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ON CATEGORICAL EQUIVALENCE OF FINITE RINGS

KALLE KAARLI, OLEG KOŠIK, AND TAMÁS WALDHAUSER

Abstract. We reduce the problem of categorical equivalence for finite rings to
the case of rings of prime power characteristics. It is proved that categorically

equivalent rings of coprime characteristics must be semisimple. The categorical

equivalence problem for finite semisimple rings is completely solved.

1. Introduction

In the following we assume that all rings are with unity. This means, in particular,
that the unity element 1 of a ring R is contained in every subring of R.

A variety of algebras can be considered as a category in a natural way; the objects
are the algebras in the variety and the morphisms are the homomorphisms between
them. Because of universal algebraic background of this research, we use the standard
universal algebraic notation. That is, the algebraic structures are denoted by capital
boldface letters and their underlying sets (universes) by corresponding usual capital
letters. Thus, in particular, a ring R has the universe R.

Definition 1. Two algebras A and B are called categorically equivalent, denoted
A ≡c B, if there is a categorical equivalence between the varieties they generate that
sends A to B.

Recall that the equivalence of categories was first used in algebra by K. Morita who
in 1958 introduced the equivalence relation on the class of rings that now is known as
Morita equivalence. By definition, two rings R and S are right Morita equivalent, if
the categories of right modules over R and S are equivalent. We emphasize that the
Morita equivalence of rings and the categorical equivalence of rings are incomparable
notions. Indeed, it is well known that any field K is Morita equivalent to all rings
Matn(K) but in view of our Theorem 18, if K is finite then K ≡c Matn(K) holds only
if n = 1. On the other hand, a result by C. Bergman and J. Berman (see Theorem 2)
provides examples of categorically equivalent rings that are not Morita equivalent.

A special case of categorical equivalence is weak isomorphism. Recall that two
algebras A and B are called weakly isomorphic if there exists a third algebra C that
is isomorphic to A and term equivalent to B. Clearly, weakly isomorphic algebras
have the same cardinality. For example, every group (semigroup, ring) is accompanied
by its anti-isomorphic copy which, as easily seen, is weakly isomorphic to the original
group (semigroup, ring). Similarly, every lattice is weakly isomorphic to its dual.
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All algebraic notions and properties that can be expressed in the language of cate-
gory theory are preserved under categorical equivalence. The next theorem lists some
of these properties specialized to rings, that we shall need in the sequel. Their proofs
can be found in [3], Section 3.

Theorem 1. Let R and S be categorically equivalent rings. Then:

(1) the automorphism groups of R and S are isomorphic;
(2) the subring lattices of R and S are isomorphic;
(3) the (two-sided) ideal lattices of R and S are isomorphic;
(4) for every positive integer n, Rn ≡c Sn;
(5) R is finite if and only if S is finite.

The first studies on categorical equivalence in algebra involved general algebraic
structures that did not belong to any well-known class. The fundamental example
of this sort is the theorem of Hu ([6]) claiming that every two primal algebras are
categorically equivalent to each other. Recall that a finite algebra is called primal if
all finitary operations on its universe are term operations. It is easy to see that all
prime fields Zp are primal. Thus, Zp ≡c Zq for any primes p and q. This result was
generalized by C. Bergman and J. Berman:

Theorem 2. ([2], Example 5.10) For any primes p and q and positive integers m and
n, the finite fields Fpm and Fqn are categorically equivalent if and only if m = n.

This fact is somewhat intriguing because in other well studied varieties the finite
categorically equivalent members have been proved to be weakly isomorphic, hence
of the same size. For finite groups this fact was obtained by L. Zádori [12]. Recently
M. Behrisch and T. Waldhauser announced that the similar result is true in case
of finite semigroups [1]. Even stronger result holds in case of lattices. O. Košik [10]
proved that two lattices (not necessarily finite) are categorically equivalent if and only
if they are isomorphic or dually isomorphic.

