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Regularity of Minkowski’s question mark measure, its inverse
and a class of IFS invariant measures

Giorgio Mantica and Vilmos Totik

Abstract

We prove the recent conjecture that Minkowski’s question mark measure is regular in the sense
of logarithmic potential theory. The proof employs: an Iterated Function System composed of
Möbius maps, which yields the classical Stern–Brocot sequences, an estimate of the cardinality
of large spacings between numbers in these sequences and a criterion due to Stahl and Totik.
We also generalize this result to a class of balanced measures of Iterated Function Systems in
one dimension.

1. Introduction and statement of the main results

1.1. Minkowski’s question mark function and measure

A remarkable function was introduced by Hermann Minkowski in 1904, to map algebraic
numbers of second degree to the rationals, and these latter to binary fractions, in a continuous,
order preserving way [36]. This function is called the question mark function and is indicated by
?(x), perhaps because of its enigmatic — yet captivating, multi-faceted personality. In fact, it is
linked to continued fractions, to the Stern–Brocot tree and to the theory of numbers [12, 43]. It
also appears in the theory of dynamical systems, in relation with the Farey shift map [9, 11, 26]
and in the coding of motions on manifolds of negative curvature [7, 18, 19, 24, 44].

Let us define Minkowski’s question mark function following [43]. Consider the interval I =
[0, 1] and let x ∈ I. Write this latter in its continued fraction representation, x = [n1, n2, . . .],
set Nj(x) =

∑j
l=1 nl, and define ?(x) as the sum of the series

?(x) =
∞∑
j=1

(−1)j+12−Nj(x)+1. (1.1)

To deal with rational values x ∈ I, we also stipulate that terminating continued fractions
correspond to finite sums in the above series.

The analytical properties of the question mark function are so interesting that its graph
has been named the slippery devil’s staircase [19]: it is continuous and Hölder continuous of
order log 2/(1 +

√
5) [43]. It can be differentiated almost everywhere; its derivative is almost

everywhere null [12, 43] and yet it is strictly increasing: ?(y)−?(x) > 0 for any x, y ∈ I, x < y.
The fractal properties of the level sets of the derivative of ?(x) have been studied via the
multi-fractal formalism [19, 24].

Since ?(x) is monotone non-decreasing, it is the distribution function of a Stieltjes measure
μ:

?(x) = μ([0, x)), (1.2)
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which, because of the above, turns out to be singular continuous with respect to Lebesgue
measure. We call μ the Minkowski’s question mark measure and we always indicate it by this
letter. A result by Kinney [25] asserts that its Hausdorff dimension can be expressed in terms
of the integral of the function log2(1 + x) with respect to the measure μ itself. Very precise
numerical estimates of this dimension have been obtained with high precision arithmetics [1];
rigorous numerical lower and upper bounds derived from the Jacobi matrix of μ place this
value between 0.874716305108207 and 0.874716305108213 [32]. Further analytical properties
of μ have been recently studied, among others, by the authors of [2, 3, 53].

Since Minkowski’s ?(x) is invertible, it is natural to also consider its inverse, ?−1(x),
sometimes called Conway Box function, and the associated measure, which we will denote
by μ−1:

?−1(x) = μ−1([0, x)), (1.3)

or μ−1([0, ?(x))) = x. This measure is also singular continuous [37].

1.2. Potential theoretic regularity

In this paper, we are concerned with additional fine properties of Minkowski’s question mark
measure μ and its inverse μ−1, stemming from logarithmic potential theory in the complex
plane [40, 42]. In this context, Dresse and Van Assche [13] asked whether μ is regular, in the
sense defined below. Their numerical investigation suggested a preliminary negative answer,
but their method was successively refined by a more powerful technique by the first author
in [32], to provide compelling numerical evidence in favor of regularity of this measure. We
now provide a rigorous proof of this result, which further unveils the intriguing nature of
Minkowski’s question mark function. The stronger conjecture that μ belongs to the so-called
Nevai class, also supported by numerical investigation [32], still lies open.

The notion of regularity of a measure that we consider originated from [14, 51] and it
concerns the asymptotic properties of its orthonormal polynomials pj(μ;x) — recall the
defining property:

∫
pj(μ;x)pm(μ;x)dμ(x) = δjm, where δjm is the Kronecker delta. We need

the definition of regularity only when the support of the measure μ is the interval [0,1], in which
case the regularity of μ (we write μ ∈ Reg for short) means that for large orders its orthogonal
polynomials pj(μ;x) somehow mimic Chebyshev polynomials (that are orthogonal with respect
to the equilibrium measure on [0,1] and extremal with respect to the infinity norm) both in
root asymptotics away from [0,1] and in the asymptotic distribution of their zeros in [0,1].

Formally, letting γj be the (positive) coefficient of the highest order term, pj(μ;x) = γjx
j +

O(xj−1), regularity is defined in [45, 46] as the fact that γ
1/j
j , when the order j tends to

infinity, tends to the logarithmic capacity of [0,1], that is, to 1
4 . In this case, we write μ ∈ Reg,

and in what follows regularity of measures is always understood in this sense. An equivalent
property is that the jth root limit of the sup norms of the orthogonal polynomials pj(μ;x) on
the support of μ is one, see [45, Theorem 3.2.3]. Further equivalent definitions of regularity
can be found in [46], collected in Definition 3.1.2. A wealth of potential-theoretic results follow
from regularity, as discussed in [41] and in [46, Chapter 3], so that assessing whether this
property holds is a fundamental step in the analysis of a measure.

Notwithstanding this relevance and the time-honored history of Minkowski’s question mark
measure, proof of its regularity has not been achieved before. The asymptotic behavior of
its orthogonal polynomials have been investigated theoretically and numerically in [32], with
detailed pictures illustrating the abstract properties. This investigation continues in this paper
from a slightly different perspective: we do not prove regularity of μ directly from the definition,
that is, orthogonal polynomials play no rôle herein, but we use a purely measure-theoretic
criterion, which translates the idea that a regular measure is not too thin on its support. This
is Criterion λ∗:
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Criterion 1.1 (λ∗, [46, Theorem 4.2.7]). If the support of μ is [0,1] and if for every η > 0
the Lebesgue measure of

Λ(η; s) = {x ∈ [0, 1] s.t. μ([x− 1/s, x + 1/s]) � e−ηs} (1.4)

tends to one, when s tends to infinity, then μ ∈ Reg.

Our fundamental result is therefore

Theorem 1.2. Minkowski’s question mark measure satisfies Criterion λ∗ and hence is
regular.

The same can be asserted about the inverse question mark measure:

Theorem 1.3. Minkowski’s inverse question mark measure satisfies Criterion λ∗ and hence
is regular.

Let us now describe the tools employed for the proof of these results, and let us place them
into a wider perspective.

1.3. Balanced measures of Iterated Function Systems and their regularity

The main set-up of this investigation is that of Iterated Function Systems (in short IFS) and
their balanced measures, of which Minkowski’s question mark is an example. In its simplest
form, an IFS is a finite collection of continuous maps ϕi, i = 0, . . . ,M of Rn into itself. A set
A that satisfies the equation A =

⋃M
i=0 ϕi(A) is an attractor of the IFS. A family of measures

on A can be constructed in terms of a set of parameters {πi}Mi=0, πi > 0,
∑

i πi = 1. Define the
operator T on the space of Borel probability measures on A via

(Tν)(A) =
M∑
i=0

πiν(ϕ−1
i (A)),

where A is any Borel set and ν is any such measure. A fixed point of this operator,
ν = Tν is called a balanced (or invariant) measure of the IFS. We shall see in Section 2 that
Minkowsky’s question mark measure is the invariant measure of an IFS with two maps ϕi that
are contractions on A = [0, 1]. It follows from standard theory that such fixed point (as well as
the attractor) is unique when the maps are strict contractions, that is, there is a δ < 1 such that
|ϕi(x) − ϕi(y)| � δ|x− y| for all x, y ∈ A, and also when they are ‘contractive on average’ (see
[6, 35]). Minkowski’s question mark measure falls in this second class. The contractions in the
corresponding IFS are not strict contractions, but they rather satisfy |ϕi(x) − ϕi(y)| < |x− y|
if x �= y: we call such maps weak contractions. Moreover, two different sets ϕi(A) intersect each
other at a single point, which is of zero measure, this measure being continuous. We call such
an IFS just touching (or disconnected when the intersection is empty). In this case, the above
relation defining an invariant measure ν can be shown to be equivalent to

ν(ϕi(A)) = πiν(A), i = 0, . . . ,M, (1.5)

for any Borel set A ⊆ A. This simple characterization will be used throughout the paper. We
will first prove a general theorem for strictly contractive IFS:

Theorem 1.4. If the maps ϕi, i = 0, . . . ,M , are strict contractions in C and μ (with support
A) is invariant with respect to the disconnected or just-touching IFS {ϕi}Mi=0, {πi}Mi=0, then
μ ∈ Reg.
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We will then show that Minkowski’s question mark measure is the invariant measure of
an IFS composed of weak contractions, so that regularity does not follow from the above
Theorem 1.4. Nonetheless, it belongs to a larger family in which strict contractivity can be
replaced by a combination of monotonicity and convexity. We will prove regularity also in this
wider situation: see Theorem 8.1 in Section 8.

1.4. Outline of the paper and additional results

First we need a more transparent definition of Minkowski’s question mark function than
equation (1.1): this is provided by the symmetries of ?(x), which permit to regard it as the
invariant of an Iterated Function System (IFS) composed of Möbius maps, following [7, 30]. We
review this approach in Section 2. In Lemma 2.1, we show that such Möbius IFS can be used to
define a countable family of partitions of [0,1] in a finite number of intervals, Iσ, with elements
labeled by words σ in a binary alphabet. These intervals are called cylinders in a dynamical
approach, a term that we will also use frequently in this paper. The notable characteristic of
any of these partitions is that all its elements have the same μ-measure, while obviously they
have different lengths. The statistical distribution of these lengths is of paramount importance
in assessing regularity.

