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a b s t r a c t

The standard approach for handling computational paralinguistic speech tasks is to extract several
thousand utterance-level features from the speech excerpts, and use machine learning methods such
as Support Vector Machines and Deep Neural Networks (DNNs) for the actual classification task. In
contrast, Automatic Speech Recognition handles the speech signal in small, equal-sized parts called
frames. Although the speech community has developed techniques for efficient frame classification,
these efforts have mostly been ignored in computational paralinguistics. In this study we propose a
simple, three-step technique to utilize frame-level DNN training know-how in computational paralin-
guistics. We show that this method by itself provides good accuracy scores, and by combining it with
the standard paralinguistic classification approach, we get close to the performance of heavyweight,
state-of-the-art techniques such as Fisher vector analysis. However, our approach has the advantage
that it can be easily realized by using standard speech recognition tools. To demonstrate the generic
applicability of this three-step method proposed, we performed our experiments on four different
corpora containing different paralinguistic tasks. Overall, we were able to achieve improvements over
the baseline score in all four cases, leading to relative error reductions of up to 19%.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Traditionally, the main focus of speech technology was Au-
tomatic Speech Recognition (ASR), where the task is to create
the written transcription of an audio recording (an utterance) in
an automatic way. Recently, however, extracting and identifying
phenomena present in a speech signal other than the words
uttered has gained further attention, and has formed a new area
known as computational paralinguistics.

Of course, there are paralinguistic tasks which were dealt with
even in the 90s such as identifying laughter events [1] and deter-
mining the speaker’s emotional state [2,3]. Over the past decade,
however, several other tasks have also gained attention such
as conflict intensity estimation [4,5], detecting the amount of
physical and cognitive load [6–9], detecting whether the speaker
is drunk [10,11], and various medical applications like detecting
Parkinson’s disease, Alzheimer’s disease and depression [12–15].
The standardization of methods, tools, evaluation metrics and
the appearance of publicly available datasets was aided by the
Interspeech Computational Paralinguistic Challenge (ComParE),
held annually from 2009 [16].

✩ No author associated with this paper has disclosed any potential or
pertinent conflicts which may be perceived to have impending conflict with
this work. For full disclosure statements refer to https://doi.org/10.1016/j.knosys.
2019.104943.

ASR and computational paralinguistics are different by nature
at two distinct levels. Firstly, ASR focuses on the words uttered,
and treats everything else (the speaker’s actual emotions, his
physical load, blood alcohol level, etc.) as noise which is to be
ignored. In paralinguistic tasks, however, we do not care about
the individual words, but we are interested in other non-linguistic
information present in human speech. The second difference is a
more technical one: ASR handles the speech signal by dividing
it into small, equal-sized excerpts called frames, on which local
likelihoods are estimated, and these are then combined into a
variable-length, utterance-level output (the phonetic or word-
level transcription), usually via a Hidden Markov Model [17].
Therefore, when machine learning methods are used in ASR,
they are usually applied at the frame level. In computational
paralinguistics, however, each utterance is treated as one exam-
ple, from which utterance-level features have to be extracted in
some way. Classification also resembles general machine learn-
ing tasks instead of those common in ASR: there are only a
few hundred examples instead of millions present in frame-level
phoneme classification, hence researchers tend to prefer using
Support Vector Machines (SVM, [18]) to Deep Neural Networks
(DNNs, [19]).

In the standard solution for utterance-level feature extraction
in computational paralinguistics, developed over the years mainly
during the ComParE challenges (see e.g. [20–22]), first low-level
descriptors such as energy, spectral, cepstral (MFCC) and voicing
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Table 1
The number of speakers and utterances in the training and test sets for the three databases used.
Dataset Language No. of No. of utterances Total duration (h:mm:ss)

classes Train Test Total Train Test Total

Physical Load German 2 770 319 1089 0:16:45 0:06:27 0:23:13
Emotion Hungarian 4 831 280 1111 0:20:23 0:07:00 0:27:23
Eating Condition German 7 945 469 1414 1:52:22 0:59:06 2:51:28
Cognitive Load (task Reading sentence) English 3 1350 600 1950 1:28:21 0:40:58 2:09:19

related attributes are computed frame-wise; then, by using spe-
cific functionals like the mean and standard deviation, these are
transformed into utterance-level features. Notice that no machine
learning is performed at the frame level; however, in ASR (and
in similar tasks such as laughter detection [23–25]) fine-tuned
solutions exist on how frames should be classified. Unfortunately,
these refined techniques are completely ignored in computational
paralinguistics most of the time, and in the notable exceptions
when they are not (e.g. [5,26,27]), machine learning is performed
in a strongly task-dependent way.

Following our previous studies [28], we will present a method
which synthesizes these two approaches. First, following standard
ASR principles, we perform frame-level classification using Deep
Neural Networks. Then, for the second step, we extract a new,
utterance-level feature set from the frame-level DNN outputs;
these new feature vectors are then utilized for utterance-level
classification. We will show that this Posterior-Thresholding Fea-
ture Extraction (PTFE) approach is viable just on its own, as the
results obtained this way appear to be close to those got using the
standard paralinguistic approach. However, when we combine
the predictions of the two techniques, we get accuracy scores that
notably exceed those got by the baseline technique, falling closer
to those obtained by heavyweight, state-of-the-art methods such
as Fisher vector analysis of an Acoustic Background Model [26],
which are not straightforward to utilize and are computationally
very expensive. In contrast, our proposed method can be eas-
ily realized by relying on standard ASR tools, and there is no
meta-parameter to be set.

Note that the proposed technique is somewhat similar to
the Bag-of-Audio-Words (BoAW) representation [29], which has
become popular recently [30,31]. In the BoAW approach, the
frame-level feature vectors (e.g. MFCCs ) of the training set are
clustered to obtain the so-called codebook (the list of cluster
centers). Each utterance is represented by the (normalized) his-
togram of the clusters of its frame-level feature vectors; classifier
training and evaluation is realized by using these normalized his-
tograms as utterance-level feature vectors. The key difference is
that BoAW constructs the utterance-level feature representation
in an unsupervised manner (i.e. via clustering), while within the
PTFE method we employ machine learning for the same aim.