In the present paper an attempt is made to study categorical equivalence of fi-
nite rings, in general. We first reduce the general problem to the case of rings of
prime power characteristic. We observe that semisimplicity is a categorical property
and completely solve the problem when two finite semisimple rings are categorically
equivalent. We also show that the rings of coprime characteristics can be categorically
equivalent only if they are semisimple. The case of rings of the same characteristic
remains open. Our conjecture is that if this happens then the rings are isomorphic or
anti-isomorphic.

2. Reduction to p-rings

A ring whose additive group is a p-group will be called a p-ring 1. It is well known
that every finite ring R can be represented as a direct product of non-zero p-rings,
for different primes p. We shall call this decomposition of a ring R a canonical one.
The factors of the canonical decomposition of R are called p-components of R. We
are going to show that every categorical equivalence between finite rings is actually
induced by categorical equivalences between their p-components, possibly for different
primes p.

The characteristic of a finite ring R, denoted by char(R), is the exponent of the
additive group of R, that is, a smallest positive integer n such that nR = 0. Obviously,
the characteristic of a p-ring is a power of p.

1The notion of p-ring has been used earlier for the rings defined by the identities px ≈ 0 and
xp ≈ x where p is a prime number.
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We shall make use of the notion of independence introduced by Foster in [5] and
developed further by Hu and Kelenson in [7]. The algebras A1, . . . ,An of the same
type are called independent if there exists an n-ary term t(x1, . . . , xn) such that in
the algebra Ai the identity t(x1, . . . , xn) ≈ xi holds, i = 1, . . . , n. Corollary 2.9 of
[7] essentially states that algebras A1, . . . ,An of a congruence permutable variety are
independent if and only if, for any two of them, the intersection of the varieties they
generate is trivial. Since the congruences of any ring permute, it follows that in the
variety of rings the independence can be easily characterized, as mentioned in [7].

Proposition 3. Finite rings R1, . . . ,Rn are independent in the category of rings with
unity if and only if their characteristics are pairwise coprime.

Corollary 2.9 of [7] also implies that in case of rings the independence is a categorical
property in the following sense. If the variety V is generated by an independent system
of rings R1, . . . ,Rn and F : V →W is an equivalence functor where W is some variety
of rings then the system F (R1), . . . , F (Rn) is independent, too.

Corollary 4. The property to be a finite p-ring for some prime p is categorical.

Proof. Assume that R is a finite p-ring and S is a ring categorically equivalent to R.
Then S is finite by Theorem 1 (5). Suppose that S is not a q-ring for some prime q.
Then it is a direct product of two independent rings. Since R ≡c S, the same must
hold for R, a contradiction. �

Theorem 5. Finite rings R and S are categorically equivalent if and only if there is
a one-to-one correspondence between their p-components such that the corresponding
p-components are categorically equivalent.

Proof. Assume first that R and S are categorically equivalent finite rings and let F
be a functor that establishes this equivalence. Now, if R = R1 × · · · ×Rn where Ri,
i = 1, . . . , n, are the p-components of R, then S is isomorphic to the direct product
of F (R1), . . . , F (Rn). Obviously, Ri ≡c F (Ri), i = 1, . . . , n. Thus, we have to show
that F (R1), . . . , F (Rn) are the p-components of S. By Corollary 4, there exist primes
qi such that the characteristic of F (Ri) is a power of qi, i = 1, . . . , n. It remains to
show that qi 6= qj if i 6= j. But this easily follows from Proposition 3.

Let now R and S be finite rings with canonical decompositions R = R1×· · ·×Rn

and S = S1 × · · · × Sn. Assume that a functor Fi establishes categorical equivalence
between Ri and Si, i = 1, . . . , n. Then Fi induces an isomorphism between skeletons
of the categories Var(Ri) and Var(Si), i = 1, . . . , n. By Theorem 2.6 of [7], every
ring T ∈ Var(R) admits a decomposition T = T1× · · · ×Tn where the direct factors
Ti ∈ Var(Ri) are unique, up to isomorphism, and the similar statement holds for every
member of Var(S). This allows us to conclude that the formula F (T) = F1(T1) ×
· · · × Fn(Tn) determines an isomorphism between skeletons of the categories Var(R)
and Var(S). Since obviously F (R) = S, we get R ≡c S. �

In view of Theorem 5, our main problem splits in two:

(1) Describe when a finite p-ring and a finite q-ring with p 6= q can be categorically
equivalent.