In Section 3, we exploit the relation of Minkowski’s question mark function with the
Farey tree and Stern–Brocot sequences. In fact, in Lemma 3.1, we show that these sequences
coincide with the ordered set of endpoints in the Möbius IFS partitions of [0,1]. None of
these results is new, but we present them in a coherent and concise set-up, that of IFS,
which is both elegant and renders sequent analysis easier. We build our theory on this
approach, so that the paper is fully self-contained and the reader has no need of external
material.

In Section 4, we apply the previous techniques to prove that the inverse question mark
measure is regular: Theorem 2. The proof is rather concise: it follows from the λ∗ Criterion
and Hölder continuity of Minkowski’s question mark function, which permits to bound from
below the measure of intervals. This property does not hold for Conway’s box function, so that
such an easy proof is not available for the inverse of Conway’s, that is, Minkowski’s measure.

To use criterion λ∗ in this wider context, we replace Hölder continuity of the inverse function
by a combination of geometric and measure properties, composing Proposition 5.1, described
in Section 5. One of the three hypotheses of this general proposition — perhaps the most
important — is tailored on a remarkable characteristics of the cylinders of Minkowski’s question
mark measure. This characteristics is given by Proposition 7.2: for any real positive α, the
cardinality of intervals in the nth IFS partition, whose length is larger that α/(n + 1), is
bounded by a constant independent of n. In Section 6, we present the first proof or regularity,
which is based on these propositions. While this approach is sufficient to prove regularity and it
hints at the generalization in Section 8, much more detail can be obtained on the distribution
of the above intervals.

In fact, in Section 7, we focus our attention on the set of ‘α-large’ IFS / Stern–Brocot
cylinders just defined. There are at least three reasons behind this interest. The first is
that Proposition 7.2 is loosely related to the pressure function appearing in the so-called
thermodynamical formalism, which gauges the exponential growth rate of sums of the partition
interval lengths, raised to a real power. These sums, in the present case of Stern–Brocot
intervals, have been studied in [4, 22, 23]. In this context, it is important to obtain precise
estimates on the Lebesgue measure of ‘α–large’ cylinders. Secondly, as we will discuss
momentarily, further conjectures on Minkowski’s question mark measure have been formulated
and numerically tested in [32]. The rigorous proof of these conjectures should presumably
require such fine control. Finally, in this endeavor, we obtain a result that we believe to be
relevant by its own merit. Proposition 7.1 fully characterizes the set of α-large Stern–Brocot
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cylinders, putting them in relation to the Farey series Fm (where m = �1/√α�). Figure 1
graphically exemplifies the situation.

The paper then continues in Section 8 with a broader discussion of regularity of IFS measures.
We first prove Theorem 1.4 described above, which deals with the case of IFS composed of strict
contractions. Regularity is here obtained via a further criterion from the comprehensive list in
[46]. We then characterize a new family of weakly contracting IFS, whose invariant measure
is supported on [0,1], for which Proposition 7.2 holds, which permits to prove regularity. This
result is Theorem 8.1, whose proof occupies the last part of the paper. Minkowski’s IFS belongs
to this larger class, which can therefore regarded as its generalization.

1.5. Further perspectives

The fact that Minkowski’s question mark function is regular is remarkable in many ways.
First, it was not at all obvious how to reveal it numerically: standard techniques failed and
specific ones were required [13, 30, 32]. From the theoretical side, regularity of Minkowski’s
question mark measure appears in the hypotheses of [32, Propositions 1,2], whose implications
are therefore now rigorously established: these propositions describe and quantify the local
asymptotic behavior of zeros of the orthogonal polynomials pj(μ;x) and of the Christoffel
functions associated with μ, linking these behaviors to the Farey/Stern–Brocot organization of
the set of rational numbers.

Further conjectures were presented in [32], on the speed of convergence in the above
asymptotic behaviors and, more significantly, on the fact that Minkowski’s question mark
might belong to Nevai’s class: numerical indication is that its off diagonal Jacobi matrix
elements converge to the limit value one-fourth, although slowly. If confirmed, this conjecture
will provide us with a further example of a measure in Nevai’s class which does not fulfill
Rakhmanov’s sufficient condition [34, 39]: almost everywhere positivity of the Radon Nikodyn
derivative of μ with respect to Lebesgue. It is well known that Nevai’s class does contain pure
point [52] and singular measures [27] but these examples do not seem to indicate a general
criterion on a par with Rakhmanov’s. To the contrary, Minkowski’s question mark function
might perhaps indicate a widening of such condition, involving the characteristics described
here in Section 7.

In conclusion, the picture of Minkowski’s question mark measure that emerges from recent
investigations is that of a singular continuous measure that nonetheless has many regular
characteristics: it is regular according to logarithmic potential theory; we conjectured that
it belongs to Nevai’s class [32]; its Fourier transform tends to zero polynomially [21, 38,
54, 55] even if it does not fulfill the Riemann–Lebesque sufficient condition. It is, therefore,
an interesting direction of further research to study the so-called Fourier–Bessel functions
[31] generated by Minkowski’s question mark measure, to detect whether they display any of
the features usually associated with singular continuous measures [16, 17, 33, 48–50] with
almost-periodic Jacobi matrices [8, 28, 29, 31].

2. Minkowski’s question mark measure and Möbius IFS

In our view, the most effective representation of Minkowski’s question mark function is via
an Iterated Function System [5, 20] composed of Möbius maps. This is a translation in
modern language of the relation between Minkowski’s question mark function and modular
transformations, already discussed in [12]. Let us therefore adopt and develop the formalism
introduced in [7]. Define maps Mi and Pi, i = 0, 1 from [0,1] to itself as follows:

M0(x) = x
1+x , P0(x) = x

2 ,

M1(x) = 1
2−x , P1(x) = x+1

2 .
(2.1)
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Then, using the properties of the continued fraction representation of a real number and
equation (1.1) (see for example, [7]) it is not difficult to show that the following properties
hold :

?(0) = 0, ?(1) = 1, (2.2)

?(Mi(x)) = Pi(?(x)), i = 0, 1. (2.3)

Note also that M0 and M1 play a symmetric role, for the mapping x → 1 − x maps these
functions into each other: 1 −M0(1 − x) = M1(x).

It is well established that these relations uniquely define the function ?(x). Moreover, it
was observed in [7, 30] that an Iterated Function System, consisting of the two Möbius maps
Mi, i = 0, 1, and of the probabilities πi = 1

2 has Minkowski’s question mark measure μ as its
invariant measure. This fact has been exploited also in [32]. We now start from the following
standard construction of the cylinders of this measure.

Definition 2.1. Let Σ be the set of finite words in the letters 0 and 1. Denote by |σ| the
length of σ ∈ Σ: if |σ| = n, then σ is the n-letters sequence (σ1, σ2, . . . , σn) where σi is either
0 or 1. When all σi are equal to the same j = 0 or 1, then we also write jn for σ. Let ∅ be
the empty word and assign to it length zero. Denote by Σn the set of n-letter words, for any
n ∈ N. Given two words σ ∈ Σn and η ∈ Σm, the composite word ση ∈ Σn+m is the sequence
(σ1, . . . , σn, η1, . . . , ηm). Associate to any σ ∈ Σn the map composition

Mσ = Mσ1 ◦Mσ2 ◦ · · · ◦Mσn
, (2.4)

when n > 0, and let M∅ be the identity transformation. Let Iσ be the basic intervals, or
cylinders, of the IFS: Iσ = Mσ([0, 1]). Denote by |Iσ| the Lebesgue measure of Iσ.

Because of the aforementioned symmetries, for a given n the set of intervals {Iσ, σ ∈ Σn}
is symmetric with respect to the point 1/2.

Lemma 2.1. Let Σn, Mσ and Iσ be as in Definition 2.1. Then, for any integer value n ∈ N,
the intervals Iσ, with σ ∈ Σn, are pairwise disjoint except possibly at one endpoint and fully
cover [0,1]:

[0, 1] =
⋃

σ∈Σn

Iσ. (2.5)

Proof. When σ = ∅, the lemma is obvious. Observe that the functions Mi, i = 0, 1 are
continuous, strictly increasing and map [0,1] to the two intervals [0, 1

2 ] and [12 , 1], respectively,
which are disjoint except for a common endpoint. Then, the same happens for the two intervals
(Mσ ◦Mi)([0, 1]) = Iσi, i = 0, 1, where σ is any finite word and σi is the composite word.
Explicit computation yields

Iσ0 = [Mσ(M0(0)),Mσ(M0(1))] =
[
Mσ(0),Mσ

(
1
2

)]
and

Iσ1 = [Mσ(M1(0)),Mσ(M1(1))] =
[
Mσ

(
1
2

)
,Mσ(1)

]
,

where we have used a property that will be useful also in the sequel: for any σ ∈ Σ

Mσ0(1) = Mσ1(0) = Mσ

(
1
2

)
, (2.6)
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which is valid since M1(0) = M0(1) = 1/2. It follows from this that Iσ0 and Iσ1 not only are
adjacent, but also they exactly cover Iσ:

Iσ0 ∪ Iσ1 = Iσ. (2.7)

Using induction, one then proves equation (2.5). �

As a consequence of this Lemma, each set Σn is associated with a partition of [0,1] produced
by the Möbius IFS. Since any word in Σn is uniquely associated to an interval of this partition,
in the text we will use the terms word and interval as synonyms.

Lemma 2.2. Let Σn be as in Definition 2.1. For any n ∈ N the function

Θ(σ) =
n∑

j=1

σj2n−j , (2.8)

induces the lexicographical order ≺ in Σn, in which the letter 1 follows the letter 0 and we
read words from left to right: σ ≺ η precisely when Θ(σ) < Θ(η).

In addition, letting

xσ = Mσ(0) = Mσ1 ◦ · · · ◦Mσn
(0) (2.9)

the set {xσ, σ ∈ Σn} is increasingly ordered: xσ < xη if and only if σ < η. Finally, one has that

Iσ = [xσ, xσ̂] (2.10)

where σ̂ is the successive word of σ when σ �= 1n and xσ̂ = 1 in the opposite case.