Another promising audio representation technique is wavelet-
based multiresolution analysis [32]. The biggest advantage of
multiresolution analysis is its denoising capability, since its focus
lies in the area of noise-robust speech recognition [33–35]. In
this study, however, we will focus on processing human speech
recorded in (relatively) silent environments.

Lastly, we would also like to mention a further advantage of
the proposed PTFE technique: since it contains no task-specific
component, it can be expected to work task-independently. To
demonstrate this, we validate the proposed workflow in four
different paralinguistic tasks, ranging from estimating the level
of physical load to emotion detection.

2. The datasets used

Next, we will describe the datasets we utilized in our exper-
iments. To demonstrate the general utility of the proposed PTFE

algorithm, we used four databases, which vary both in their topic
and in their recording conditions (e.g. microphones, background
noise, language). Table 1 contains some key properties of these
paralinguistic datasets.

2.1. The Munich Biovoice corpus

The first dataset, called the Munich Biovoice Corpus [36], con-
tains the utterances of 19 subjects (4 female and 15 male) of three
nations (Chinese, German and Italian) speaking in German, after
both light and heavy physical exercise. The subjects pronounced
sustained vowels and read a short story, which was recorded by
using two different microphones. (Besides the audio recordings,
heart rate and skin conductivity were also monitored, but these
measurements were not used in the current study.) This dataset
was later used in the Interspeech ComParE 2014 Physical Load
Sub-Challenge [21]; we will refer to it as the Physical Load
dataset.

2.2. The Hungarian Emotion corpus

The Hungarian Emotion Database [37] contains sentences from
97 Hungarian speakers who participated in television
programmes. A large portion of the segments were selected from
spontaneous continuous speech rich in emotions (e.g. talk shows,
reality shows), while the rest of the database came from impro-
vised entertainment programmes. Note that, although actors tend
to overemphasize emotions while acting, in improvisation their
performance is more similar to real-life emotions [38].

Four emotion categories were defined: Anger, Joy, Neutral and
Sadness. We defined our custom training and test sets, because
in the original split these were not speaker-independent ones (as
it was not a typical requirement at the time of recording). Our
training set consisted of 831 segments, while the test set had
280 utterances. Due to this re-partitioning, our results presented
here cannot be directly compared to those presented in the earlier
studies (i.e. [37,38]), but classification accuracy scores around
66%–70% were reported. We will refer to this corpus as the
Emotion dataset.

2.3. The iHEARu-EAT corpus

The iHEARu-EAT database [39] contains the utterances of 30
people recorded while they were speaking and eating at the same
time. Six types of food were used along with the ‘‘no food’’ class,
resulting in seven classes overall. For each speaker and food type,
seven utterances were recorded; some subjects refused to eat
certain types of foods, resulting in a total of 1414 utterances.
Although this dataset can be used primarily to test machine
learning and signal processing techniques, Hantke et al. also
anticipated several possible future applications [39]. This dataset
was used in the Interspeech ComParE 2015 Eating Condition Sub-
Challenge [22]. Later on we will refer to this dataset as the Eating
Condition dataset.
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Fig. 1. The workflow of the proposed paralinguistic processing scheme.

2.4. The cognitive load with speech and EGG corpus

The purpose of the Cognitive Load with Speech and EGG
database [40] is to evaluate algorithms which detect the cognitive
load and working memory of speakers during speech. It contains
the utterances of 26 native Australian English speakers (20 males
and 6 females) performing ‘span’ tasks which require participants
to recall a number of concepts or objects in the presence of
distractors. The speakers had to perform three types of tasks.
The first one (reading sentence) required them to read a series of
short sentences, indicate whether each was true or false, and then
remember a single letter presented briefly between sentences.
Three different cognitive load levels were defined: low when
remembering after one sentence, medium when remembering
after two sentences, and high after the third, fourth and fifth
sentences. The remaining two tasks were variants of the Stroop
test [41]: the speakers had to name the font color of words
corresponding to different color names. At the low level, the
words and the colors were congruent, while at the medium and
high levels they were not.

Since the three tasks performed were different by nature, it
was advised that we train distinct classifier models for them
(for the details, see [21]). However, due to the distribution of
utterances, this results in fairly tiny datasets for the two Stroop
tasks: from the 1674 utterances of the training set, 1350 belong
to the reading span sentence task, while only 162–162 recordings
contain speech recorded during the two Stroop test variations.
Since the proposed PTFE algorithm relies on the frame-level DNN
posteriors, and frame-level DNN training requires a relatively
large database, we will just use the reading sentence task in our
experiments.

This dataset was later used in the Interspeech ComParE 2014
Cognitive Load Sub-Challenge [21]; we will refer to it as the
Cognitive Load dataset.

3. Posterior-thresholding feature extraction

Next, we will describe the proposed feature extraction and
classification approach. (For the general scheme of the proposed
workflow, see Fig. 1.) In the first step, we train a Deep Neural
Network at the frame level. Then, in the second step, we calculate
a new (utterance-level) feature vector based on the DNN outputs,
which are used to train a Support Vector Machine to predict
the actual paralinguistic phenomena. Lastly, we combine these
predictions with those obtained using standard utterance-level
features.

3.1. Frame-level classification

In the first step of our proposed workflow we train a Deep
Neural Network with standard frame-level features (e.g. MFCC,
PLP [17] and mel filter bank energies (‘‘FBANK’’) [42]) as input,

Fig. 2. The frame-level posterior scores obtained for an utterance of the Eating
Condition corpus; the correct class for this example is ‘Crisp’.

where the output neurons correspond to the actual, utterance-
level class label for each frame. While doing so, of course, we
do not expect that the frames will be classified very accurately.
Since in most paralinguistic tasks the actual phenomena which
distinguishes the different classes (e.g. breath intakes for physical
load, coughs for cold, hesitation and silence in various kinds of
dementia) is not present in every part of the utterance, it is
impossible to detect it in a local manner (i.e. at the frame level).
Still, since DNNs have proved to be quite robust in ASR, we may
reasonably expect them to find the segments of the utterance
which are specific to the given classes, and this will be reflected
in the frame-level DNN outputs. Furthermore, as we do not intend
to utilize the frame-level DNN outputs as-is, but we will process
them further to obtain utterance-level feature vectors, it may be
enough if they display some specific tendencies for utterances
belonging to the given classes.

