) = 0, (∗ · · · ) 6= 0.

From this observation and from the idempotence of the element 4 we infer

(4 · · · 4) · (4 · · · 0) = 4 · ∗ = 4,

(4 · · · 4) · (0 · · · 0) = 4 · 0 = 1.

This means that l1 can be computed from the values of tA:

l1 = max
{
i
∣∣∣ tA(4, . . . , 4︸ ︷︷ ︸

i

, 0, . . . 0) = 1
}
.

Knowing the value of l1, we can find l2 using the following observations:

((4 · · · 4) · (4 · · · 0)) · (4 · · · 4) = (4 · ∗) · 4 = 4 · 4 = 4,

((4 · · · 4) · (0 · · · 0)) · (4 · · · 4) = (4 · 0) · 4 = 1 · 4 = 2.

Hence l2 can be recovered from tA as

l2 = max
{
i
∣∣∣ tA

(
l1︷ ︸︸ ︷

4, . . . , 4︸ ︷︷ ︸
i

, 0, . . . 0, 4, . . . , 4
)
= 2
}
.

Note that if l1 = 1, then we cannot make such substitutions, but in this case clearly
l2 = l3 = 1.

Similarly, l3 can be obtained, since we have

(((4 · · · 4) · (4 · · · 0)) · (4 · · · 4)) · (4 · · · 4) = ((4 · ∗) · 4) · 4 = (4 · 4) · 4 = 4 · 4 = 4,

(((4 · · · 4) · (0 · · · 0)) · (4 · · · 4)) · (4 · · · 4) = ((4 · 0) · 4) · 4 = (1 · 4) · 4 = 2 · 4 = 3,

and therefore in case l2 > 1 we have

l3 = max
{
i
∣∣∣ tA

(
l2︷ ︸︸ ︷

4, . . . , 4︸ ︷︷ ︸
i

, 0, . . . 0, 4, . . . , 4
)
= 3
}
.

Now we prove the inclusion σn (A) ⊇ Σn, i.e. the fact that the numbers l1, l2, l3
determine the term function tA. First we observe that A satisfies the identity x (yz) ≈
xy, and from this we conclude by induction that

A |= ε1 (t) ≈ ε1 (left (t)) · xl1+1.

Applying this identity to the left factor of t we obtain

A |= ε1 (t) ≈
(
ε1
(
left2 (t)

)
· xl2+1

)
· xl1+1.

Let us repeat this procedure until the left factor becomes the single variable x1. Sup-
pose this happens after s steps, i.e. 1 = ls < ls−1 < · · · < l2 < l1. Then we have

A |= ε1 (t) ≈
((
· · ·
(
(x1 · xls+1) · xls−1+1

)
· · ·
)
· xl2+1

)
· xl1+1.

This already shows that tA is determined by the numbers l1, l2, . . . , ls. We have to
show that actually the first three of these numbers are sufficient. If s ≤ 3 then we
have nothing to prove, and if s ≥ 4, then using (2) and the multiplication table we
get the following formula for tA:

tA (x1, · · · , xn) =
((
· · ·
(
(x1 · xls+1) · xls−1+1

)
. . .
)
· xl2+1

)
· xl1+1

=





0, if x1 = 0;
1, if x1 6= 0 = xl1+1;
2, if x1, xl1+1 6= 0 = xl2+1;
3, if x1, xl1+1, xl2+1 6= 0 = xl3+1;
4, if x1, xl1+1, xl2+1, xl3+1 6= 0.
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The next proposition shows that every finally associative spectrum appears as the
fine spectrum of a finite groupoid.

Proposition 7.3. Let A ∈ Alg (ω) be a p-ary groupoid with

∃n ∈ N, n ≥ 2 : sn (A) = 1.

Then there exists a finite groupoid B ∈ Alg (ω) with σ (B) = σ (A).

Proof. Let A ∈ Alg (ω) be a groupoid with the above property and denote by Σ :=
σ (A) the fine spectrum of A. We know from Theorem 3.6 that

∀m ∈ N,m ≥ n : Σm = B(p)
m ×B(p)

m

holds. And by Theorem 3.4 we know that σ
(
T(p)/Σ

)
= Σ holds. Define B =

(
B,ωB

)

as

B :=
{
[t]Σ

∣∣∣ t ∈ B
(p)
k , k < n

}
∪ {∗}

with the operation

ωB : Bp −→ B

(
[t1]Σ , . . . , [tp]Σ

)
7−→

{
[ωt1 . . . tp]Σ if |ωt1 . . . tp|ω < n

∗ otherwise

and ωB (b1, . . . , bp) := ∗ if one of the arguments is ∗.
We have to show that σ (B) = σ

(
T(p)/Σ

)
holds. This is pretty clear because

B is nearly the same as T(p)/Σ. The only difference is that the equivalence classes
containing all bracketings of one size m ≥ n are equalized to ∗. �

8. Open problems

In conclusion, we formulate a few problems:

1. Another idea to unterstand the lattice FS is to translate constructions for
groupoids into constructions in FS and vice versa. A very simple example
of this is the direct product

∏
and the meet

∧
. Let Ai ∈ Alg (ω) for i ∈ I

(arbitrary index set). Then we have

σ

(
∏

i∈I

Ai

)
=
∧

i∈I

σ (Ai) .

Are there other correspondences between certain constructions, e.g. the join∨
in FS?

2. We have studied the Galois-closed sets IdBrack K for any K ⊆ Alg (ω). What
is the analogon of a variety, i.e. what are the Galois-closed sets ModBrack Σ
on the groupoid side?

3. What additional properties have fine spectra of finite algebras? Prove or
disprove that the following condition is sufficient in order to realize a fine
spectrum σ on a finite groupoid:

∃N ∈ N, ∀n ∈ N, n > N : σn = δn−1 (σn−1) .
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