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Abstract
To detect social signals such as laughter or filler events from

audio data, a straightforward choice is to apply a Hidden

Markov Model (HMM) in combination with a Deep Neural Net-

work (DNN) that supplies the local class posterior estimates

(HMM/DNN hybrid model). However, the posterior estimates

of the DNN may be suboptimal due to a mismatch between

the cost function used during training (e.g. frame-level cross-

entropy) and the actual evaluation metric (e.g. segment-level

F1 score). In this study, we show experimentally that by em-

ploying a simple posterior probability calibration technique on

the DNN outputs, the performance of the HMM/DNN work-

flow can be significantly improved. Specifically, we apply a

linear transformation on the activations of the output layer right

before using the softmax function, and fine-tune the parameters

of this transformation. Out of the calibration approaches tested,

we got the best F1 scores when the posterior calibration process

was adjusted so as to maximize the actual HMM-based evalua-

tion metric.

Index Terms: social signals, laughter detection, filler events,

Hidden Markov Model, Deep Neural Networks, posterior prob-

ability calibration

1. Introduction

Non-verbal communication plays an important role in human

speech comprehension. Besides specific visual cues, some

types of messages can be transferred by non-verbal vocaliza-

tions (laughter, filler events, throat clearing, breathing) as well.

The interpretation of speakers’ intentions can be assisted by us-

ing paralinguistic information; for instance, to acquire informa-

tion about the speaker’s emotional state and attitudes [1], or to

recognize equivocation and irony [2]. Detecting specific non-

verbal phenomena such as laughter and filler events may also

assist automatic speech recognition (ASR) systems and help re-

duce the word error rate.

To detect social signals in an audio recording, the simplest

approach is to train and evaluate the actual machine learning

method at the frame level. But one would expect better re-

sults from a solution that works over segments, for which a

straightforward choice is to utilize a Hidden Markov Model

(HMM), which incorporates some frame-level model – such as

a Deep Neural Network (DNN) – that supplies the local (frame-

level) posterior probability estimates of the specific acoustic

events. This HMM/DNN hybrid technology is now standard

in speech recognition [3]. To improve the performance of this

HMM/DNN hybrid, it is common to fine-tune several meta-

parameters related to DNN structure, to DNN training, or to the

HMM part; it is quite rare, however, to apply posterior proba-

bility calibration to the DNN outputs before utilizing them in

the HMM.

The main goal of calibration is to turn the output scores of

a classifier into valid posterior class probability estimates. No-

table examples for this mechanism are the classification rule of

AdaBoost.MH [4] and Support-Vector Machines (SVMs, [5]),

as the output values of these classifiers cannot be directly in-

terpreted as posterior probabilities. Deep Neural Networks, at

a first glance, do not fall into this category, as DNN training

via the cross-entropy error function was proven to provide not

only competitive classification accuracies, but also reliable pos-

terior estimates [6]. Yet, in the HMM/DNN hybrid model, there

is still a mismatch between trainining the DNN for frame-level

classification, while we want to minimize some objective func-

tion that is defined at the utterance level, like the Word Error

Rate (WER) in the case of speech recognition. To alleviate this

gap, sequence-level optimization methods were proposed for

HMMs [7, 8], and now these are routinely used for HMM/DNN

hybrids as well [9, 10]. Unfortunately, these methods are un-

likely to work well in the case of audio event detection, first

because we seek to optimize a different metric (e.g. the F1

score), and second because laughter and filler events take up

only a fraction of the sequence duration. This class imbalance

is known to be problematic for sequence-level training (known

as the ‘runaway silence model’ issue [11]).

When training the DNN at the frame level, a number of

other factors might also contribute to the posterior estimates

to be imprecise to the extent that it leads to a suboptimal

HMM/DNN performance. For example, DNNs are known to be

biased towards classes having more training examples [12], and

in our case, a significant class imbalance is clearly present. An-

other possible source of suboptimality might be the imprecise

positioning of the DNN training targets. Regardless of whether

these frame-level class labels come from a manual annotation

or from an automated forced-aligned process, they are prone to

noise due to the imprecise positioning of phonetic or social sig-

nal occurrence boundaries, and this noise is propagated further

to the output of the HMM. Therefore the DNN outputs might

need to be adjusted to improve utterance-level performance;

finding this transformation is the posterior calibration process

itself. Altogether, these are the reasons why we expect to gain

better performance from calibrating the posterior estimates pro-

duced by a DNN trained with frame-level targets.