(2) Describe when two finite p-rings can be categorically equivalent.

In this paper we solve the first problem. The second problem remains open. We are
not aware of any pair of finite categorically equivalent p-rings that would be neither
isomorphic nor anti-isomorphic. Our conjecture is that there is no such pair.
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3. Rings Zn
Obviously the rings Zn are, up to isomorphism, the only rings with no proper

subrings. Therefore, if Zn is categorically equivalent to a ring R, the latter must be
isomorphic to some ring Zm. In this section we are going to establish when exactly
two rings Zm and Zn are categorically equivalent. We first sharpen Theorem 2 by
showing that a finite field Fpk can be categorically equivalent only to Fqk .

Theorem 6. If the finite field Fpk is categorically equivalent to some ring R then
there exists a prime q such that R ' Fqk .

Proof. Since by Theorem 1 finiteness and simplicity are preserved by categorical equiv-
alence, R must be a finite simple ring. Thus, R is isomorphic to some ring Matn(F)
where F is a finite field and n is a positive integer. Assume that n > 2 and consider
the automorphism groups of Fpk and R. It is well known that the first of them is
cyclic while the other is non-abelian. Thus, n = 1, that is, R ' F. Now our claim
follows from Theorem 2. �

Corollary 7. A ring categorically equivalent to the ring Zp with a prime p is isomor-
phic to some ring Zq with a prime q.

In order to prove the main result of the present section, we need the following
lemma.

Lemma 8. For any primes p and q and positive integers k and l, the rings Zpk and
Zql are categorically equivalent if and only if: 1) k = l = 1 or 2) p = q and k = l.

Proof. The sufficiency is obvious since, as we mentioned in the introduction, Zp ≡c Zq
for all primes p and q. For necessity, assume that Zpk ≡c Zql . Since categorically
equivalent algebras have isomorphic congruence lattices, we immediately have k = l.
Assume k > 2. Then the ring Zp2 , being a homomorphic image of Zpk , is categorically
equivalent to some of the homomorphic images of Zqk . Counting the congruences, we

conclude Zp2 ≡c Zq2 which implies Z2
p2 ≡c Z2

q2 . Consequently, there is a one-to-

one correspondence between subrings of Z2
p2 and Z2

q2 under which the corresponding
subrings are categorically equivalent.

We claim that both Z2
p2 and Z2

q2 have precisely three subrings. It is easy to check
this directly but we prefer the universal algebraic approach. Since 1 is a nullary basic
operation and every Zn is generated by 1, it follows that every subuniverse of Z2

n is
reflexive, that is, contains the diagonal relation {(x, x) | x ∈ Zn}. It is well known that
the only reflexive subuniverses of the direct square of an algebra A in a congruence
permutable variety are the congruences of A ([8], Theorem 1.2.13). Now our claim
becomes obvious because Zp2 has precisely three ideals: {0}, pZp2 and Zp2 .

Let Ap be the subring of Z2
p2 whose universe Ap is the congruence of Zp2 that

corresponds to the ideal pZp2 . Note that

Ap = {(x, y) ∈ Z2
p2 | px = py}

and |Ap| = p3. By what we mentioned above, we have Ap ≡c Aq, hence the congru-
ence lattices of Ap and Aq are isomorphic. We are going to show that Ap has exactly
p+ 1 minimal ideals which will yield p = q.

Let Ik = {(px, kpx) |x ∈ Zp2}, k = 0, 1, . . . , p − 1 and I = {(0, px) |x ∈ Zp2}.
It is easy to check that I, I0, . . . , Ip−1 are pairwise different ideals of the ring Ap.
Moreover, they all are of order p, thus they are minimal ideals Ap. We show that
every non-zero ideal J of Ap contains one of the selected p+ 1 ideals proving so that
Ap has no other minimal ideals. Indeed, if (x, y) is a non-zero element of J then
either (x, y) or (px, py) is a non-zero element of one of the ideals I, I0, . . . , Ip−1. �
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Now we are ready to formulate and prove the general result. For any positive
integer n, we denote q(n) = n/r where r is the squarefree part of n, that is, the
product of all prime divisors p of n such that p2 does not divide n.