Proof. Observe that when n = 0 we have σ = ∅ and Θ(σ) = 0 because the sum in (2.8)
contains no terms. It is immediate that Θ is bijective from Σn to {0, . . . , 2n − 1} and therefore
it induces an order on Σn. This coincides with the lexicographical order that we denote by ’≺’.
To prove this statement, if σ �= η we can define k = min{j s.t. σj �= ηj}. Then, σ≺η happens
if and only if σk = 0 and ηk = 1. But in this case one has

Θ(σ) =
k−1∑
j=1

σj2n−j + 0 +
n∑

j=k+1

σj2n−j

and

Θ(η) =
k−1∑
j=1

ηj2n−j + 2n−k +
n∑

j=k+1

ηj2n−j .

The first sums at the right-hand sides are equal, since σj = ηj for j < k. In addition, the
last sum in Θ(σ) is strictly less than 2n−k for any choice of the sequence σk+1, . . . , σn and
therefore Θ(σ) < Θ(η). The same argument also proves that Θ(σ) < Θ(η) implies that σ≺η in
the lexicographical order.

Consider now σ≺η and xσ, xη defined as in equation (2.9). Define k as before and sup-
pose k < n. Write y = Mσk+1 ◦ · · · ◦Mσn

(0), z = Mσk
(y), so that xσ = Mσ1 ◦ · · · ◦Mσk−1(z).

Observe that y is less than, or equal to Mn−k
1 (0) = 1 − 1

n−k+1 , so that z � M0(1 − 1
n−k+1 ) =

n−k
2n−2k+1 < 1

2 . Equivalently, write u = Mηk+1 ◦ · · · ◦Mηn
(0), v = Mηk

(u), so that xη = Mη1 ◦
· · · ◦Mηk−1(v). Now, u � 0, so that v = M1(u) � 1

2 , and therefore v > z. The map composition
Mη1 ◦ · · · ◦Mηk−1 is the same as Mσ1 ◦ · · · ◦Mσk−1 , since σj = ηj for j < k; being composed of
strictly increasing maps is itself strictly increasing, so that z < v implies xσ < xη. It remains to
consider the case k = n. In this case, σ = υ0, η = υ1, with υ ∈ Σn−1. Therefore, xσ = Mυ(0),
which is smaller than xη = Mυ( 1

2 ).
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Let us now prove the third statement of the lemma by induction on n. When n = 0, we have
that I∅ = [0, 1] and x∅ = M∅(0) = 0 (because M∅ is the identity); also xσ̂ = 1, because ∅ is 10,
so that xσ̂ = 1 by definition, so that equation (2.10) holds. When n > 0, Iσ = [Mσ(0),Mσ(1)] =
[xσ,Mσ(1)]: we have to prove that Mσ(1) = xσ̂. Clearly, when σ = 1n Mσ(1) = 1 and, by the
definition above, xσ̂ = 1. Suppose that Mσ(1) = xσ̂ holds for any σ ∈ Σn. This is clearly true
for n = 1, since either σ = 0, σ̂ = 1 and M0(1) = M1(0) = 1/2 =x1, or σ = 1, M1(1) = 1 and
by definition xσ̂ = 1. Consider now a σ ∈ Σn+1. Write σ = ηi with η ∈ Σn, i = 0, 1. In the first
case,

Mσ(1) = MηM0(1) = MηM1(0) = Mη1(0) = xη1

and clearly η1 = σ̂. In the second case, suppose η �= 1n, since the opposite instance means
σ = 1n+1, which was treated above. Then, using the induction hypothesis and the fact that
M0(0) = 0 we obtain

Mσ(1) = MηM1(1) = Mη(1) = Mη̂(0) = Mη̂M0(0) = Mη̂0(0) = xη̂0.

Since σ̂ = η̂1 = η̂0, the thesis follows. �

Lemma 2.3. Let Σn be as in Definition 2.1 and let xσ, Iσ, for σ ∈ Σn, be defined as in
Lemma 2.2, equations (2.9) and (2.10). Then, for any n ∈ N, σ ∈ Σn

?(xσ) =
n∑

j=1

σj2−j = 2−nΘ(σ) (2.11)

and

μ(Iσ) = 2−n. (2.12)

Proof. Let us first prove equation (2.11). From equation (2.3), it follows that ?(xσ) = Pσ(0)
for any σ ∈ Σ. Let us use induction again. For n = 0, we have that σ = ∅ and equation (2.8)
implies that Θ(∅) = 0 =?(0). For n = 1, we have that x0 = 0 and ?(0) = 0; x1 = 1

2 and ?(x1) =
1
2 , which again confirms equation (2.11). Next, suppose that equation (2.11) holds in Σn and
let us compute ?(xσ), with σ ∈ Σn+1. Clearly, σ = iη, with i = 0 or i = 1, η ∈ Σn. Therefore,

?(xσ) =?(xiη) = Pi(?(xη)) = Pi

⎛
⎝ n∑

j=1

ηj2−j

⎞
⎠ ,

Since Pi(x) = i/2 + x/2, we find

?(xiη) = i 2−1 +
n∑

j=1

ηj2−j−1,

which proves formula (2.11).
Let us now compute μ(Iσ) = μ([xσ, xσ̂]) =?(xσ̂)−?(xσ). When n = 0, σ = ∅, we have that

Iσ = [0, 1] so that μ(Iσ) = 1. When σ �= 1n we can use equation (2.11), to obtain ?(xσ̂)−?(xσ) =
2−n[Θ(σ̂) − Θ(σ)] = 2−n, where we used that Θ(σ̂) = Θ(σ) + 1, since, by Lemma 2.2, Θ(σ̂)
is the successor of Θ(σ) in {0, 1, 2, . . . , 2n − 1}. If σ = 1n, then xσ̂ = 1 and ?(xσ̂)−?(xσ) =
?(1)−?(x1n) = 1 − 2−n(2n − 1) = 2−n where the value of ?(x1n) follows from (2.11) and the
fact that 1n is the last word in the lexicographical ordering ≺. Thus, (2.12) holds in this case,
as well. �
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3. Stern–Brocot sequences and Möbius IFS

In this section, we demonstrate that the boundary points of the Möbius IFS partitions described
in Section 2 coincide with the classical Stern–Brocot sequences [10, 15, 47]. We also define
Farey sequences and further notations for later usage.

Definition 3.1. The Stern–Brocot sequence Bn ⊂ Q is defined for any n ∈ N by induction:
B0 = {0, 1} and Bn+1 is the increasingly ordered union of Bn and the set of mediants of
consecutive terms of Bn. The mediant, or Farey sum, of two rational numbers written as
irreducible fractions is

p

q
⊕ r

s
=

p + r

q + s
. (3.1)

Denote points in the ordered Bn sequence as Bn = {xn
0 , x

n
1 , . . .}

Observe that the mediant of two numbers is intermediate between the two. Moreover, the
definition implies that the cardinality of Bn obeys the rules #(B0) = 2, #(Bn+1) = 2#(Bn) − 1,
so that #(Bn) = 2n + 1. Therefore, the induction rule can be written as

Bn = {xn
0 , x

n
1 , x

n
2 , . . . , x

n
2n} ⇒ Bn+1 = {xn

0 , x
n
0 ⊕ xn

1 , x
n
1 , x

n
1 ⊕ xn

2 , x
n
2 , . . . , x

n
2n}. (3.2)

Lemma 3.1. Let Σn be as in Definition 2.1 and let xσ, Iσ, for σ ∈ Σn, be defined as in
Lemma 2.2, equations (2.9) and (2.10). For any n ∈ N, the increasingly ordered set {{xσ, σ ∈
Σn}, 1} coincides with the nth Stern–Brocot sequence Bn.

Proof. Observe that {{xσ, σ ∈ Σn}, 1} is the set of extrema of the intervals Iσ, with σ ∈ Σn,
which can be increasingly ordered according to Lemma 2.2. For n = 0, one has {x∅, 1} = {0, 1},
which can also be written as B0 = { 0

1 ,
1
1}. It is then enough to show that the induction property

(3.2) holds for the sequence of sets {{xσ, σ ∈ Σn}, 1}. Let σ ∈ Σn. Each Iσ = [xσ, xσ̂] splits into
Iσ0 and Iσ1, as seen above in Lemma 2.1. Because of equation (2.7) the points xσ and xσ̂ of
the nth set also belong to the n + 1-th set: in fact, they coincide with xσ0 and xσ̂0. It remains
to show that the intermediate point xσ1 is a rational number that fulfills the Farey sum rule.
We now prove by induction on the length n of σ that

Mσ(0) = xσ =
p

q
, Mσ(1) = xσ̂ =

p̂

q̂
, (3.3)

where p and q, p̂ and q̂ are relatively prime integers with

Δ
(
p

q
,
p̂

q̂

)
= p̂q − q̂p = 1, (3.4)

and

Mσ(x) =
(p̂− p)x + p

(q̂ − q)x + q
. (3.5)

Indeed, this is certainly true for n = 0 with p = 0, q = p̂ = q̂ = 1, and suppose that the claim
holds for all σ of length n. Consider a word of length n + 1, say of the form σ1 with σ ∈ Σn.
Then,

xσ1 = Mσ1(0) = Mσ

(
1
2

)
=

p + p̂

q + q̂
,
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and easy inspection based on explicit computation of (3.4) shows that the Farey sum property
(3.4) holds for both pairs p

q ,
p+p̂
q+q̂ and p+p̂

q+q̂ ,
p̂
q̂ . In particular, p+p̂

q+q̂ is in its lowest form, that is, in
it p + p̂ and q + q̂ are relative primes. Finally,

Mσ1(x) = Mσ(M1(x)) =
(p̂− p) 1

2−x + p

(q̂ − q) 1
2−x + q

=
(p̂ + p) − px

(q̂ + q) − qx
=

(p̂− (p + p̂))x + (p + p̂)
(q̂ − (q + q̂))x + (q + q̂)

so (3.5) is also preserved. The proof for (n + 1)-long words of the form σ0 is analogous. �

Because of the previous Lemma, the cylinder Iσ, when σ ∈ Σn and Θ(σ) = j, can be
equivalently indicated as [xσ, xσ̂], following equation (2.10) and [xn

j , x
n
j+1] = [p

n
j

qnj
,
pn
j+1

qnj+1
], with pnj

and qnj , pnj+1 and qnj+1 relatively prime integers. We will find convenient to use the shorthand
notation Iσ = [pq ,

p̂
q̂ ] introduced in equation (3.3) dropping the indices n and j when no

confusion can arise.
Closely related objects are the so-called Farey sequences Fm. Let us give their definition,

which will come to use in the next sections.