A number of calibration techniques have been developed

such as Platt scaling, logistic regression and isotonic regres-

sion (see e.g. [5, 13, 14]), and these were used in several

scientific areas such as direct marketing analysis [15], med-

ical diagnosis [16], psychology [17] and emotion classifica-

tion [18]. Furthermore, posterior calibration was employed in

HMM-based frameworks in various areas like natural language

processing [19] and dynamic travel behavioral analysis [20].

However, we found no study that calibrated the posterior es-



timates of HMM/DNN models using audio as the input. In this

study we present our approach of posterior calibration for de-

tecting laughter and filler events in spontaneous conversation.

Our approach is a simple-yet-effective DNN-specific method:

we linearly transform the neuron activations in the output layer

just before applying the softmax function. By tuning the pa-

rameters of this transformation on the development set, we re-

port relative error reduction scores of 6-7% on the test set of a

public database containing English spontaneous telephone con-

versations.

2. Posterior Calibration for HMM/DNNs

A standard Hidden Markov Model requires frame-level esti-

mates of the class-conditional likelihood p(xt|ck) for the obser-

vation vector xt and for each class ck , which are traditionally

provided by a Gaussian Mixture Model (GMM) [21]. Neural

networks, however, are discriminative classifiers (in contrast to

GMMs which are generative ones), which means that they esti-

mate the P (ck|xt) values. From these estimates, the p(xt|ck)
values expected by the HMM can be got using Bayes’ theorem,

i.e.:

p(xt|ck) =
P (ck|xt) · P (xt)

P (ck)
. (1)

So, in a HMM/DNN hybrid, we divide the posterior estimates

produced by a DNN by the P (ck) a priori probabilities of the

classes. This will give us the required likelihood values within

a scaling factor (the combined probability of the xt observation

vectors), which can be ignored as it has no influence on the

subsequent maximum a posteriori (MAP) decision process.

2.1. Posterior Calibration for Deep Neural Networks

In standard DNNs, when utilized for classification, the number

of output neurons is set equal to the number of classes, and we

employ the softmax activation function in the output layer. This

guarantees that the output values are non-negative and add up

to one, so they satisfy the formal requirements of a posterior

estimate. Formally,

P (ck|xt) = σ(z)j =
ezj

∑K

k=1
ezk

, (2)

where zj are the linear activation values of the corresponding

neurons. In the simplest form of posterior calibration, we per-

form a linear transformation on the zj values, i.e. we replace

them by

z
′

j = ajzj + bj . (3)

Notice that we have two tunable parameters (a and b) for each

output neuron.

2.2. Optimization

In the above we did not consider the choice of the actual opti-

mization method to be an essential part of the proposed work-

flow: in the posterior probability calibration approach outlined

above we could use practically any algorithm. For example, as

the transformation we propose is linear, it could be easily incor-

porated into the backpropagation optimization process. How-

ever, ideally we would like to optimize the performance of the

whole system for sentence-level detection. For this, we would

have to define an error function that is differentiable and ex-

presses the sentence-level detection errors. Here, we will use

an evaluation metric that is derived from the F1 score. Al-

though attempts have been made to formalize the F1 error in

backpropagation-based DNN training [22], the results are not

convincing. Furthermore, we would like to use a metric defined

over segments, not simple frames (see Section 3.2 for details).

For these reasons, we decided to apply general-purpose opti-

mization methods.

Since the number of parameters we have to tune is twice

the number of classes, even to detect two phenomena (and hav-

ing one class for the background) means a six-dimensional op-

timization problem. Unfortunately, the straightforward choice

of grid search is unfeasible even for a small number of events,

so we need more sophisticated methods. In the experimental

validation of the proposed workflow, we will test two such op-

timization approaches.