Theorem 9. The rings Zn1 and Zn2 are categorically equivalent if and only if n1 and
n2 have the same number of (different) prime divisors, and q(n1) = q(n2).

Proof. This is a straightforward consequence of Theorem 5 and Lemma 8. �

Every finite ring R has a unique minimal subring. This is the subring generated
by 1 ∈ R and obviously it is isomorphic to Zn where n = char(R). Clearly, if two
finite rings are categorically equivalent then so are their minimal subrings. Hence we
have the following corollary from Theorem 9.

Corollary 10. Let R and S be a finite p-ring and a finite q-ring, respectively. If
R ≡c S then either char(R) = char(S) or char(R) = p and char(S) = q.

4. Rings of order p2

Since all rings of prime order are categorically equivalent to each other (they all
are isomorphic to the rings Zp), it is natural to consider, as the next step, the rings

of order p2, for a prime p. Theorem 13, the main result of this section shows that
a ring categorically equivalent to a ring of order p2 is of order q2 for some prime q.
Moreover, we show exactly how this can happen. This result has several applications;
see the proofs of Theorems 14 and 18.

From [4] it follows that for a prime p, there are up to isomorphism exactly four
different rings of order p2:

(1) Fp2 ;
(2) Zp × Zp;
(3) Zp2 ;

(4) Zp[x]/(x2) ' {a+ bε | a, b ∈ Zp}, ε2 = 0.

We already know that Fp2 ≡c Fq2 and Zp × Zp ≡c Zq × Zq for any primes p
and q. As we shall see soon, these are the only non-trivial occurrences of categorical
equivalence involving a ring of order p2. To prove this, we need another simple lemma.

Lemma 11. If a finite semisimple ring R is categorically equivalent to a ring S, then
S is finite semisimple, too.

Proof. Let F be the equivalence functor from Var(R) to Var(S) such that F (R) = S.
Since R is finite and semisimple, we have R ' R1×· · ·×Rn where R1, . . . ,Rn are sim-
ple rings. Since direct products and simplicity are preserved by equivalence functors,
we see that S is isomorphic to the direct product of simple rings F (R1), . . . , F (Rn).
Hence, S is semisimple. �

Corollary 12. Assume that finite rings R and S are categorically equivalent and this
equivalence induces the lattice isomorphism Φ : Con (R) → Con (S). Then Φ maps
the radical of R to the radical of S.

Theorem 13. Let R and S be categorically equivalent non-isomorphic rings and
|R| = p2 where p is a prime. Then either R is of Type (1) and S ' Fq2 for some
prime q 6= p, or R is of Type (2) and S ' Zq × Zq for some prime q 6= p.

Proof. We consider separately four cases depending in which type the ring R falls. Let
F be a functor that establishes categorical equivalence between R and S, F (R) = S.

If R = Fp2 then by Theorem 6 we have S ' Fq2 for some prime q. Since R 6' S,
the primes p and q are different.
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Let R = Zp × Zp. Since F preserves products, S = F (Zp) × F (Zp) but then by
Corollary 7 there is a prime q such that F (Zp) ' Zq. Clearly, p 6= q because otherwise
R and S would be isomorphic.

Let now R = Zp2 . Since the rings Zn are, up to isomorphism, exactly the rings with
no proper subrings, there exists an integer n such that S ' Zn. But then Theorem 9
yields n = p2 for some prime p.

It remains to consider the case when R is of Type (4). Thus, assume that R =
{a + bε | a, b ∈ Zp} where ε2 = 0. We know that S must be finite (Theorem 1
(5)) and by Corollary 10 it must have prime characteristic, say q. Thus, S can be
considered as a vector space over Zq. Obviously the only proper non-zero ideal of R
is I = {aε | a ∈ Zp}. Now, if J is the ideal of S corresponding under F to I then
R/I ≡c S/J which by Corollary 7 implies that S/J is isomorphic to Zq. Corollary 12
gives that J is the radical of S and J 6= 0 because by Lemma 11 semisimplicity is a
categorical property.