Fig. 2 shows a sample DNN output for the Eating Condi-
tion dataset. It is clear that the DNNs were able to find regions
where sounds corresponding to the correct class (i.e. ‘‘Crisp’’
being eaten) are present; still, finding the correct class for the
utterance may prove to be non-trivial.

3.2. Posterior-based feature extraction

In the second step of the proposed method, we extract features
from the frame-level DNN outputs, which can then be used for
utterance-level classification. Considering an actual application,
this step could be generalized to be performed over some sliding
window instead of the whole utterance. For most paralinguistic
datasets, however, the manual annotation is given at the utter-
ance level only, which does not allow continuous evaluation in
our current study.

In the actual feature extraction step, we process the frame-
level DNN outputs. The most straightforward solution is to clas-
sify each frame based on these likelihood scores, and obtain
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an utterance-level prediction by counting the ratio of frames
classified as each possible class (simple majority voting, SMV [43]).
For classification, the standard approach is to choose the class
which has the largest posterior value for the given example
(i.e. frame). For a binary case this is equivalent to thresholding
the posterior estimates by the value 0.5. However, it is well
known (see e.g. [19,44]) that the posterior estimates provided by
a DNN contain valuable information, and this information might
be exploited in some later step.

Because of this, we propose to employ several different thresh-
old values. That is, using the step size parameter s, first we count
the number of frames where the DNN output corresponding to
the first class is greater than or equal to s, we normalize it by
dividing it by the total number of frames in the utterance, and use
this value as the first newly extracted feature. Next, we repeat
this step using the values 2 · s, 3 · s, . . . , 1 as thresholds and
for all the classes. Doing this for all the utterances, we extract
a new feature set for all the utterances. For the pseudocode of
this method, see Algorithm 1.

Note that, besides the fact that our approach can be viewed as
a generalization of example-level classification (i.e. thresholding
poster estimates using the value 0.5), it has another justification.
Extracting the PT feature set is equivalent to calculating the
cumulative histogram [45] of the frame-level posterior estimates.
Cumulative histograms were previously used in ASR [46] as well
as in several other tasks such as texture classification [47], hand-
written character recognition [48] and analog-to-digital converter
testing [49].

3.3. Utterance-level classification

This step is actually quite simple: using the feature vectors
extracted in the previous step, we perform the classification of
the utterances. Since our method is intended for general com-
putational paralinguistic tasks, we suggest using Support Vector
Machines as the classifier method, which has proved to be the
most robust and efficient in computational paralinguistic tasks.
Of course, some studies (see e.g. [50–52]) report that by carefully
setting the meta-parameters, Deep Neural Networks can provide
a similar performance. For the sake of simplicity, however, in this
study we will utilize only SVMs for utterance-level classification.

3.4. Feature set combination

Although using the thresholded posteriors may prove to be
beneficial for classification, we should not discard all other kinds
of features, especially since the standard ‘ComParE functionals’
feature set proposed by Schuller et al. [20] has proved to be quite
effective over the years on several different tasks (see e.g. [21,
53,54]). Optimality is probably achieved via some combination of
the proposed approach with this standard one. In our experience,
as employing late fusion by averaging out the posterior estimates
of the different approaches (e.g. feature sets) is a simple-yet-
effective approach [28,55], we will apply this solution in our
experiments.

4. Experimental setup

4.1. DNN parameters

At the frame level we trained a Deep Neural Network with 3
hidden layers, each containing 256 rectified neurons [56], and we
used the softmax activation function in the output layer. We used
our custom implementation for Nvidia GPUs, which achieved very
good accuracy scores on several tasks and datasets (e.g. [57,58]).
Training was performed on a 15-frame long sliding window,

Algorithm 1 Posterior-Thresholding Feature Extraction
Require: likelihoods: the DNN outputs for the utterance
Require: f : the number of frames in the utterance
Require: N: the number of classes
Require: s: the step size (s < 1)

m := ⌊1/s⌋
for i := 1 → N do

for j := 1 → m do
cnt := 0
for k := 1 → f do

if likelihoods(k, i) ≥ j · s then
cnt := cnt + 1

end if
end for
features((i − 1) · m + j) := cnt/f

end for
end for
return features

which is also a standard technique in phoneme classification
within ASR [19,57].

We started with a fixed learning rate of 0.001 for the Phys-
ical Load and the Emotion corpora, and a 0.0001 for the Eating
Condition and the Cognitive Load datasets. These values were
determined by preliminary tests; the difference in the initial
learning rates could probably be explained by the amount of
training data required: the networks needed a larger initial learn-
ing rate when there was a smaller number of training examples
available. During training, the learning rate was set via the new-
bob learn rate scheduler method [59]. In it, the (here frame-level)
accuracy of the network is measured after each training iteration
on a hold-out set, and we cease training when the accuracy
score does not improve within a certain number of consecutive
iterations. We used a random 10% of the training data for such a
hold-out set; when the measured accuracy score did not improve
for two consecutive epochs, we halted DNN training.

Note that we did not fine-tune the meta-parameters of frame-
level DNN training (the number of hidden layers, sliding window
width, etc.) at all for two reasons. Firstly, we assumed that the
tendency of the posterior values can be exploited in the second
step even if these posterior estimates are somewhat suboptimal.
Secondly, in this study our aim was to present a general proce-
dure which performs well as-is, without the need for carefully
setting a number of meta-parameter values.