The first optimization technique tested was generating

random values and choosing the vector which leads to the best

performance on the development set. Though this may seem to

be a primitive technique at first glance, it was shown (see e.g.

the study of Bergstra and Bengio [23]) that this is a favorable

method to grid search for hyper-parameter optimization. There-

fore we generated random a and b vectors following a uniform

distribution, performed a search with HMM on the development

set, and chose the vector which led to the highest F1 scores.

The other optimization approach we used is the Covari-

ance Matrix Adaptation Evolution Strategy (CMA-ES, [24])

method for meta-parameter optimization. Evolution Strate-

gies resemble Genetic Algorithms in that they mimick the evo-

lution of biological populations by selection and recombina-

tion, so they are able to “evolve” solutions to real world prob-

lems. CMA-ES is reported to be a reliable and competitive

method for badly conditioned, non-smooth (i.e. noisy) or non-

continuous problems [25]. Furthermore, it requires little or no

meta-parameter setting for optimal performance. Here, we used

the Java implementation with the default settings.

3. Experimental Setup

3.1. The SSPNet Vocalization Corpus

We performed our experiments on the SSPNet Vocalization

Corpus [26], which consists of short audio clips from En-

glish telephone conversations. The total recording time of

this corpus is 8 hours and 25 minutes with 2988 laughter and

1158 filler events. Since in the public annotation only the

laughter and filler events are marked, in our experiments we

had three classes, namely “laughter” (3.4%), “filler” (4.9%)

and “other” (meaning both silence (40.2%) and non-filler non-

laughter speech (51.3%)). We used the standard split of the

dataset into a training, development and test set, introduced in

the ComParE 2013 Challenge [27]. From the total of 2763 clips,

1583 were assigned to the training set, while 500 clips were as-

signed to the development set, and 680 clips to the test set.

3.2. Evaluation Metrics

For tasks like social signal detection, where the distribution of

classes is significantly biased, classification accuracy is only of

limited use. Another common metric used in social signal de-

tection is to take the AUC score of the frame-level posteriors

as in e.g. [27, 28]. However, in our opinion the performance

of a method can be more reliably judged by utilizing a HMM

and measuring the quality of event occurrence hypotheses. We

opted for the information retrieval metrics of precision, recall

and F-measure (or F1), which we regard as straightforward and

appropriate metrics for the current task. We summarized the

scores of the two social signals by macro-averaging: we aver-



Laughter Filler Combined

Posterior calibration approach Prec. Rec. F1 Prec. Rec. F1 F1

None (baseline) 58.0% 62.4% 60.1% 66.3% 67.1% 66.7% 63.4%

Maximizing frame-level classification accuracy 63.6% 67.1% 65.2% 65.9% 64.7% 65.2% 65.3%

Maximizing F1

Random 64.0% 65.1% 64.4% 65.3% 65.9% 65.6% 65.0%

CMA-ES (proposed) 68.7% 61.1% 64.6% 60.0% 74.4% 66.4% 66.0%

Table 1: Optimal segment-level averaged F-measure values on the test set when using different strategies for posterior calibration.

aged the precision and the recall scores of these two phenom-

ena, and calculated F1 from these average values.

To decide whether a laughter occurrence hypothesis re-

turned by the HMM and one labelled by a human annotator

match (i.e. segment-level evaluation), we combined two re-

quirements. First, we required that the two occurrences refer to

the same kind of event (i.e. laughter or filler) and that their time

intervals intersected (e.g. [29, 30, 31]). Second, the center of

the two occurrences had to be close to each other (i.e. within

500ms). The latter requirement was inspired by the NIST stan-

dard for Spoken Term Detection evaluation [32].

As it is also common to calculate precision, recall and F-

measure at the frame level, we will also report the effective-

ness of the posterior probability calibration techniques when

taking these values at the level of frames. Similar to the case of

segment-level evaluation, here we again averaged out the preci-

sion and the recall scores of the two types of events. Obviously,

we optimized the a and b vectors for the two (evaluation) met-

rics independently, always optimizing the actual metric.