Definition 3.2. The Farey sequence Fm ⊂ Q is the ordered set of irreducible rationals p/q
in [0,1] whose denominator is less than, or equal to, m ∈ N.

4. Regularity of the Inverse ? measure

Thanks to the results of the previous sections we can easily prove that the Minkowski’s inverse
question mark measure is regular, Theorem 1.3. In essence, the proof is an exploitation of the
fact that Minkowski’s question mark function is Hölder continuous.

Proof. Theorem 1.3. For any r > 0, let n be such that 2−n < r � 2−n+1. Then, the ball
of radius r at any y ∈ [0, 1] contains a dyadic interval Dy of diameter 2−n. Let σ ∈ Σn be
the symbolic word that verifies ?(Iσ) = Dy, the existence of which follows from Lemma 2.2.
Clearly, μ−1(Br(y)) � μ−1(Dy). Since μ−1 is the inverse measure of μ, μ−1(Dy) = |Iσ|.

According to equations (3.3) and (3.4), |Iσ| = 1/(qq̂). Furthermore, the recursive rule (3.1)
implies that q, q̂ � 2n, so that |Iσ| � 1/qq̂ � 2−2n. Hence,

μ−1(Br(y)) � 2−2n � r2

4
. (4.1)

Let now r = 1/s. Then, for any η > 0, there exists s̄ such that e−ηs is smaller than s−2/4 for
s > s̄, and so

μ−1(B1/s(y)) � e−ηs

for all y ∈ [0, 1], thereby proving that Criterion λ∗ holds. �

5. Regularity of a measure via cylinder estimates

The case of the inverse Minkowski’s question mark measure is particularly simple, since we have
been able to prove the strong estimate (4.1). When such result is not available, we can have
recourse to cylinder estimates, as follows. Assume that we are still in the case when A = [0, 1].
Suppose that there is a countable family of partitions of [0,1] by adjacent intervals labeled by
words σ with letters in a finite alphabet {0, . . . ,M}, so that for any n

[0, 1] =
⋃

σ∈Σn

Iσ.
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Define the set Ln(α) ⊂ Σn, for n ∈ N and α > 0, as

Ln(α) =
{
σ ∈ Σn s.t. |Iσ| � α

n + 1

}
. (5.1)

Similarly, let Sn(α) be the complement of Ln(α) in Σn. Then, we can use the following
Proposition.

Proposition 5.1. Suppose that a measure μ supported in [0,1] is such that: (i) There exists
π > 0 such that μ(Iσ) � πn for all σ ∈ Σn and all n ∈ N; (ii) For any α > 0, there exists Cα

such that #(Ln(α)) � Cα for any n; (iii) The maximum length of cylinders in Σn is infinitesimal
when n tends to infinity: ln = max{|Iσ|, |σ| = n} → 0. Then, the measure μ satisfies Criterion
λ∗ and hence is regular.

Proof. Let α > 0 be small, s large and n ∈ N such that n < αs � n + 1. Consider points
x ∈ [0, 1] which belong to a ‘short’ interval: there exists σ̄ ∈ Sn(α) such that x ∈ Iσ̄. Since
|Iσ̄| < α/(n + 1), this latter is enclosed in the ball of radius 1/s at x. Therefore,

μ([x− 1/s, x + 1/s]) � μ(Iσ̄) � πn � παs = e−α log(π−1)s.

Letting η = α log(π−1), the above means that such x belongs to the set Λ(η; s) (see definition
(1.4)), so that ⋃

σ∈Sn(α)

Iσ ⊂ Λ(η; s).

Taking the Lebesgue measure of both sets and using (ii), one has

|Λ(η; s)| �
∣∣∣∣∣∣

⋃
σ∈Sn(α)

Iσ

∣∣∣∣∣∣ = 1 −
∣∣∣∣∣∣

⋃
σ∈Ln(α)

Iσ

∣∣∣∣∣∣ � 1 − #(Ln(α))ln � 1 − Cαln.

Because of (iii) the final expression at right-hand side tends to one as s, hence n, tends to
infinity, which proves that Criterion λ∗ holds, and so μ ∈ Reg. �

Remark 5.1. Note that for partitions {Iσ, σ ∈ Σn} generated by an IFS with finitely many
maps, condition (i) is always verified setting π = mini{πi}. It can also be shown that if the ϕi

are contractions in an IFS with A = [0, 1] , then (iii) also holds.

6. First proof of regularity of Minkowski’s ? measure

We are now in position to use Proposition 5.1 to obtain our first proof of regularity
of Minkowski’s question mark measure, Theorem 1.2. We will also use the results of
Lemmas 2.1– 2.3.

Proof of Theorem 1.2. First observe that, by Remark 5.1 we can put π = 1
2 in Propo-

sition 5.1(i). Next, we exploit the fact that, away from the fixed points at zero and one,
the IFS maps Mi are strictly contractive. Let s be a positive integer, s � 3 and consider an
interval J = [a, b] ⊆ [1s ,

1
2 ]. Applying the Möbius transformation M0 to this interval, we obtain

M0(J) = [ a
1+a ,

b
1+b ] ⊆ [ 1

s+1 ,
1
2 ] and

|M0(J)| =
|b− a|

(1 + a)(1 + b)
� |b− a|

(1 + 1/s)2
= |J |

(
s

1 + s

)2

.
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On the other hand, if J ⊆ [12 , 1], then M0(J) ⊆ [13 ,
1
2 ] and similarly as before |M0(J)| � |J |( 2

3 )2.
By symmetry, if J ⊆ [12 , 1 − 1

s ], then M1(J) ⊆ [12 , 1 − 1
1+s ] and |M1(J)| � |J |(s/(1 + s))2, while

for J ⊆ [0, 1
2 ], we have M1(J) ⊆ [12 , 1 − 1

3 ], and |M1(J)| � |J |( 2
3 )2.

Thus, if J ⊆ [1s ,
1
2 ] or J ⊆ [12 , 1 − 1

s ], then for i = 0, 1 we have that Mi(J) ⊆ [ 1
1+s ,

1
2 ] or

Mi(J) ⊆ [12 , 1 − 1
1+s ], and |Mi(J)| � |J |(s/(1 + s))2. This can be iterated so that, for J in

the above conditions and σ = (σ1, . . . , σk) ∈ Σk

|Mσ(J)| � |J |
(

s

1 + s

)2 (
s + 1

1 + s + 1

)2

· · ·
(
s + k − 1
s + k

)2

= |J |
(

s

s + k

)2

. (6.1)

We also get in the same way by induction on k that Mk
0 ([0, 1]) = [0, 1/(k + 1)], Mk

1 [0, 1] =
[1 − 1/(k + 1), 1], while for all other words in Σk

Iσ = (Mσ1 ◦ · · · ◦Mσk
)([0, 1]) ⊆

[
1

k + 1
,
1
2

]
or Iσ ⊆

[
1
2
, 1 − 1

k + 1

]
.

Based on these facts, simple induction yields |Iσ| � 1
|σ|+1 for all σ.

Choose and fix a large integer m. Let n > 2m2 and suppose that for some σ = (σ1, . . . , σn) ∈
Σn there is an integer r such that 1 � r < n−m and σn−r �= σn−r+1. Then, according to the
above inequalities

|(Mσn−r+1 ◦ · · · ◦Mσn
)([0, 1])| � 1

r + 1
, (6.2)

and the above interval is contained in Iσn−r+1 . Since σn−r �= σn−r+1 it follows that

|(Mσn−r
◦Mσn−r+1 ◦ · · · ◦Mσn

)([0, 1])| � 1
r + 1

(
2
3

)2

.

Observe that the interval in the last equation is either enclosed in [1s ,
1
2 ] or in [12 , 1 − 1

s ],
according to the value of σn−r, with s = 3. We can, therefore, apply the estimate (6.1) with
k = n− r − 1, to get

|(Mσ1 ◦ · · · ◦Mσn−r
◦ · · · ◦Mσn

)([0, 1])| � 1
r + 1

(
2
3

)2 ( 3
n− r + 2

)2

� 8
m2

1
n + 1

.

To obtain the last inequality we used that 2(r + 1)(n− r + 2)2 � m2(n + 1) because n− r +
2 > m and n > 2m2 (it just suffices to consider the cases r � n/2 and r < n/2 separately).

Hence, if σ ∈ Σn and |Iσ| > 8
m2

1
n+1 , then σ must be either of the form σ = η0n−m =

(η1, . . . , ηm, 0, . . . , 0) or σ = η1n−m = (η1, . . . , ηm, 1, . . . , 1), with arbitrary η ∈ Σn−m. If now
we choose m such that 8

m2 < α we have that the cardinality of Ln(α) is less than 2 · 2m for all
n larger than 2m2, and clearly also bounded by a constant for n < 2m2, so that the hypothesis
(ii) of Proposition 5.1 holds.

Finally, we employ (6.2) (which we shall re-derive in equation (7.11)) that |Iσ| � 1
n+1 for all

σ ∈ Σn, which implies the remaining condition (iii) in the hypothesis of Proposition 5.1, and
the theorem is proven.

Remark 6.1. Observe that letting m = �√8/α � for any α > 0, when n > 16/α, the
intervals Iσ, with σ ∈ Σn for which |Iσ|�α/(n + 1) are necessarily labeled by η1n−m or η0n−m

with an η ∈ Σm and their cardinality is therefore bounded by 22+
√

8/α. We show in the following
that this estimate, although sufficient for the proof of regularity, fails to describe accurately
the words in Ln(α), which on the contrary have a remarkable arithmetical structure.
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Figure 1. Rectangles Rσ = Jn × Iσ, where n = |σ|, bounded by the continuous lines. The Farey
sequence F5 is represented by small boxes: see text for details. Because of symmetry, only half of
the figure is displayed.