4.2. Frame-level feature sets

In this study we tested two types of frame-level feature vec-
tors. The first one was the Mel-Frequency Cepstral Coefficients
(MFCC, [17]), being quite popular in phoneme classification; we
used 12 MFCC values along with energy, and their first and
second order derivatives (‘‘MFCC +∆ +∆∆’’), which resulted in
39 attributes overall. As DNNs were shown to perform better on
more primitive feature sets, we also experimented with relying
on raw mel filter bank energies (‘‘FBANK’’) of 40 bands; this
feature set, after including the energy of the speech signal and
the ∆ and ∆∆ values here as well, resulted in 123 feature values
for each frame.

4.3. Feature extraction and utterance classification

In the subsequent feature extraction step, we used a step size
of s = 0.02 for the thresholds, resulting in 50 features for each
class; this meant feature sets with a size of 100, 200, 350 and 150
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for the Physical Load, Emotion, Eating Condition and Cognitive
Load datasets, respectively. We applied the ν-SVM method with
linear kernel using the LibSVM implementation [60]; the value
of C was tested in the range 10{−5,...,2}, just like in our previous
paralinguistic studies (e.g. [28,52,55,61]).

Training was done in the way which is common in compu-
tational paralinguistics : the training meta-parameters (e.g. C
for SVM) were determined in speaker-wise cross-validation (CV).
To make the predictions for the test set, we trained an SVM
model using all the training examples. Note that the Physical
Load and Cognitive Load datasets were introduced in the ComParE
2014 Challenge [21] with separate training and development
sets. However, for datasets with similar sizes, using speaker-wise
cross-validation is viewed as standard practice in computational
paralinguistics nowadays.

Due to the large number of speakers present in the Emotion
dataset, we regarded speaker-wise cross-validation as unfeasi-
ble and used ten-fold cross-validation instead. Of course, all the
utterances of a speaker were assigned to the same fold. Fur-
thermore, since the class distribution for this corpus was highly
imbalanced (which is typical for emotion datasets; see e.g. [62,
63]), we upsampled the rarer classes.

4.4. Evaluation metrics

The accuracy of classification was measured via the
Unweighted Average Recall (UAR) metric, it being the mean
of the class-wise recall scores; this is the de facto standard
evaluation metric on three datasets [22,39], and it is widely
used in computational paralinguistics in general. We also report
standard classification accuracy scores for each case; although,
as for the Eating Condition and Cognitive Load datasets the class
distribution is quite balanced, the UAR scores appear to be very
similar to the corresponding classification accuracy scores.

4.5. Other paralinguistic approaches

We also classified the utterances following the standard par-
alinguistic approach, i.e. employing the 6373-sized ‘ComParE
functionals’ feature set proposed by Schuller et al. [20], extracted
by the openSMILE tool [64]. This set includes energy, spec-
tral, cepstral (MFCC) and voicing-related frame-level attributes,
from which specific functionals (like the mean, standard devi-
ation, percentiles and peak statistics) are computed to provide
utterance-level feature values.

For comparison, we also tested the Bag-of-Audio-Words
(BoAW) representation [29]. We used the openXBOW package
[65]; the 39-sized MFCC vectors were used as the frame-level
inputs. Unfortunately, unlike PTFE, BoAW has a meta-parameter
to be set: the codebook size (i.e. number of clusters). Since
the size of PT feature sets ranged from 100 to 350, we tested
codebook sizes of 32, 64, 128, 256, 512 and 1024 in the case of
BoAW representation to roughly match feature set sizes.

The last approach we tested for reference was to combine
the frame-level DNN outputs in other ways: we took their mean
for each class within the given utterance, we combined them
by multiplication, and we experimented with choosing the most
probable class for each frame and then using simple majority
voting of the frame-level class label hypotheses.

4.6. Feature standardization

Support Vector Machines, like most machine learning meth-
ods, are sensitive to the scale of the different features, hence
they require feature standardization or normalization. However,
for specific computational paralinguistic tasks it was shown (see

e.g. [22,26,66,67]) that speaker-wise feature standardization
might assist the subsequent classification steps. Therefore, in our
preliminary tests we also experimented with this standardization
approach for both the original and the PTFE feature sets. We
made use of the annotated speaker IDs for the training set,
while the speakers of the test set were determined by single
Gaussian-based bottom-up Hierarchical Agglomerative Clustering
with Generalized Likelihood Ratio (GLR) as the distance mea-
sure [26,68,69]. We found that speaker-wise standardization is
useful both for the ComParE and the PTFE feature sets for the Eat-
ing Condition and the Cognitive Load datasets, so we standardized
both feature sets this way before training and evaluating our SVM
models. For the Physical Load and Emotion databases, however,
we performed global standardization for all feature sets tested.

4.7. Prediction combination

As we mentioned in Section 3.4, we also experimented with
combining the PT and the ComParE feature sets by taking the
weighted mean of the utterance-level posterior estimates. The
weights summed up to one, and we used a step size of 0.05.
Optimal weights were set via cross-validation. For comparison,
we also combined the MFCC BoAW features with the ComParE
feature set in the same way.

4.8. Training set division

Notice that the proposed Posterior-Thresholding Feature Ex-
traction workflow performs classifier training at two distinct
levels: first it trains a DNN at the frame level, then it trains some
other classifier (e.g. an SVM) at the utterance level, using the
features extracted from the frame-level DNN outputs. However,
DNNs are known to have a tendency of overfitting (see e.g. [70]),
i.e. the posterior scores of the examples on which DNN training
was performed will be biased towards the correct class. Extract-
ing the PTFE features from the DNN training set and incorporating
them into the SVM training set would create a mismatch among
the (utterance-level) training and test sets, and probably harm
classification accuracy. To avoid this, it would be beneficial to
separate a subset of the training set for DNN training, and exclude
these utterances from the utterance-level model training step.
In practice, however, computational paralinguistic datasets tend
to be of a fairly limited size, so discarding a part of training
utterances might lead to a significant loss in model accuracy.