We next show that |J | = q. It is well known that the radical of a finite ring S, if
non-zero, contains a non-zero ideal K of S with K2 = 0. Since J is the only proper
non-zero ideal of S, we have K = J . We pick an arbitrary non-zero element t ∈ J and
consider the Zq-subspace L of S generated by t. Clearly, |L| = q. Since S/J ' Zq,
every element s ∈ S has the form s = a · 1 + u, where a ∈ Zq and u ∈ J . It follows
that st = (a · 1 + u)t = at + ut = at ∈ L and similarly ts = at ∈ L. Thus, L is an
ideal of S. As above, J must be the only proper non-zero ideal of S, so we conclude
L = J and |S| = q2. Since t2 = 0, the ring S is of Type (4), indeed.

It remains to notice that the rings of Type (4) corresponding to different primes
cannot be categorically equivalent because their automorphism groups are of different
size. Indeed, it is easy to see that the automorphisms of R are precisely the mappings
of the form a + bε 7→ a + bλε where λ is a non-zero element of Zp. Thus, |Aut R| =
p− 1. �

Now we derive an important consequence of Theorem 13 and Corollary 10. It
shows, in essence, that a finite non-semisimple p-ring can be categorically equivalent
only to a ring of the same characteristic.

Theorem 14. Let R be a finite non-semisimple p-ring for some prime p. If R is
categorically equivalent to a ring S then char(R) = char(S).

Proof. Assume that char(R) 6= char(S). Then by Corollary 10 char(R) = p and
char(S) = q where q is a prime different from p. Since R is not semisimple, there
exists a non-zero nilpotent element a ∈ R, say an = 0 but an−1 6= 0. Let e = an−1,
then we have e2 = 0 and e 6= 0.

Now consider the subring R1 of R consisting of all elements of the form a + be
where a, b ∈ Zp. It is categorically equivalent to a subring S1 of S. However, it is

easily seen that R1 is a Type (4) ring of order p2. Thus, by Theorem 13, we have
R1 ' S1, implying p = q. This contradiction proves the theorem. �

Corollary 15. Finite categorically equivalent rings of coprime characteristics are
semisimple.

Proof. Let R and S be finite rings of coprime characteristics, R ≡c S, and let
R1, . . . ,Rn be the factors of the canonical decomposition for R. Then, by Theo-
rem 5 there is the same number of factors in the canonical decomposition for S; let
them be S1, . . . ,Sn. Without loss of generality, we have Ri ≡c Si, i = 1, . . . , n. Since
obviously char(Ri) and char(Si) are coprime, Theorem 14 implies that Ri and Si are
semisimple for i = 1, . . . , n. Hence also R and S as direct products of semisimple
rings are semisimple. �
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5. Semisimple rings

In this section we consider categorical equivalence of semisimple rings. Since finite
semisimple rings are direct products of finitely many simple rings, as a first step, we
consider the case of finite simple rings, which, as well known, are full matrix rings over
finite fields (in particular, they are p-rings for some prime p). Our approach is based
on the fact that categorically equivalent algebras must have isomorphic automorphism
groups. In order to prove the main result, we need two lemmas.

Lemma 16. Let K be a finite field and n > 2 an integer. The group Aut Matn(K)
is solvable if and only if n = 2 and K is isomorphic either to Z2 or Z3. In all other
cases Aut Matn(K) has a single non-abelian composition factor which is isomorphic
to the projective special linear group PSL(n,K).