7. Arithmetical properties of Möbius partitions

Proposition 5.1 shows that regularity of Minkowski’s question mark measure can be seen as
a consequence of the distribution of ‘geometrical’ lengths of cylinders. To appreciate fully its
subtleties, in this section we examine more deeply the structure of the Möbius partitions of the
unit interval, whose extremes compose the Stern–Brocot sequences. The fundamental results
of this section are Proposition 7.1 and Corollary 7.2, which describe the set of ‘large’ intervals
Ln(α) (see (5.1)) of these partitions.

We find that Ln(α) is directly determined by an arithmetical set: for any value of α > 0,
define Qα by considering all irreducible fractions with denominator smaller than or equal to
1/
√
α:

Qα =
{
ζ ∈ Q ∩ [0, 1] s.t. ζ =

p

q
, p, q ∈ N, p, q relative primes, and 1 � q2 � 1

α

}
. (7.1)

Proposition 7.1. The set Ln(α) ⊂ Σn can be characterized as follows: for any 0 < α < 1,
there exists n̄ ∈ N such that for any n � n̄

Ln(α) = {σ ∈ Σn s.t. xσ ∈ Qα or xσ̂ ∈ Qα}. (7.2)

Corollary 7.2. Let Ln(α) ⊂ Σn, for n ∈ N and α > 0, be as in definition (5.1). Then, for
any α > 0, the cardinality of Ln(α) is bounded: there exists Cα ∈ N so that for all n ∈ N

#(Ln(α)) � Cα. (7.3)

Remark 7.1. From Definition 3.2, it appears that letting m = �1/√α� one has Qα =
Fm, the mth Farey sequence. In particular, this implies that the cardinality of Ln(α) is
asymptotically 3/(απ2) when α tends to zero, for large n [15]. This is the optimal estimate,
which improves the results of Remark 6.1. In addition, Proposition 7.1 exactly characterizes
the words in Ln(α) revealing their arithmetical nature.

The content of Proposition 7.1 is well exemplified in Figure 1: each cylinder Iσ, σ ∈ Σ,
is uniquely associated with a rectangle Rσ = Jn × Iσ, where n = |σ|. The horizontal sides
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Jn = [ζn, ζn+1] are constructed in this way: J0 = [0, 1], Jn+1 is adjacent to the right of Jn for
any n and |Jn| = 1/(n + 1), so that ζn = −1 +

∑n
l=0 1/(l + 1).

The choice of the horizontal segments Jn implies that σ ∈ Ln(α) if and only if the vertical
side of the rectangle Rσ is larger than α times the horizontal. Therefore, by suitably fixing
the ratio of the graphical units of the horizontal and vertical axis in the figure to the constant
α, words in Ln(α) appear to the eye as tall (taller than wider) rectangles, while rectangles
associated with words in Sn(α) are wide. For instance, Figure 1 is such that a unit in the
vertical direction has a graphical length of six horizontal units: a rectangle whose vertical size
is one-sixth of the horizontal appears as a square. Therefore, here α = 1/6 and words in Ln(α)
appear as tall rectangles.

According to Proposition 7.1, for large n, such functions Iσ must have a point of Q1/6 =
F2 as extremum. This is clearly observed, since F2 = { 0

1 ,
1
2 ,

1
1}. In addition, consider in the

figure corners of the rectangles that lie on the vertical segment at abscissa ζn. Note that
their ordinates compose the Stern–Brocot sequence Bn. In the figure, we have also plotted the
sequence F5 ⊂ B5 as small squares placed at the corresponding ordinate, at the abscissa of the
first Stern-Brocot sequence in which they appear — which can be earlier than B5, as explained
below by the notion of depth.

The remainder of this section contains the proof of these propositions. We have already
introduced the complementary set of Ln(α) in Σn, which we denoted by Sn(α) (S for small):

Sn(α) = {σ ∈ Σn s.t. |Iσ| < α/(n + 1)}. (7.4)

In the discussion below, we always set Iσ = [xσ, xσ̃], xσ = p
q , xσ̂ = p̂

q̂ , with relative primes p, q

and p̂, q̂, as described in Section 3. The property of Farey fractions, equation (3.4), imply that

|Iσ| = xσ − xσ̂ =
1
qq̂

. (7.5)

This permits to assess the useful condition

σ ∈ Sn(α) ⇐⇒ qq̂ > (n + 1)/α. (7.6)

Finally, we define a subset of Σ by requiring that neither extremum of Iσ belongs to Qα:

E =
{
σ ∈ Σ s.t. q >

√
1/α, q̂ >

√
1/α

}
. (7.7)

Note that in this definition we do not let E be a subset of Σn, but rather of the full set Σ: this
is necessary to study different IFS partitions.

To prove the above results we will now proceed through several steps, some of which can
be considered as sublemmas in their own right, whose proof terminates at a triangle �. For
simplicity of notation, put a = 1/α in what follows. It might be helpful to follow the proofs
with the aid of Figure 1.

Sublemma 7.1. The class E is stable under successive partitions:

σ ∈ E ⇒ ση ∈ E , η ∈ Σ. (7.8)

Proof. In fact, the endpoints of Iση belong to the Stern–Brocot sequence B|σ|+|η|. Let
Iσ = [pq ,

p̂
q̂ ]. When |η| = 1, because of the construction rule (3.2), the denominators of the

endpoints of Iση are {q, q + q̂, q̂}, which are all larger than
√
a. Induction extends the result to

general η ∈ Σ. � �

A second claim considers words that are in E and at the same time are associated with
‘small’ intervals, that is, wide rectangles in Figure 1. This class is also stable under successive
partitions:
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Sublemma 7.2.

σ ∈ [E ∩ S|σ|(α)] ⇒ ση ∈ [E ∩ S|σ|+|η|(α)], η ∈ Σ. (7.9)

Proof. The implication regarding E has just been proven in (7.8). In addition, letting
Iσ = [pq ,

p̂
q̂ ], the left-hand side of (7.9) means that q2 > a, q̂2 > a and qq̂ > a(|σ| + 1), the last

inequality following from (7.6). Then, Iσ0 = [pq ,
p̂+p
q̂+q ] and

q(q̂ + q) = qq̂ + q2 > a(|σ| + 1) + a = a(|σ0| + 1).

A similar estimate clearly holds for Iσ1, and by induction (7.9) follows. �

Suppose now that σ ∈ E , but do not require that |Iσ| < α/(|σ| + 1), that is, σ may not belong
to S|σ|(α), a case that often occurs (like for example, R010 in Figure 1). Then, we can prove
that there is a subdivision of Iσ whose intervals are all smaller than the threshold in (7.4), that
is, the words ση in this subdivision all belong to S|σ|+|η|(α). Actually, we shall prove more:

Sublemma 7.3. For every σ ∈ E , there exists a k1(σ)∈ N such that

ση ∈ [E ∩ S|σ|+|η|(α)], η ∈ Σ, |η| � k1(σ). (7.10)

Proof. The proof of this implication is rather long. The part regarding E has been already
proven, equation (7.8). Let us use again the notation Iσ = [pq ,

p̂
q̂ ]. Suppose that q < q̂ without

loss of generality: the opposite case can be dealt with similarly, by replacing the symbols q
with q̂ and 0 with 1 in what follows. In this q < q̃ case, among all intervals Iση, with |η| = k
fixed, the largest is Iσ0k , as we are going to prove in the next two paragraphs.

Since Iση = Mσ(Iη), let us first study the intervals Iη and prove that |Iη| � |I0k | for any
η ∈ Σk and for any k ∈ N. This is clearly true for k = 0 and k = 1 by direct inspection. Suppose
that it holds true for a certain k and let us consider symbolic words of length k + 1. As was
mentioned in Section 2, the associated intervals are symmetric around the point 1

2 , it is sufficient
to study the set {I0η, η ∈ Σk}. We now want to use the mean value theorem: the equality
I0η = M0(Iη) holds by definition, so that |I0η| = M ′

0(zη)|Iη|, where zη is a point in Iη. Now,
M ′

0(x) = 1/(x + 1)2, so that M ′
0(x) is strictly decreasing on [0,1]. Since the ordering of intervals

in Lemma 2.2 implies that inf Iη � sup I0k for any η ∈ Σk different from 0k, while |Iη| � |I0k |
by the induction hypothesis, it follows that |I0η| = M ′

0(zη)|Iη| � M ′
0(z0k)|I0k | = |I0k+1 |, which

completes the proof by induction of this part. We can also explicitly compute

|Iη| � |I0k | = |I1k | =
1

k + 1
, (7.11)

which has been used in Section 6 and will be useful again below.
Recall now that Iση = Mσ(Iη). When Iσ = [pq ,

p̂
q̂ ], the Möbius transformation Mσ is given

by equation (3.5), so that M ′
σ(x) = [(q̂ − q)x + q]−2, using also equation (3.4). Since q < q̂,

M ′
σ(x) is decreasing on [0,1]. Using again the mean value theorem and the fact that Iσ1k is

the leftmost interval among all Iση with σ ∈ Σk, we can write |Iση| = M ′
σ(z∗η)|Iη|, with some

z∗η ∈ Iη, from which we conclude that |Iση| � |Iσ0k | for any η ∈ Σk, σ ∈ Σ.
The length of Iσ0k can be easily computed from the explicit representation

Iσ0k =
[
p

q
,
p̂ + kp

q̂ + kq

]
,

which yields

|Iσ0k |−1 = q(q̂ + kq) = qq̂ + kq2. (7.12)
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Call k1(σ) the least k such that k > [a(n + 1) − qq̂]/(q2 − a), where n = |σ|. Since q2 − a > 0
this implies that, for k � k1(σ),

qq̂ + kq2 > a(n + k + 1). (7.13)

Now inequality (7.13) and the above reasoning imply that

|Iση| � |Iσ0k | < α

n + k + 1
=

α

|ση| + 1

for all η ∈ Σk, k � k1(σ), which proves (7.10). �

We have just proven that starting from a word/interval in E and taking successive partitions
of it we end up in E ∩ Sm(α) for all m ∈ N larger than a certain value. We now need to
examine the fate of intervals which do not belong to E . Let us therefore take a general σ ∈ Σ,
not necessarily in E and consider the associated interval Iσ = [pq ,

p̂
q̂ ], where either q2 � a or

q̂2 � a may happen.