3.3. DNN Parameters

As the DNN component of our hybrid recognizer, we used our

custom implementation, which achieved the lowest error rate on

the TIMIT database ever published with a phonetic error rate of

16.5% on the core test set [33]. Following the results of our

previous studies (see [34]), we utilized DNNs with five hidden

layers, each containing 256 rectified neurons, and applied the

softmax function in the output layer.

We used the feature set introduced in the ComParE 2013

Challenge [27], which consists of the frame-wise MFCC + ∆ +

∆∆ feature vector along with voicing probability, HNR, F0 and

zero-crossing rate, and their derivatives. To these 47 features

their mean and standard derivative in a 9-frame neighbourhood

were added, resulting in a total of 141 features, extracted with

the openSMILE tool [35]. Again, following our previous works,

we extended the feature vectors with the features of 16 neigh-

bouring frames from both sides, resulting in a 33 frame-wide

sliding window [34].

It is known that DNN training is a stochastic procedure

due to random weight initialization. To counter this effect, we

trained five DNN models in an identical way (except the ran-

dom seed value), and averaged out the precision, recall and F1

scores. This was done both for the baseline models and in the

experiments using the calibrated posteriors.

3.4. HMM State Transition Probabilities

Our HMM consisted of only three states, each one represent-

ing a different acoustic event. In this set-up, the state transition

probabilities of the HMM practically correspond to a language

model. Following Salamin et al. [26], we constructed a frame-

level state bi-gram. The transition probability values were cal-

culated on the training set, and we used the development set to

find the optimal language model weight for each (transformed)

DNN model independently.

3.5. Calibration Parameter Optimization

Since we calibrated the posterior estimates for three classes, we

had a six-dimensional optimization task. In accordance with

Section 2, we optimized these parameters on the development

set, while the final model evaluation was carried out on the test

set. The a and b vectors were expected to remain in the range

[−25, 25]. The CMA-ES optimization method allows us to set

the vector where the search process is initiated; we made the

straightforward choice of using the original posterior estimates

for this aim (i.e. we had the starting values of a = 1 and b = 0).

The optimization process was allowed to run for 2000 iterations;

as for the random optimization process, we also generated 2000

vectors overall. We optimized the a and b transformation pa-

rameter vectors for the five DNN models independently.

For comparison, we also tested the approach where we

choose the transformation parameters that produce the best

frame-level classification of the development set. That is, af-

ter re-scaling the frame-level DNN outputs following Bayes’

theorem using the a priori estimates, we choose the class for

each frame with the highest transformed likelihood, and calcu-

late the traditional classification accuracy relative to the frame-

level manual annotation.

4. Results

Table 1 shows the obtained segment-level precision, recall and

F1 scores on the test set. The baseline scores are around 60-

66%, which is standard on this dataset (see e.g. [31, 34]). Also

notice that filler events were identified more precisely (about

66%) than laughter events (58-62%). When performing poste-

rior probability calibration by maximizing frame-level classifi-

cation accuracy, we obtained an average combined F-measure

score of 65.3%; most of this improvement came from more

precise laughter detection. Although the improvement is only

1.9% absolute (5% relative), it was found to be significant with

p < 0.01 by the Mann-Whitney-Wilcoxon ranksum test [36]

When incorporating the HMM search step in the calibra-

tion process and trying out random a and b vectors (case “Max-

imizing F1 – Random”), we managed to improve the F1 score

for laughter by 4.3% absolute over the baseline score; in terms

of relative error reduction (RER), it means an 11% improve-

ment. Although the various scores associated with the filler

events fell slightly, the average combined F1 score rose from

63.4% to 65.0%. Unfortunately, this improvement is not signif-

icant even with p = 0.05. However, when we maximized the

utterance-level F1 score after using the HMM, and employed

the CMA-ES method to find the optimal a and b transformation



Laughter Filler Combined

Posterior calibration approach Prec. Rec. F1 Prec. Rec. F1 F1

None (baseline) 54.6% 70.4% 61.4% 54.3% 62.6% 58.1% 59.8%

Maximizing classification accuracy 74.7% 50.7% 60.3% 63.2% 53.9% 58.2% 59.4%

Maximizing F1

Random 61.1% 68.2% 64.4% 62.4% 56.4% 59.2% 62.0%

CMA-ES (proposed) 64.9% 66.0% 65.3% 54.0% 65.4% 59.2% 62.4%

Table 2: Optimal frame-level averaged F-measure values on the test set when using different strategies for posterior calibration.
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Figure 1: A sample of the original (dotted lines) and calibrated

(continuous lines) posterior estimates; the shaded regions indi-

cate the annotated occurrences.

vectors (case “Maximizing F1 – CMA-ES”), we got a combined

segment-level F1 score of 66.0%, meaning a 7% RER score,

which was found to be significant with p < 0.01.