Proof. It is well known (see, for example, Chapter I, Theorem 3.1 of [9]), that every
automorphism of the full matrix ring Matn(K) over a field K is a composition of
an outer automorphism (a fixed automorphism of K is applied to all entries of all
matrices) and an inner automorphism (mapping of the form X 7→ C−1XC where
C is a fixed non-singular matrix). It is easily seen that all inner automorphisms
of the ring Matn(K) form a normal subgroup (denoted by Inn Matn(K)) of the full
automorphism group Aut Matn(K) while the outer automorphisms of Matn(K) form
just a subgroup of Aut Matn(K), isomorphic to Aut (K). Moreover, obviously

(1) Aut Matn(K) ' Inn Matn(K) o Aut K

where o denotes semidirect product of groups. Therefore, since the automorphism
group of a finite field is cyclic, the solvability of Aut Matn(K) is equivalent to that
of Inn Matn(K). Further, since Inn Matn(K) is isomorphic to the quotient group
of GL(n,K) over its center, the solvability of Inn Matn(K) is equivalent to that of
GL(n,K). Now our claim follows from a classical fact of group theory: the group
GL(n,K) with n > 2 is solvable if and only if n = 2 and |K| is 2 or 3, and in all other
cases the only non-abelian composition factor of GL(n,K) is PSL(n,K). �

Lemma 17. Every atom in the lattice of subrings of Mat2(Zp) has cardinality p2.

Proof. Since Zp is a prime field, every subring of Mat2(Zp) is a vector space over
Zp. The proper non-trivial subrings of this ring have dimension 2 or 3, hence it is
sufficient to prove that no subring of dimension 3 is an atom. If S 6 Mat2(Zp) is a 3-
dimensional subring, then it can be defined by a single homogeneous linear equation,
i.e., there exist coefficients α, β, γ, δ ∈ Zp (not all zero) such that

S =

{(
a b
c d

) ∣∣∣∣ a, b, c, d ∈ Zp, αa+ βb+ γc+ δd = 0

}
.

Since the identity matrix belongs to S, we must have α + δ = 0. If γ 6= 0, then S
contains the p2-element subring{(

a b
λb a

) ∣∣∣∣ a, b ∈ Zp
}

with λ = −βγ−1, therefore S is not an atom. If β 6= 0, then a similar argument works,
so in the remaining cases we can assume that β = γ = 0 and δ = −α 6= 0. Then we
have

S =

{(
a b
c a

) ∣∣∣∣ a, b, c ∈ Zp
}

;

however, this set is not closed under multiplication. �
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We know that if a finite simple ring R is categorically equivalent to a ring S then
S is finite simple, too. We also know that if R is a finite field then so is S. Moreover,
we know that then there exist primes p and q and a positive integer k such that one of
the two rings is isomorphic to Fpk and the other to Fqk . The following theorem shows
that in all other cases categorically equivalent finite simple rings are isomorphic.

Theorem 18. Let K1 and K2 be finite fields and n1, n2 > 2 positive integers.
Matn1(K1) ≡c Matn2(K2) if and only if n1 = n2 and K1 ' K2.

Proof. The sufficiency is obvious. For necessity, assume that Matn1
(K1) ≡c Matn2

(K2).
Then Aut Matn1

(K1) ' Aut Matn2
(K2).

Let first Aut Matn1
(K1) be non-solvable. Then, by Lemma 16, PSL(n1,K1) '

PSL(n2,K2). The only non-trivial possibilities for that are the exceptional isomor-
phisms PSL(2,F7) ' PSL(3,F2) and PSL(2,F4) ' PSL(2,F5) (see [11], Section
1.2) which leaves the possibility that Mat2(F7) ≡c Mat3(F2) and/or Mat2(F4) ≡c
Mat2(F5). The first of them can be excluded by comparison of the automorphism
groups. Elementary calculations give |GL2(F7)| = 48 · 42. Since the center of
this group is of size 6 and |Aut (F7)| = 1, the formula (1) gives |Aut Mat2(F7)| =
(48 · 42)/6 = 336. On the other hand, |GL3(F2)| = 7 · 6 · 4 = 168, the center of this
group is trivial and |Aut (F2)| = 1, so the formula (1) gives |Aut Mat3(F2)| = 168.
Hence, Aut Mat2(F7) 6' Aut Mat3(F2) and, consequently, Mat2(F7) 6≡c Mat3(F2).