Sublemma 7.4. For all σ ∈ Σ, there exists k2(σ) ∈ N such that

σ0k1 ∈ [E ∩ S|σ|+k+1(α)], k � k2(σ). (7.14)

Proof. By direct computation one gets

Iσ0k1 =
[
p̂ + (k + 1)p
q̂ + (k + 1)q

,
p̂ + kp

q̂ + kq

]
. (7.15)

Observe that these intervals approach xσ = p
q when k grows. Actually, Iσ0k1 is the second

interval to the right of the point p
q in the family {Iη, |η| = |σ| + k + 1}. It is clear that for

sufficiently large k the squares of both denominators in equation (7.15) are larger than a, so
that σ0k1 ∈ E . Moreover, since

|Iσ0k1|−1 = [q̂ + (k + 1)q](q̂ + kq) = k2q2 + kq2 + (2k + 1)q̂q + q̂2,

it is also clear that, for sufficiently large k, the right-hand side of the above equation is larger
than a(|σ| + k + 2), so that σ0k1 ∈ S|σ|+k+1. This proves (7.14). �

We will use the above property for σ such that Iσ = [pq ,
p̂
q̂ ], with q2 � a. We also need a

symmetrical property, to be used when q̂2 � a. The previous technique yields that for all
σ ∈ Σ there is a k3(σ) ∈ N such that

σ1k0 ∈ [E ∩ S|σ|+k+1(α)], k � k3(σ). (7.16)

Here, Iσ1k0 is the second interval to the left of the point p̂
q̂ in the family {Iη, |η| =

|σ| + k + 1}. �
This ends the sequence of sublemmas.

Proof of Proposition 7.1. We now go through a series of three levels n = n1, n2, n3 at which
we study the partitions Σn.

First level, n1, when all elements of Qα appear at even positions in Bn1 .
Consider the set Qα = Fm, with m = �1/√α�. For ζ ∈ Qα, let n(ζ) be the least n such that

ζ ∈ Bn (for every rational number there is such an n since rational numbers are mapped by
Minkowski’s question mark function into dyadic rationals, so every rational number is one of
the xσ, and then the existence of such an n is a consequence of Lemma 3.1). This number is
called the depth of ζ in the Stern–Brocot tree [15]. It is standard to show that the maximum
depth of ζ in Qα is m. In Figure 1, the set F5 is plotted, showing also the depth of different
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points. Moreover, since ζ ∈ Bn implies that ζ ∈ Bl for any l � n, it follows that ζ ∈ Bn for
all ζ ∈ Qα and for all n � m. Let now n1 = m + 1, so that if xn1

j ∈ Qα, then j is even: in
fact, for any ζ ∈ Qα, there exists j ∈ {0, . . . , 2m} such that ζ = xm

j . At the next level, we have
ζ = xm+1

2j , so that all elements in Qα appear with even indices in Bn1 .
Consider now the set F of words in Σn1 , such that one endpoint of Iσ belongs to Qα. Because

of what we have just proven, no more than one endpoint of any such interval can belong to
Qα. Part these words in two disjoint groups, F = Fl � Fr, according to whether the left or the
right endpoint of Iσ = [xσ, xσ̂] lies in Qα:

Fl = {σ ∈ Σn1 s.t. xσ ∈ Qα},
Fr = {σ ∈ Σn1 s.t. xσ̂ ∈ Qα}.

The symbol � indicates the disjoint union of two sets.
Apply now sublemmas (7.14) and (7.16) to define K2(F ) = max{k2(σ), σ ∈ Fl} and K3(F ) =

max{k3(σ), σ ∈ Fr}. Let κ = max{K2(F ),K3(F )} + 1. This defines the second level, n2 = n1 +
κ.

Second level, n2 = n1 + κ, when properties (7.14) and (7.16) are realized for all words σ in
F ⊂ Σn1 .

Among all words of length n2 = n1 + κ we start by considering those that originate from
a word σ ∈ Fl. They are written as ση, where η is any word in Σκ. All of these belong to E ,
except for σ0κ. Equally, when σ ∈ Fr, the words ση, where η is any word in Σκ, belong to E ,
except for σ1κ since no refinement of Iσ can contain any point of Qα other than p/q as an
endpoint of one of its subintervals. Because of the argument above, these two exceptions yield
all words of Σn2 that are not in E . We can, therefore, write Σn2 as the union of three sets that
are pairwise disjoint:

Σn2 = (E ∩ Σn2) � {σ0κ, σ ∈ Fl} � {σ1κ, σ ∈ Fr}. (7.17)

Consider now the first set in the disjoint union above, call it E = E ∩ Σn2 . It corresponds to
intervals Iω, with ω ∈ Σn2 , such that neither endpoint of Iω belongs to Qα. Within this family,
two cases are possible: small and large intervals, E = Es � El,

Es = E ∩ Sn2(α), El = E ∩ Ln2(α).

In the first case, that is when ω ∈ Es, ωη belongs to E ∩ Sn2+k(α) for any k � 0, η ∈ Σk,
in force of (7.9). In the second case, ω ∈ El, we use (7.10): for any such ω ∈ El there exists
k1(ω) such that ωη ∈ E ∩ Sn2+k(α) for any k � k1(ω), η ∈ Σk. Since the cardinality of El is
finite, there exists the maximum of {k1(ω), ω ∈ El}: call it K1(E). This defines a new level,
n3 = n2 + K1(E).

Third level, n3 = n2 + K1(E), where we make the final separation between small and large
intervals.

We have just proven that for any n � n3 the words ωη, with ω ∈ E ∩ Σn2 and η ∈ Σn−n3

belong to E ∩ Sn(α). It remains to consider words in Σn, with n � n3, which originate from
{σ0κ, σ ∈ Fl} and {σ1κ, σ ∈ Fr}. Recall that these two sets are included in Σn2 ; we need to
consider their successive partitions. Let us show how to proceed by induction. Consider the
first case and the word σ0κ, with σ ∈ Fl. Its partition yields the two words σ0κ+1 and σ0κ1.
Because of (7.14) and because κ > k2(σ), the latter belongs to both E and Sn2+1(α). The
property (7.9) implies that all of its successive partitions σ0κ1η, with η ∈ Σm, for every m ∈ N
belong to E ∩ Sn2+1+m(α). We iterate the procedure on σ0κ+i, i = 1, . . ., so that induction
proves that for any m ∈ N all words of the set

{σ0κη, σ ∈ Fl, η ∈ Σm}



724 GIORGIO MANTICA AND VILMOS TOTIK

also belong to Sn2+m(α), except possibly for the words in the subset {σ0κ+m, σ ∈ Fl}.
Similarly, we prove that all words of the set

{σ1κη, σ ∈ Fr, η ∈ Σm}
also belong to Sn2+m(α), except possibly for the words in the subset {σ1κ+m, σ ∈ Fr}.

The above classification of intervals shows that for all n � n3

Σn = Sn(α) ∪ ({σ0n−n1 , σ ∈ Fl} � {σ1n−n1 , σ ∈ Fr}), (7.18)

so that

Ln(α) ⊂ {σ0n−n1 , σ ∈ Fl} � {σ1n−n1 , σ ∈ Fr}. (7.19)

We now prove the reverse inclusion. This happens to be much simpler. Consider Fl, the
case of Fr being exactly symmetrical. The word σ ∈ Fl ⊂ Σn1 can terminate with a certain
number of consecutive zeros. This means that the point xσ = p/q has appeared in Stern–Brocot
sequences of smaller index than n1. Let ñ be the first n for which p

q = xσ belongs to Bn (we
called ñ its depth in the tree). Then, there exists η in Σñ such that σ = η0j , with j = n1 − ñ
and clearly p

q = xσ = Mσ(0) = Mη(0) = xη. We prove that η0k belongs to Lñ+k(α) for any
k � 0. In fact, because of equation (7.12) this is equivalent to the validity of the inequality
qq̂ + kq2 � a(|η| + k + 1). Since xσ ∈ Qα, we have q2 � a. Moreover, if ñ � 1, then xσ does
not belong to Bñ−1, so the Farey rule (3.1) reads q = q̂ + q′, where q′ is a denominator of an
irreducible fraction in Bñ−1 and therefore q > q̂. When ñ = 0, one has q = q̂ = 1. Combining
this information we obtain

a(|η| + k + 1) � q2(|η| + k + 1) � qq̂(|η| + 1) + kq2 � qq̂ + kq2,

for any k � 0, which is what we wanted to show. This proves

Ln(α) = {σ0n−n1 , σ ∈ Fl} � {σ1n−n1 , σ ∈ Fr}, (7.20)

and, because of the previous discussion, Proposition 7.1. The cardinality of Ln(α) in equation
(7.20) is equal to the sum of the cardinalities of the two sets at the right-hand side, which
are obviously finite and independent of n, for all n � n3. Clearly the maximum cardinality of
Ln(α) for n < n3 is also finite, so that we obtain also Corollary 7.2. �

Regularity of Minkowski’s question mark measure follows again from a combination of the
previous Proposition, Remark 5.1 and equation (7.11). As in Section 6, they serve to verify
that the hypotheses of Proposition 5.1 hold true.

8. Regularity of invariant measures of Iterated Function Systems

In this section, we put the regularity of Minkowski’s measure into the more general perspective
of the regularity of invariant measures of Iterated Function Systems. To appreciate the difficulty,
we first prove a result in the case of strict contractions. We shall use the notations established
in Section 1.3.