Because of this, we decided to split our training sets into two,
equal-sized parts. We trained our frame-level DNN models on the
first one, evaluated them on the second half of the training set
and on the test set, and extracted the PTFE features. We trained
SVM models on the second half of the training set in speaker-
wise cross-validation mode, determined optimal SVM complexity,
and evaluated these models on the test set. Next, we switched
the roles of the two halves of the training set, and repeated the
whole process. To combine the predictions of the SVM models on
the test set, we averaged out their posteriors in an unweighted
manner. This way we ensured that SVM models were trained on
unbiased PTFE features, while all training examples were made
use of.

5. Results

Tables 2 to 5 show the results obtained for the four datasets.
Notice that using linear SVM with the ComParE feature set (used
as our baseline scores) and the actual baseline values of the
corresponding ComParE challenges differ to a certain extent. This
is due to a number of reasons. Firstly, we used the libSVM [60]
Support Vector Machine implementation instead of Weka, being
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Table 2
The results obtained on the Physical Load corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 68.1% 67.9% 70.8% 71.0%

MFCC BoAW features 65.7% 65.7% 73.4% 73.2%
ComPare + MFCC BoAW features 69.5% 69.3% 73.0% 73.2%

MFCC

Frame-level DNN outputs (mean) 65.9% 65.9% 55.8% 54.8%
Frame-level DNN outputs (product) 66.7% 66.7% 54.9% 53.8%
Frame-level DNN outputs (majority voting) 66.2% 66.1% 54.5% 53.5%

Posterior-thresholding (PT) features 66.5% 66.3% 69.0% 69.0%

ComParE + PT features 70.5% 70.3% 74.0% 74.0%

FBANK

Frame-level DNN outputs (mean) 65.0% 64.7% 53.3% 53.8%
Frame-level DNN outputs (product) 59.8% 59.1% 53.0% 53.7%
Frame-level DNN outputs (majority voting) 65.2% 64.9% 52.4% 52.9%

Posterior-thresholding (PT) features 64.0% 63.7% 73.0% 73.1%

ComParE + PT features 68.8% 68.6% 73.4% 73.5%

ComParE 2014 baseline (Schuller et al., [21]) — — — 71.9%

Chance 50.0% 50.0% 50.0% 50.0%

Table 3
The results obtained on the Emotion corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 67.6% 54.5% 76.8% 60.3%

MFCC BoAW features 66.8% 55.4% 81.1% 56.2%
ComPare + MFCC BoAW features 67.3% 56.2% 81.4% 57.5%

MFCC

Frame-level DNN outputs (mean) 65.5% 46.6% 84.3% 51.4%
Frame-level DNN outputs (product) 65.0% 47.3% 84.3% 53.2%
Frame-level DNN outputs (majority voting) 65.6% 47.2% 84.6% 51.5%

Posterior-thresholding (PT) features 60.8% 54.7% 75.4% 58.2%

ComParE + PT features 68.2% 56.2% 78.9% 61.0%

FBANK

Frame-level DNN outputs (mean) 67.9% 48.8% 81.8% 50.3%
Frame-level DNN outputs (product) 68.2% 50.2% 81.1% 51.3%
Frame-level DNN outputs (majority voting) 67.9% 48.8% 82.1% 51.6%

Posterior-thresholding (PT) features 67.3% 49.5% 75.0% 54.7%

ComParE + PT features 70.8% 56.4% 78.9% 61.3%

Chance 25.0% 25.0% 25.0% 25.0%

the standard in the ComParE Challenges. Secondly, we relied
on speaker-wise cross-validation instead of using a separate de-
velopment set, which might slightly affect the meta-parameter
setting. The third, and perhaps most important cause of the
differences is the speaker-wise standardization technique applied
for the Eating Condition and Cognitive Load datasets, as official
challenge baselines were obtained via global standardization. Of
course, we will treat the former scores as our baselines, since they
mirror our experimental protocol.

Table 2 contains the results obtained for the Physical Load
corpus. We can see that using the BoAW representation alone
yielded scores which almost matched those of the ComParE func-
tionals feature set in the cross-validation set-up, while it out-
performed the baseline on the test set. Combining these two
approaches, however, yielded no further improvement. Fusing
the frame-level DNN outputs into utterance-level hypotheses by
mean, product and majority voting led to nice UAR values in
CV, as the resulting scores were around 66% for both frame-level
feature sets tested (i.e. MFCC and FBANK). However, on the test
set these strategies performed quite poorly: the UAR scores of
52.9–54.8% only slightly exceed the 50% achievable by random
guessing in this binary problem. Compared to these values, using
only the Posterior-Thresholding (PT) features and training an SVM
led to much higher values, although the scores obtained for the
MFCC case are slightly below the baseline. In our opinion this

indicates that the paralinguistic phenomena appearing in this
dataset can be captured locally, in a frame-based manner via
DNNs, but only to a limited extent, and combining the DNN
outputs at the utterance level is not trivial. From this aspect, ex-
tracting the Posterior-Thresholding features and training another
classifier model (this time an SVM) appears to be a much better
strategy than the trivial combination approaches of posterior
mean, posterior product and simple majority voting.

We obtained the highest accuracy and UAR scores when we
utilized both the standard ComParE feature set and the Posterior-
Thresholding features: combining the predictions got by using
the ComParE and the PT (MFCC) feature sets via late fusion led
to the highest score (74.0%), meaning a relative error reduction
(RER) score of over 10%. When we relied on the FBANK features,
we got a slightly lower improvement: the UAR score of 73.5%
corresponds to an RER value of about 8%.