At the frame level (see Table 2), we notice that optimizing

the posterior calibration parameters for classification actually

led to a drop in our metric scores. This is especially surpris-

ing as the very same values led to a (significant) increase in the

segment-level values. This difference is most apparent in the

case of the laughter events: while we could improve their de-

tection at the segment level, our frame-level values (especially

the recall scores) fell dramatically. This is consistent with our

previous finding (see e.g. [34]) that, since laughter events are

fairly long phenomena (in this corpus their average duration is

942ms), it is relatively easy to find a part of them. Their exact

starting and ending points, however, are quite hard to identify.

Indeed, the (frame-level) recall score for laughter events is be-

low that of the baseline for all calibration approaches tested.

Due to this drop in the F1 score for laughter events, the com-

bined F1 score appeared to be lower as well (since there was

practically no change in the filler event detection performance).

Incorporating the HMM search into the posterior proba-

bility calibration process, however, led to significant improve-

ments (p < 0.01) in both cases. For random values, we got an

absolute improvement of 2.2% (5% RER), while utilizing the

CMA-ES algorithm to set the calibration parameters led to a

combined F1 score of 62.4% (7% RER). Most of the improve-

ment came from a higher precision score of the laughter events

for both approaches; since the corresponding recall scores re-

mained at the baseline level, we think that calibration led to less

false alarms in the case of laughter events.

Fig. 1 shows a sample from an utterance of the test set.

We can readily see that the original posterior estimates (dot-

ted lines) are lower than the calibrated ones (continuous lines).

It is also quite apparent that, although the HMM/DNN model

obviously found the two annotated occurrences (the two shad-

owed regions) in this excerpt, the boundaries of the HMM/DNN

hypotheses and the manual annotation match only loosely. This

difference, in our opinion, demonstrates the amount of subjec-

tivity inevitably present in the frame-level annotation of social

signals, which is why we consider the segment-level perfor-

mance measurement approach both more meaningful and more

reliable. Nevertheless, regardless of the use of segment- or

frame-level F1 to measure event detection accuracy, the pro-

posed posterior probability calibration technique significantly

improved the performance of the HMM/DNN hybrid.

5. Conclusions

In this study, we focused on the DNN acoustic models of

HMM/DNN hybrids used for social signal detection. To boost

the performance, we applied posterior probability calibration;

that is, we applied a linear transformation on the activations of

the output layer just before using the softmax function, and fine-

tuned the transformation parameters. We experimented with

several approaches for finding the optimal values of this linear

transformations. Our results indicate that it is indeed benefi-

cial to incorporate the search step of Hidden Markov Models

into the optimization process, and utilizing the Covariance Ma-

trix Adaptation Evolution Strategy (CMA-ES) method led to

better results than generating random vectors did. Evaluated

on segment-level and on frame-level, the proposed approach in

both cases led to significant improvements in the performance.

On examining the original and the calibrated (transformed)

posterior estimates, we found that posterior probability calibra-

tion markedly increased the probability estimates of the rarer

classes (in our case, laughter and filler events). This was not

really surprising, as neural networks are known to overesti-

mate the probability of more frequent classes and underestimate

those which have less training data. Although we divide these

posterior estimates by the priors before utilizing them in the

HMM, which step increases the relative importance of these mi-

nority classes, we found that a further increase was required to

achieve optimal performance in terms of frame- and segment-

level F-measure scores. Of course, it would be interesting to

evaluate the proposed approach in a multi-language set-up. This

is, however, clearly the subject of future work.
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