Proof of Theorem 1.4. Without loss of generality, we may assume that the diameter of A is
1. Set π = mini πi. For a generic σ ∈ Σn, induction on n gives that μ(ϕσ(A)) � πnμ(A), and
diam(ϕσ(A)) � δndiam(A) � δn, where δ is the IFS contraction rate introduced in Section 1.3.
For a small r > 0, choose n so that δn < r � δn−1. For x ∈ A, let σ̄ ∈ Σn be a word such that
x ∈ ϕσ̄(A). Then, ϕσ̄(A) ⊂ Br(x), where Br(x) is the ball of radius r about x. Hence,

μ(Br(x)) � μ(ϕσ̄(A)) � πn = δn log π/ log δ � r(n/(n−1)) log π/ log δ � r2 log π/ log δ,

and hence the regularity of μ is a consequence of Criterion Λ∗ in [46, Theorem 4.2.3]. �
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The case when the ϕi are weak contractions is more subtle. We shall deal with this case only
under the following assumptions:

A-0. A = [0, 1] and the functions ϕi are increasing weak contractions. Let the image of [0,1]
under ϕi be [Ai, Bi]. Assume that the intervals [Ai, Bi] cover [0,1] and are pairwise disjoint —-
except possibly for their endpoints, and then, by re-enumeration, we may assume A0 = 0 and
so ϕ0(0) = 0, and BM = 1 and so ϕM (1) = 1.
Each ϕi has a unique fixed point Xi ∈ [Ai, Bi] (according to the agreement before X0 = 0 and
XM = 1). Furthermore:

A-1. When i = 0, we assume that the function ϕ0 is concave and there is ρ0 > 0 such that

ϕ0(x)
x

� 1 − ρ0x. (8.1)

A-2. When i = M , in symmetry with the previous case, we assume that ϕM is convex and
with some ρM > 0

1 − ϕM (x)
1 − x

� 1 − ρM (1 − x). (8.2)

A-3. When 1 � i � M − 1, the fixed point Xi lies in (Ai, Bi). On [Xi, 1], we assume the
behavior described in I: ϕi is concave and with some ρi > 0 it satisfies the inequality

ϕi(x) −Xi

x−Xi
� 1 − ρi(x−Xi). (8.3)

Symmetrically, on the interval [0, Xi] we assume the behavior described in II: ϕi is convex and
with some ρ∗i > 0

Xi − ϕi(x)
Xi − x

� 1 − ρ∗i (Xi − x)). (8.4)

A-4. To insure consistency with the requirement that the maps ϕi be increasing, we also
impose that ρi < 1, ρ∗i < 1 for all i. By selecting ρ = mini{ρi, ρ∗i }, we may assume that all
ρi, ρ

∗
i are the same ρ.

Theorem 8.1. Under assumptions A-0 to A-4, the measure μ on [0,1] which is invariant
with respect to the IFS {ϕi}Mi=0, {πi}Mi=0, is regular: μ ∈ Reg.

Remark 8.1. Since Minkowski’s question mark measure is invariant for the system {ϕ0, ϕ1}
where ϕ0(x) = x/(1 + x) and ϕ1(x) = 1/(2 − x), and since these maps satisfy the just given
conditions, regularity of Minkowski’s measure is a consequence of this theorem.

Before moving to the proof, let us briefly discuss the set-up of this theorem.

Remark 8.2. If ρ is the smallest of the numbers ρi, ρ
∗
i , then conditions (8.3) and (8.4) can

be unified as ∣∣∣∣ϕi(x) −Xi

x−Xi

∣∣∣∣ � 1 − ρ|x−Xi|. (8.5)

Remark 8.3. The pairwise disjointness of the interiors of the image sets can be weakened
to the assumption that Xi �∈ [Aj , Bj ] if i �= j, but we do not go into details.

Remark 8.4. Theorem 8.1 is still true if the ϕi are assumed to be (strictly) monotonic,
though not necessarily increasing. When, for instance, a particular ϕi is decreasing, then
necessarily Xi ∈ (Ai, Bi) and this falls under A-3: we need to require convexity from the right
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of Xi, concavity from the left, and instead of (8.3) and (8.4) we need to use the common form
(8.5). The proof requires many formal modifications in this case, but the main ideas remain
the same.

Remark 8.5. Some explanations regarding the conditions (8.1)–(8.4) are in order. Consider,
for example, A-1. The point 0 is a fixed point for ϕ0 and for reasons that will become
immediately clear we want ϕ0 to be more contractive away from 0 than around 0. The simplest
way to achieve this is to require that ϕ0 be a concave function — this property could be
relaxed somewhat, but we omit details here. Then ϕ0, as a concave function on [0,1], has
a right derivative ϕ′

0 at every point, which is a decreasing function. Hence, ϕ′′
0 exists almost

everywhere. The contractive property of ϕ0 then implies ϕ′
0(0) � 1. Two cases are now possible.

If ϕ′
0(0) < 1, then ϕ0 is a strict contraction, described by Theorem 1.4. On the other hand, if

ϕ′
0(0) = 1, then 0 is a marginally stable fixed point for ϕ0. This fact might lead, in the absence

of further specification, to an invariant measure that is too thin in its neighborhood, impairing
regularity: as an extreme case, let ϕ0(x) = x on [0, a], so that for this interval the property
μ(ϕ0(E)) = π0μ(E) implies that μ is the null measure. We therefore require that ϕ0(x) is not
too close to x as x approaches 0, which is guaranteed by condition (8.1). If ϕ′′

i � −c < 0,
property (8.1) is true, so that we can roughly think of the latter as the requirement that
ϕ′′

0 � −c < 0. Assumption A-2 is the analogue of A-1 for the right endpoint 1 (the mapping
x → 1 − x takes these two cases into each other), and finally if the fixed point Xi is different
from 0 and 1, in A-3, we replicate the above assumptions by requiring that to the right of Xi

the behavior of ϕi is similar to that of ϕ0 around 0 in A-1, while to the left of Xi the behavior
is like that around 1 in A-2.

Remark 8.6. We do not know if Theorem 8.1 is true for any Iterated Function System
consisting of weak contractions on [0,1] (in other words, if conditions (8.1)–(8.4), as well as the
convexity/concavity conditions can be dropped altogether).

Let us now move to the proof of Theorem 8.1. We will obtain it via

Proposition 8.2. Let the intervals Iσ for σ ∈ Σ be generated by an IFS which fulfills the
conditions stated above in this section. Then, Corollary 7.2 holds for these intervals.

To prove this Proposition, we need some properties of the IFS satisfying the above
requirements. Define βs,i = ϕs

i (0), γs,i = ϕs
i (1). Then, βs,0 = 0 and γs,M = 1 for all s ∈ N.

In all other cases, {βs,i}∞s=1 is a strictly increasing sequence and {γs,i}∞s=1 is a strictly
decreasing sequence, both converging to Xi. Clearly, ϕs

i ([0, 1]) = [βs,i, γs,i] for all s. Note also
that if σ = jη, for any η ∈ Σ, then ϕσ([0, 1]) ⊆ [Aj , Bj ]. Therefore, when i �= j, we have that
ϕσ([0, 1]) ⊆ [0, 1] \ (Ai, Bi), and hence ϕi ◦ ϕσ([0, 1]) ⊂ [γ2,i, γ1,i] (when ϕσ([0, 1]) ⊆ [Bi, 1])
or ϕi ◦ ϕσ([0, 1]) ⊂ [β1,i, β2,i] (when ϕσ([0, 1]) ⊆ [0, Ai]), where we used that, for example,
γ1,i = Bi and γ2,i = ϕi(γ1,i).

Now if the interval J = [a, b] is such that J ⊆ [γs,i, 1] for a pair s, i, i ∈ {0, . . . ,M}, s ∈ N,
then ϕi(J) ⊆ [γs+1,i, 1]. Using that ϕi is increasing, concave on [Xi, 1] and ϕi(Xi) = Xi we
arrive at

|ϕi(J)|
|J | =

ϕi(b) − ϕi(a)
b− a

� ϕi(a) − ϕi(Xi)
a−Xi

� ϕi(γs,i) −Xi

γs,i −Xi
=

γs+1,i −Xi

γs,i −Xi
,

in which the final ratios are increasing monotonically with s. Therefore, we can iterate this
inequality (with s replaced by s + 1, then s + 1 by s + 2, etc.) to conclude that for k � 1

|ϕk
i (J)| � |J |γs+1,i −Xi

γs,i −Xi
· · · γs+k,i −Xi

γs+k−1,i −Xi
= |J |γs+k,i −Xi

γs,i −Xi
. (8.6)
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In a similar manner, if J ⊆ [0, βs,i], then ϕi(J) ⊆ [0, βs+1,i], and for k � 1

|ϕk
i (J)| � |J |Xi − βs+k,i

Xi − βs,i
. (8.7)

We now prove two lemmas:

Lemma 8.3. For all 0 � i � M and s ∈ N

γs,i −Xi �
C0

s + 1
, Xi − βs,i �

C0

s + 1
, (8.8)

with C0 = 1/ρ, where ρ is the number from (8.5).

Proof. Equation (8.8) is certainly true for s = 0, since C0 > 1: recall that ρi � ρ < 1. Letting
Zs,i = γs,i −Xi and using (8.3) we have

Zs+1,i = ϕi(γs,i) −Xi � (γs,i −Xi)(1 − ρ(γs,i −Xi)) = Zs,i(1 − ρZs,i) � Zs,i. (8.9)

Suppose for induction that (8.8) is true for a certain s. We need to prove that it holds for s + 1.
We have the chain of inequalities

s + 1
C0

� 1
Zs,i

� 1 − ρZs,i

Zs+1,i
� 1 − ρZs+1,i

Zs+1,i
=

1
Zs+1,i

− ρ.