For the Emotion dataset (see Table 3), the BoAW features led
to slightly lower scores than our baseline, and the combination of
the two approaches could not exceed the baseline either. Combin-
ing the frame-level DNN outputs by mean, product and majority
voting led to UAR values around 47%–50% (CV) and about 50%–
53% (test); notice, however, that the corresponding classification
accuracy scores are much higher. The reason for this is probably
that the other classification approaches all employed upsampling,
leading to a more balanced performance class-wise. However,
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Table 4
The results obtained on the Eating Condition corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 74.5% 74.3% 75.3% 74.8%

MFCC BoAW features 66.0% 65.8% 70.1% 69.6%
ComPare + MFCC BoAW features 75.8% 75.6% 75.7% 75.2%

MFCC

Frame-level DNN outputs (mean) 41.5% 40.9% 43.7% 43.1%
Frame-level DNN outputs (product) 41.6% 41.1% 44.1% 44.0%
Frame-level DNN outputs (majority voting) 41.6% 41.1% 45.4% 44.7%

Posterior-thresholding (PT) features 64.6% 62.1% 66.3% 65.8%

ComParE + PT features 76.1% 75.9% 78.9% 78.6%

FBANK

Frame-level DNN outputs (mean) 36.3% 35.4% 42.2% 41.1%
Frame-level DNN outputs (product) 36.4% 35.5% 41.6% 40.6%
Frame-level DNN outputs (majority voting) 35.3% 34.5% 41.8% 40.6%

Posterior-thresholding (PT) features 57.6% 56.9% 64.2% 63.3%

ComParE + PT features 75.8% 75.5% 78.5% 78.0%

ComParE 2015 baseline [22] — 61.3% — 65.9%

Chance 14.3% 14.3% 14.3% 14.3%

Table 5
The results obtained on the reading sentence task of the Cognitive Load corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 64.8% 62.9% 64.8% 63.4%

MFCC BoAW features 56.8% 54.0% 55.3% 51.9%
ComPare + MFCC BoAW features 64.8% 62.9% 64.8% 63.4%

MFCC

Frame-level DNN outputs (mean) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (product) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (majority voting) 44.0% 33.3% 44.0% 33.3%

Posterior-thresholding (PT) features 49.5% 44.2% 54.3% 48.5%

ComParE + PT features 64.8% 62.9% 64.8% 63.4%

FBANK

Frame-level DNN outputs (mean) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (product) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (majority voting) 44.0% 33.3% 44.0% 33.3%

Posterior-thresholding (PT) features 54.1% 49.3% 56.7% 51.6%

ComParE + PT features 64.8% 62.9% 64.8% 63.4%

ComParE 2014 baseline [21] — 61.3% — 61.5%

Chance 33.3% 33.3% 33.3% 33.3%

combining the frame-level posteriors favored the more frequent
classes, resulting in higher classification accuracy and lower UAR
values. Relying on the PT features, we slightly outperformed the
BoAW approach, but the results remained below the baseline on
the test set for both frame-level feature sets; but using late fusion
to merge the predictions of the PT and the ComParE functionals
approaches led to a slight increase in the UAR score on the test
set (relative error reduction scores of roughly 3% and 4%, MFCC
and FBANK case, respectively).

Our experiences on the Eating Condition dataset (see Table 4)
were similar to those obtained on the previous two corpora.
Combining the Bag-of-Audio-Words technique with the stan-
dard ComParE feature set brought a small improvement (0.4%
absolute) on the test set, but this is probably not statistically
significant. The PT feature set performed below the two standard
approaches tested (i.e. ComParE and BoAW); however, it could be
combined with the ComParE feature set quite efficiently, leading
to RER scores of 13%–15%.

For the Cognitive Load dataset (see Table 5), the BoAW fea-
tures were not useful at all: the 51.9% UAR score on the test
set falls below the baseline score of 63.4%, and the combination
via late fusion did not bring any improvement over the baseline
either. We can see that this was so for the PT feature set as
well, regardless of whether we relied on the MFCC or on the

FBANK frame-level feature vectors; this is probably due to the
low quality of DNN outputs for this task, which is also reflected
in the UAR scores of 33.3% got by recombining the DNN outputs
either via mean, product or simple majority voting.

Overall, the scores obtained by combining the ComParE func-
tionals features with the PT ones always exceeded the baseline
values, the only exception being the Cognitive Load corpus, where
the scores remained unaffected. Examining the optimal late fu-
sion weight values of the ComParE and the PT features, the two
types of features had roughly the same importance: the predic-
tions obtained using the baseline feature set had a weight of 0.5
and 0.6, Physical Load and Eating Condition, respectively. On the
Cognitive Load corpus, however, the ComParE feature set had an
optimal weight of 1.0, indicating that the Posterior-Thresholding
features were not useful at all with late fusion.

Overall, it can be seen that using the Posterior-Thresholding
features and training an SVM model at the utterance level led to
UAR values much higher than those which can be obtained by
random guessing, for all four datasets. The PT features also had
the advantage that they describe the phenomena actually present
in the utterances in a completely different way than the ComParE
functionals or the BoAW features do, allowing an efficient combi-
nation that managed to improve both the traditional classification
accuracy and the UAR scores in three of the four cases. Next, we
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Fig. 3. The workflow of the proposed method for obtaining frame-level posterior estimates.

will present an approach that leads to even better frame-level
posterior estimates.

6. Obtaining robust frame posteriors

Our results indicated that the Posterior-Thresholded features
can be utilized to classify whole utterances despite the fact that
the frame-level posterior estimates are local by nature. However,
it was not straightforward to produce frame-level DNN outputs
without a bias towards the correct class, while also making use of
all training examples in the second, utterance-level training step.
The approach proposed in Section 4.8 (dividing the training set
into two parts, one used for DNN training and one used for SVM
training, then switching their roles and repeating these steps)
managed to satisfy both requirements; still, since we trained two
frame-level DNNs on two different subsets of the utterances, the
PT features could be expected to differ significantly on the two
subsets of the training set, making the process of combining their
predictions on the test set quite complicated. Next we will intro-
duce a simple procedure for getting robust frame-level posterior
estimates for all the utterances.

6.1. The proposed workflow

The workflow we propose for obtaining robust frame-level
posterior estimates is an iterative process. For each step, we
randomly split the training set into two distinct subsets: the ut-
terances of half the speakers form the group ‘‘DNN Training Set’’,
while the remaining half form the ‘‘DNN Development Set’’. We
train a DNN on the utterances belonging to the first group, and
evaluate this neural network on the frames of the second group
(i.e. the actual development set) and of the test set. Repeating
these steps several times and averaging out the resulting frame-
level DNN outputs, we get posteriors estimates which can be
expected to be quite robust. (See Fig. 3.)