Now consider the rings Mat2(F4) and Mat2(F5). We shall show that there is an
atom A in the subring lattice of Mat2(F4) which is not categorically equivalent to
any atom of the subring lattice of Mat2(F5), thus Mat2(F4) and Mat2(F5) cannot
be categorically equivalent. The ring A consists of all matrices in Mat2(F4) having

the form

(
a b
0 a

)
with a, b ∈ {0, 1}. Clearly, the size of A is 22, it is a ring of Type

(4) in Section 4 and its only proper subring is the smallest subring of Mat2(F4). On
the other hand, by Lemma 17, every atom in the lattice of subrings of Mat2(F5) has
cardinality 52. Hence, by Theorem 13, none of the latter is categorically equivalent
to A.

It remains to consider the case when the group Aut Matn1
(K1) is solvable. In view

of Lemma 16, this leaves the possibility that Mat2(Z2) ≡c Mat2(Z3). However, this is
not the case because the automorphism groups of these two rings have different sizes:
6 and 24, respectively. �

Now we are ready to describe categorical equivalences between finite semisimple
rings. This result shows that our conjecture that all categorical equivalences between
finite rings are consequences of Theorem 2 holds for semisimple rings.

Theorem 19. Let R and S be semisimple rings with p-components R1, . . . ,Rn and
S1, . . . ,Sn, respectively. Then R and S are categorically equivalent if and only if there
is a permutation π ∈ Sn, such that for every i ∈ {1, . . . , n}, one of the following two
conditions holds:

(a) Ri and Sπ(i) are isomorphic, or
(b) Ri ' Fpk1 × · · · × Fpkt and Sπ(i) ' Fqk1 × · · · × Fqkt for some primes p and

q and positive integers k1, . . . , kt.

Proof. First, to prove the “only if” part, let us suppose that R and S are categorically
equivalent. By Theorem 5, there is a permutation π ∈ Sn, such that Ri ≡c Sπ(i)

for every i. Assume that Ri is a p-ring and Si is a q-ring; then Ri is of the form
Ri ' Matn1

(Fpk1 ) × · · · ×Matnt
(Fpkt ). If F is a categorical equivalence that maps

Ri to Si, then we have Si ' F (Matn1
(Fpk1 ))× · · · × F (Matnt

(Fpkt )). Clearly, these
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direct factors are simple rings, hence they are also matrix rings over finite fields:
F (Matnj (Fpkj )) ' Matmj (Fqlj ) for j = 1, . . . , t. By Theorems 6 and 18, we have

nj = mj and kj = lj for every j. If nj ≥ 2 for some j, then, again by Theorem 18,
we have also p = q, and then Ri ' Sπ(i) follows, i.e., (a) holds. If n1 = · · · = nt = 1,
then p and q may be different, and in this case condition (b) is satisfied.

Now, for the “if” part, assume that there is a permutation π as stated in the
theorem. According to Theorem 5, it suffices to verify that Ri ≡c Sπ(i) for every
i. This is clear if (a) holds, so let us suppose (b), and let us set k = k1 · . . . · kn.
By Theorem 2, there is a categorical equivalence functor F between Var(Fpk) and
Var(Fqk), such that F (Fpk) = Fqk . Observe that Fpki is (isomorphic to) a subfield of
Fpk , and Theorem 2 shows that Fqki is the only subfield of Fqk that is categorically
equivalent to Fpki . Thus, we must have F (Fpki ) ' Fqki for i = 1, . . . , t, and this
implies

F (Ri) ' F (Fpk1 × · · · × Fpkt ) ' Fqk1 × · · · × Fqkt ' Sπ(i).

�
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[10] O. Košik, Categorical equivalence of some algebras, Acta Comment. Univ. Tartu. Math. 16

(2012), 233–239.
[11] R. A. Wilson, The finite simple groups, Springer-Verlag London Limited, 2009.

[12] L. Zádori, Categorical equivalence of finite groups, Bull. Austral. Math. Soc. 56 (1997), 403–408.

(K. Kaarli) Institute of Mathematics, University of Tartu, 50090 Tartu, Estonia

E-mail address: kaarli@ut.ee
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