The first inequality is the induction hypothesis; to prove the second, we employ the intermediate
inequality in (8.9); the third follows from the full inequality (8.9). Therefore,

1
Zs+1,i

� s + 1 + C0ρ

C0
=

s + 2
C0

,

which proves induction. The second relation in (8.8) follows from the same reasoning if we use
(8.4) instead of (8.3). �

Lemma 8.4. There is a constant C1 such that, for all n ∈ N,

|Iσ| = |ϕσ([0, 1])| � C1

n + 1
, σ ∈ Σn. (8.10)

Proof. To prove this lemma, we need to define two quantities:

τ := max
{

max
0�i<M

γ2,i −Xi

γ1,i −Xi
, max
0<i�M

Xi − β2,i

Xi − β1,i

}
(8.11)

and

κ = min{ min
0�i<M

(γ1,i −Xi), min
0<i�M

(Xi − β1,i)}. (8.12)

Then, τ < 1 because of (8.1)–(8.4), and κ > 0 because the IFS maps are increasing functions.
Since |Iσ| � 1, when n = 0 or n = 1 it is enough to take C1 � 2 for (8.10) to hold. Next,

suppose that (8.10) holds for all n′ < n and consider a σ ∈ Σn. We separate three cases.
The first case is σ = in, with i ∈ {0, . . . ,M}. Then, by (8.8)

|Iσ| = γn,i − βn,i � 2
C0

n + 1
,

which proves the desired inequality (8.10), when C1 � 2C0 as before.
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If the first case does not hold, then the word σ ∈ Σn can be written as σ = ikjη, with i �= j,
1 � k � n− 1, with some word η ∈ Σn−k−1. Let θ ∈ (0, 1) to be specified later, and consider
separately two alternatives: k � θn and k < θn. According to the relative value of i and j, we
apply either (8.6) or (8.7) with s = 1, with identical results. Let us show computations using
(8.6). We start from the case k < θn:

|Iσ| � γk+1,i −Xi

γ1,i −Xi
|Ijη| � γ2,i −Xi

γ1,i −Xi
|Ijη| � τ

C1

n− k + 1
� τ

C1

n− θn + 1
,

where we have used γ2,i � γk+1,i, definition (8.11) and the induction hypothesis. Since τ < 1 if
we choose θ � 1 − τ simple algebra shows that |Iσ| � C1

n+1 . Note that this does not put bounds
on C1 but only restricts the range of values of θ that can be used in the proof.

In the other alternative, k � θn, we use the first inequality above, but after that we continue
differently: using (8.8) and definition (8.12) we obtain

|Iσ| � γk+1,i −Xi

γ1,i −Xi
|Ijη| � γk+1,i −Xi

γ1,i −Xi
� C0

k + 2
1

γ1,i −Xi
� C0

θn + 2
1
κ
� C0

κθ

1
n + 1

.

The optimal choice of θ, which is bound to the interval (0, 1 − τ ], to minimize the constant C0
κθ ,

is θ = 1 − τ . In conclusion, with

C1 = C0 max
{

2,
1

κ(1 − τ)

}
(8.13)

the relation (8.10) is proven. �

Proof of Proposition 8.2. Let us focus our attention on words σ ∈ Σn, with n > 2m2, when
m is an integer to be specified later, which are of the form

σ = ikq
q i

kq−1
q−1 · · · ik1

1 jη (8.14)

for some m2 < r < n−m2 and η ∈ Σr−1, where i1 �= j, il+1 �= il for l = 1, . . . , q − 1, the powers
kl are all positive, and sum up to k1 + k2 + · · · + kl = n− r. For such σ, we want to estimate
the length of the interval Iσ. Using again (8.6) and (8.7) with s = 1 we obtain

|Iσ| � |Ijη| ωk1,i1ωk2,i2 · · ·ωkq,iq , (8.15)

where ωkl,il stands for either

ωkl,il =
γkl+1,il −Xil

γ1,il −Xil

or ωkl,jl =
Xil − βkl+1,iq

Xil − β1,il

, (8.16)

possibly independently of each other for different l = 1, . . . , q. The first factor at the right-
hand side in (8.15) can be controlled as |Ijη| � C1

r+1 by (8.10), or simply by |Ijη| � 1. For the
remaining factors, as before, the two alternatives in (8.16) are equivalent, because equations
(8.8), (8.11) and (8.12) yield for both the bounds

ωkl,il �

⎧⎪⎨
⎪⎩

ω1,il � τ < 1

C0

kl + 2
1
κ � C0

κkl
.

(8.17)

Let α > 0 be an arbitrary constant. Recall that r > m2 is the length of the word jη and
distinguish two cases.
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Case 1. r > n/2. If q � m, then we obtain from Lemma 8.4 (applied to Ijη) and from equation
(8.15)

|Iσ| � C1

r + 1
τ q � 2C1

n + 1
τm <

α

n + 1
,

if m is chosen large enough, m � Q1(α, τ), where we have implicitly defined the quantity
Q1(α, τ). On the other hand, if q < m, then, since k1 + k2 + · · · + kq = n− r � m2, there must
be an l such that kl � m. Hence, in this case, bounding all remaining ωkl′ ,jl′ by one we obtain

|Iσ| � C1

r + 1
ωkl,jl �

C1

n/2 + 1
C0

κkl
� 2C1

n + 1
C0

κm
<

α

n + 1
,

if m is sufficiently large. Precisely, this requires that m is larger than Q2(α) = 2C1C0/κα.
Case 2. r � n/2. Let p, respectively p̄, be the number of those kl for which kl < m,

respectively kl � m, so that, say, kl1 , . . . , klp̄ � m. We so have

pm + kl1 + · · · + klp̄ � k1 + · · · + kq = n− r � n/2,

and

|Iσ| � C1

r + 1
τp

C0

κkl1
· · · C0

κklp̄
. (8.18)

Each factor on the right can be replaced by 1 at our discretion — recall equation (8.17). There
are now two subcases. In the first, pm � n/4 case we can write

|Iσ| � τp � τn/4m <
α

n + 1
,

if n is sufficiently large, that is, when n � Q0(m,α, τ). It is readily verified that, since τ < 1,
the function Q0(m,α, τ) increases when m grows, or α tends to zero. In the second subcase,
pm < n/4, one has Sp̄ := kl1 + · · · + klp̄ � n/4. If in addition p̄ = 1, then

|Iσ| � C1

r + 1
C0

κ(kl1 + 2)
� C1

m2 + 1
C0

κ(n/4 + 2)
� α

n + 1

if m is large, m � Q3(α, κ). When p̄ > 1 the argument is more involved. Consider the product
kl1kl2 · · · klp̄ , where each factor is larger than m and their sum is Sp̄. If two terms in the product
are different, say m < kli < klj , then by replacing kli by kli − 1 and klj by klj + 1 we decrease
the product while keeping the sum constant. Therefore, the product is minimal, compatible
with the bounds, when p̄− 1 of the numbers klj are equal to m and the remaining k is such
that (p̄− 1)m + k = Sp̄. This proves the first inequality below:

κkl1
C0

· · · κklp̄
C0

�
(
κm

C0

)p̄−1 (
κSp̄

C0
− (p̄− 1)

κm

C0

)

�
(
κm

C0

)p̄−1
κSp̄

C0p̄
�

(
κm

C0

)
κSp̄

C02
� κm

C0

κn

8C0
.

The second inequality follows from Sp̄ − (p̄− 1)m � Sp̄

p̄ , by the definition of Sp̄, and the third
from the fact that vp̄−1/p̄ increases in p̄ on the interval p̄ � 2 if v � 2: we use this for v = κm/C0,
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which is larger than two if we require that m � 2C0/κ = Q4(κ). Finally, Sp̄ � n/4 yields the
last inequality. Hence, in this (p̄ > 1) case we have (see (8.18))

|Iσ| � C1

r + 1
C0

κm

8C0

κn
� 8C2

0C1

m3κ2

1
n
� α

n + 1

if m � Q5(α, κ).
To conclude: if we let m̄ = max{Q1(α, τ), Q2(α), Q3(α, κ), Q4(κ), Q5(α, κ)} and we require

that m � m̄, and successively that n � n̄ = max{Q0(m,α, τ),m2}, then, for all words σ ∈ Σn of
the form (8.14), we have |Iσ| � α

n+1 . In other words, once we fix m sufficiently large (depending
only on α, τ , κ) the inequality is valid for all values of n larger than the threshold n̄.

Recall now that (8.14) requires that, being σ ∈ Σn, σ = (σ1, σ2, . . . , σn), there is an integer r
such that m2 < r < n−m2 for which σr �= σr+1. Therefore, if ceteribus paris |Iσ| > α/(n + 1),
then the word σ must satisfy σm2+1 = σm2+2 = · · · = σn−m2 , and there are at most (M +
1)2m

2
such σ in Σn. Since the cardinality of Ln(α) is clearly bounded for n � n̄, this proves

Proposition 8.2. �

Proof of Theorem 8.1. It follows from Proposition 5.1, whose hypotheses are proven by
Proposition 8.2, Lemma 8.4 and Remark 5.1. �
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Probab. Stat. 24 (1988) 367–394.

7. D. Bessis and G. Mantica, ‘Construction of multifractal measures in dynamical systems from their
invariance properties’, Phys. Rev. Lett. 66 (1991) 2939–2942.

8. D. Bessis and G. Mantica, ‘Orthogonal polynomials associated to almost–periodic Schrödinger operators’,
J. Comput. Appl. Math. 48 (1993) 17–32.

9. C. Bonanno and S. Isola, ‘Orderings of the rationals and dynamical systems’, Colloq. Math. 116 (2009)
165–189;

10. A. Brocot, ‘Calcul des rouages par approximation, nouvelle méthode’, Revue Chronométrique 6 (1860)
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17. I. Guarneri and G. Mantica, ‘Multifractal energy spectra and their dynamical implications’, Phys. Rev.

Lett. 73 (1994) 3379–3382.

http://etheses.nottingham.ac.uk/641/


REGULARITY OF MINKOWSKI’S QUESTION MARK MEASURE 731

18. M. C. Gutzwiller, ‘Bernoulli sequences and trajectories in the anisotropic Kepler problem’, J. Math.
Phys. 18 (1977) 806–823.

19. M. C. Gutzwiller and B. B. Mandelbrot, ‘Invariant multifractal measures in chaotic Hamiltonian
systems, and related structures’, Phys. Rev. Lett. 60 (1988) 673–676.

20. J. Hutchinson, ‘Fractals and self-similarity’, Indiana J. Math. 30 (1981) 713–747.
21. T. Jordan and T. Sahlsten, ‘Fourier transforms of Gibbs measures for the Gauss map’, Math. Ann. 364

(2016) 983–1023.
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