In our experiments we used 250 iterations; this way, the
frame-level posterior estimates were derived from about 125
models on the (full) training set, and from all the 250 models
on the test set. We judged 250 iterations to be sufficient to
provide robust estimates of the frame-level DNN outputs, while
also keeping the time requirement of the process at an acceptable
level.

6.2. Results

Note that in this step we did not test both frame-level feature
sets any more for each dataset: since for the Physical Load and
the Eating Condition corpora, the UAR values obtained by relying
on MFCCs always exceeded those got via FBANK, we will only
present the scores got via MFCCs. For the Emotion and the Cog-
nitive Load corpora, however, we will again test both approaches
(see Table 7).

Tables 6 to 9 show the results obtained for the four datasets
used in this study. Since we changed only the way the frame-
level posterior estimates were calculated, the accuracy and UAR
values achieved by the ComParE functionals feature set remained
unchanged. The utterance-level scores got by aggregating the
frame-level posterior estimates via mean, product and simple
majority voting, however, rose significantly for the test set of two
datasets: in the case of the Physical Load corpus, they increased
from about 54% to 62%, while for the Eating Condition corpus they
rose from about 44% to 45%–50%. This, in our opinion, reflects the
higher quality of frame-level DNN outputs: since these posterior
estimates now come from several DNN models, they are less
prone to noise introduced by random DNN weight initialization
and random training instance selection.

For the Emotion dataset, we can see that the UAR scores on the
test set remained around 47%, but in the CV set-up they fell from
57% to 47%. In our opinion this also demonstrates the improved
robustness of the DNN posterior estimates, as now the UAR scores
show a similar tendency for the two subsets, which can also
be expected to improve classifier fusion quality. As regards the
Cognitive Load corpus, all the scores remained at 33.3%, since the
DNN outputs corresponding to the most common class (L1) were
the highest ones for practically all the frames.

When we trained Support Vector Machines using the
Posterior-Thresholding features, we observed a slight increase
in the UAR score for the test set of the Physical Load and the
Emotion corpora (improvements below 1% absolute), but for the
remaining two datasets the increase was significant: the UAR
scores rose from 65.8% to 69.8%, and from 48.5% to 56.5% for the
Eating Condition and Cognitive Load corpus, respectively. When
we combined the PTFE feature set with the baseline ComParE
functionals one via late fusion, we also observed a significant
increase in the accuracy and UAR scores. The only exception was
again the Cognitive Load corpus, where the UAR scores obtained
via combination managed to outperform the baseline score of
63.4%, but only by 0.5 − 0.8% absolute.



Please cite this article as: G. Gosztolya, Posterior-thresholding feature extraction for paralinguistic speech classification, Knowledge-Based Systems (2019) 104943,
https://doi.org/10.1016/j.knosys.2019.104943.

G. Gosztolya / Knowledge-Based Systems xxx (xxxx) xxx 9

Table 6
The results obtained on the Physical Load corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 68.1% 67.9% 70.8% 71.0%

MFCC

Frame-level DNN outputs (mean) 67.6% 67.3% 62.7% 62.1%
Frame-level DNN outputs (product) 67.5% 67.1% 62.7% 62.2%
Frame-level DNN outputs (majority voting) 68.3% 67.9% 63.0% 62.5%

Posterior-thresholding (PT) features 67.2% 66.9% 69.3% 69.2%

ComParE + PT features 70.5% 70.3% 74.6% 74.7%

ComParE 2014 baseline [22] — — — 71.9%
Prosodic and ASR-derived features [71] — 71.8% — 73.9%
MRMR Filter feature selection [9] — — — 75.4%

Table 7
The results obtained on the Emotion corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 67.6% 54.5% 76.8% 60.3%

MFCC

Frame-level DNN outputs (mean) 72.2% 47.3% 82.5% 45.4%
Frame-level DNN outputs (product) 72.2% 47.7% 82.9% 47.7%
Frame-level DNN outputs (majority voting) 72.3% 47.3% 82.1% 45.1%

Posterior-thresholding (PT) features 61.7% 50.3% 76.4% 57.1%

ComParE + PT features 67.4% 54.7% 77.9% 61.9%

FBANK

Frame-level DNN outputs (mean) 72.2% 45.8% 81.1% 46.3%
Frame-level DNN outputs (product) 72.4% 45.9% 81.4% 47.6%
Frame-level DNN outputs (majority voting) 72.6% 46.5% 80.7% 45.9%

Posterior-thresholding (PT) features 65.3% 55.9% 70.4% 55.4%

ComParE + PT features 70.9% 58.0% 79.6% 64.4%

Table 8
The results obtained on the Eating Condition corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 74.5% 74.3% 75.3% 74.8%

MFCC

Frame-level DNN outputs (mean) 46.2% 45.5% 48.0% 46.8%
Frame-level DNN outputs (product) 47.6% 46.9% 50.7% 49.9%
Frame-level DNN outputs (majority voting) 45.1% 44.4% 46.9% 45.6%

Posterior-thresholding (PT) features 66.7% 66.2% 70.6% 70.0%

ComParE + PT features 77.1% 76.9% 80.2% 79.7%

ComParE 2015 baseline [22] — 61.3% — 65.9%
Fisher Vector analysis with Acoustic Background Model [26] — 78.9% — 81.6%
Best result reported [26] — — — 83.1%

Table 9
The results obtained on the reading sentence task of the Cognitive Load corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 64.8% 62.9% 64.8% 63.4%

MFCC

Frame-level DNN outputs (mean) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (product) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (majority voting) 44.0% 33.3% 44.0% 33.3%

Posterior-thresholding (PT) features 56.8% 53.5% 59.5% 56.5%

ComParE + PT features 65.0% 63.0% 65.8% 64.0%

FBANK

Frame-level DNN outputs (mean) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (product) 44.0% 33.3% 44.0% 33.3%
Frame-level DNN outputs (majority voting) 44.0% 33.3% 44.0% 33.3%

Posterior-thresholding (PT) features 57.9% 54.5% 57.5% 54.0%

ComParE + PT features 65.4% 63.2% 65.5% 63.8%

ComParE 2014 baseline [22] — 61.3% — 61.5%

Examining the four datasets, we notice an important differ-
ence among them: in the Physical Load and in the Eating Condi-
tion corpus, we have to detect specific phenomena in the speech

signal (i.e. heavy breathing and the sound of specific food types
eaten), while in the Emotion and in the Cognitive Load cor-
pora the task is to detect more subtle changes in the behavior
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Table 10
The combined results obtained by various approaches and authors on all the tasks of the Cognitive Load corpus.
Approach Cross-validation Test

Acc. UAR Acc. UAR

ComParE functionals feature set (baseline) 68.0% 66.9% 65.9% 64.8%

Posterior-thresholding (PT) features 61.5% 59.5% 61.6% 59.5%

ComParE + PT features (MFCC) 68.1% 66.9% 66.7% 65.3%
ComParE + PT features (FBANK) 68.2% 67.0% 66.6% 65.2%

ComParE 2014 baseline [22] — 63.2% — 61.6%

VOQAL features + CART classifier [7] — 66.5% — 63.1%
High-level speech event analysis [72] — — — 63.1%
ComParE + SCF + MFCC + SDC feature combination [73] — 64.8% — 63.7%
Prosodic and ASR-derived features [71] — 77.5% — 68.9%

of the speaker. Despite this, the emotion of the speaker could
be detected at the frame level at an acceptable level, but the
poor performance of the frame-level DNNs on the Cognitive Load
corpus could be due to the task itself. Still, according to the ex-
perimental results, the Posterior-Thresholding Feature Extraction
method could extract meaningful utterance-level features from
the trends of the frame-level posterior values. On the Physical
Load and Eating Condition datasets, however, the PTFE approach
yielded accuracy scores close to the standard paralinguistic one,
and the combination of the two strategies brought a significant
improvement.

Tables 6 and 8 also contain the notable results achieved by
other authors on the same dataset. (Recall that we had to re-
partition the Emotion corpus, so our results cannot be directly
compared to those presented in [37,38]; another reason is that
we focused on UAR, while these earlier studies only reported
classification accuracy.) Examining the presented UAR scores, we
may conclude that using the PTFE features in combination with
the 6373-sized ComParE functionals feature set led to quite com-
petitive results in all cases: the 74.7% achieved on the Physical
Load dataset is only 0.7% lower than the Challenge–winner result
of 75.4%, and the 79.7% UAR value obtained on the Eating Con-
dition task also falls close to the 81.6% attained via Fisher vector
analysis.

For the Cognitive Load dataset, unfortunately, comparing the
results is not that straightforward, since this corpus contains
three different tasks performed by the speakers, and the classi-
fication results are usually presented in a combined form instead
of a per-task basis. However, two of these three tasks (the two
variations of the Stroop test) contained so few utterances that
we were unable to train frame-level DNN models (as described
in Section 3.1) on them. Therefore for these two tasks we used
the predictions obtained via the baseline approach, while for the
reading sentence task we used the PTFE process proposed.

Table 10 lists the accuracy and UAR scores of the tested ap-
proaches and some notable scores present in the literature in this
combined form. These scores show a similar tendency to those
listed in Table 9: using the PT features led to competitive scores,
and by combining this approach with the baseline one via late
fusion, we were able to significantly exceed the performance of
the baseline ComParE feature set. Both UAR scores obtained on
the test set (65.3% and 65.2%, MFCC and FBANK frame-level fea-
ture sets, respectively) are significantly higher than most results
published, which fell in the range 63.1%–63.7%.

Of course, just as in the case of the Physical Load and the
Eating Condition datasets, the UAR score got via the PTFE ap-
proach is not the highest one published so far, as it lags behind
the 68.9% score achieved by Van Segbroeck et al. [71], got by
extracting prosodic and speech recognition-based features. In our
opinion, however, the PTFE approach proposed in this study has
two clear advantages over the procedures proposed in [9,26]
and [71], despite providing slightly lower accuracy scores. Firstly,

it can be easily realized by standard speech processing tools.
The second and more important advantage of our approach is
that, based on our experimental results, it is a task-independent
procedure, since it led to quite good accuracy scores for four
different computational paralinguistic datasets. (Previously, we
had similar experiences with a less refined variation of the PTFE
approach on two other corpora [28].) A further option might be to
combine the PTFE predictions with those of other paralinguistic
approaches. This, however, is clearly the subject of future work.

7. Conclusions

In the task of Automatic Speech Recognition (ASR), machine
learning is usually done at the frame level using Deep Neural
Networks. In computational paralinguistics, however, classifica-
tion or regression takes place at the level of larger units like
segments or whole utterances, and it relies on specific segment-
level features. In this study we sought to fuse the two approaches:
in the first step of the proposed Posterior-Thresholding Feature
Extraction (PTFE) workflow, we train DNNs on standard frame-
level features such as MFCCs. Then, in the second step, we extract
utterance-level feature vectors from the frame-level DNN outputs
(i.e. the posterior estimates), which, in the third step, are used to
train an utterance-level classifier model. We tested our approach
on four different computational paralinguistic datasets. The ex-
perimental results indicate that this method yields acceptable
accuracy scores even on its own, but we managed to signifi-
cantly exceed the baseline scores by combining our predictions
with those got by using the standard paralinguistic approach.
According to the results, the proposed PTFE workflow seems
to be both language-independent and task-independent, as we
got improvements on all four datasets, although the amount of
improvement might depend on the type of the actual speech
corpus. As regards ease-to-use, it can be easily realized using only
standard speech recognition and machine learning tools, and it
has no meta-parameter whose value needs to be set.
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