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Abstract: Urogenital tract infection caused by obligate intracellular bacterium Chlamydia trachomatis
D (CtrD) is a leading cause of sexually transmitted diseases. Essential oil (EO) of Nigella sativa has
a broad antimicrobial spectrum. The aim of this study was to evaluate the antimicrobial activity
of the bioactive compounds (p-cymene, thymoquinone, carvacrol, and thymol) of N. sativa EO
against CtrD. The cytotoxic effects of the compounds were determined by MTT assay. In order to
quantify the anti-chlamydial activity of the compounds, HeLa cells were infected with CtrD or CtrD
treated previously with the compounds. The titer of the infectious CtrD was determined by indirect
immunofluorescence assay. The minimum inhibitory concentrations of the compounds were evaluated
by direct quantitative PCR. None of the compounds showed a cytotoxic effect on HeLa cells in the
concentrations tested. According to the immunofluorescence assay, all of the compounds significantly
inhibited the growth of CtrD. The quantitative PCR revealed that the minimum concentration that
exerted anti-chlamydial activity was 3.12 µM in the case of thymoquinone and p-cymene, while that
of carvacrol and thymol was 6.25 µM. Therefore, it can be concluded that bioactive compounds of
N. sativa EO could be used as effective antimicrobial agents against CtrD.
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1. Introduction

Although antibiotic therapy eliminates bacterial infections, there is emerging evidence of bacteria
developing antimicrobial resistance (AMR). AMR together with a lack of development of new
antimicrobial agents has become a global public health concern [1].

Chlamydia trachomatis is an obligate intracellular bacterium that causes a wide spectrum of human
diseases, such as genitourinary, pulmonary, and ocular infections. The most common genitourinary
infections caused by C. trachomatis serovars D to K are mucopurulent cervicitis in females and
non-gonococcal urethritis in males. Additionally, cases of untreated infections can lead to various
complications, such as pelvic inflammatory disease (PID), ectopic pregnancy, chronic prostatitis, and
infertility [2]. Chlamydia spp. are characterized by typical lifecycles. First, the elementary body (EB),
which is the infectious form, infects the host cell. After the EB enters the host cell, the formation of
inclusion occurs and the EB transforms into the reticulate body (RB). The RB is characterized by its
high metabolic activity and further division by binary fission. This process subsequently results in the
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filling of the entire cytoplasm and dislocation of the nucleus. Approximately 24 to 72 h later, there is a
final transition of RBs into EBs that ends with host cell lysis [3].

Chlamydial infections can be managed by azithromycin, tetracyclines, and fluoroquinolones.
However, rates of clinical treatment failures range from 5% to 23%, which might be attributed to
AMR [4]. Azithromycin resistance of C. trachomatis serovar L2 is caused by a mutation in the rplD
gene that codes for ribosomal protein L4. This alteration results in a declining activity of antibiotics by
interfering with protein synthesis [5]. C. trachomatis resistance to fluoroquinolone is attributed to a
point mutation of the gyrA [6]. Although chlamydiae are replicating in a membrane bound vacuole,
horizontal gene transfer could be involved in the occurrence of AMR. A recent study reported that
tetracycline resistance in Chlamydia spp. is associated with the horizontal gene transfer of antibiotic
resistance genes (tetC, tetR), which encode efflux pumps [7]. AMR of chlamydiae could be the result of
selective pressure of continuous exposure to antimicrobial drugs at subinhibitory concentrations [4].
Furthermore, chlamydiae can transform to persistent forms, which further enhances their resistance to
antimicrobial drugs [8].

Phythochemicals have garnered attention over the past decade because of their therapeutic
potential against a wide range of pathogenic microorganisms. The antimicrobial activity of essential
oils (EOs) extracted from medicinal plants is well demonstrated [9,10]. EO obtained from Nigella sativa
(black cumin), which is rich in phenolic compounds, has a broad antimicrobial spectrum including both
Gram-negative and Gram-positive bacteria, viruses, parasites, and fungi [11]. In addition, N. sativa
EO effectively reduced the development of bacterial biofilm of Staphylococcus aureus in an in vitro
study [12]. Among the phenolic constituents, p-cymene (p-cy) and thymoquinone (Thq) are the major
components of N. sativa EO [13]. Carvacrol (Car) and thymol (Thy) can also be found in the EO
extracted from N. sativa [14,15].

To the best of our knowledge, only one study has been published in association with
the anti-chlamydial activity of EOs or other formulations of phythochemicals. Specifically, the
anti-chlamydial effect of EO obtained from Mentha suaveolens was investigated on the lymphogranuloma
venereum strain of C. trachomatis [16]. The aim of our study was to evaluate the antimicrobial activity
of N. sativa EO and its bioactive compounds (p-cy, Thq, Car, and Thy) against C. trachomatis serovar D.

2. Materials and Methods

2.1. Bacterial Strain and Cell Line

Chlamydia trachomatis (serovar D, UW-3/Cx) was propagated on HeLa 229 cells (ATCC, CCL-2.1).
The infected cells were purified by density gradient centrifugation, as previously described [17].
The titer of infectious elementary bodies (EBs) was determined by indirect immunofluorescence assay
and was expressed in inclusion forming unit/mL (IFU/mL) [18]. HeLa cells were maintained in minimal
essential medium (MEM) comprising 10% fetal bovine serum, 2 mM L-glutamine, 1 × nonessential
amino acids, 1 ×MEM vitamins, 25 µg/mL gentamicin, and 1 µg/mL fungizone [19].

2.2. Essential Oil and Active Compounds

N. sativa EO extraction was performed as reported earlier [14]. Thymoquinone (Thq), thymol
(Thy), and carvacrol (Car) were purchased from MilliporeSigma ( St. Louis, MO, USA) and p-cymene
(p-cy) was purchased from Alfa Aesar (Haverhill, MA, USA). EO, Thy, and Thq were diluted using
dimethyl sulfoxide (DMSO, MilliporeSigma), while ethanol was used as diluent for Car and p-cy to
prepare stock solutions, and further dilutions were performed with medium used for the maintenance
of HeLa cells.

2.3. Cytotoxicity Assay

The effects of increasing concentrations of the compounds on HeLa cell growth were tested as
described by Żesławska et al. [20]. Briefly, 2 × 104 HeLa cells in 100 µL of medium were added to
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each well, with the exception of the medium control wells. After an overnight incubation period,
the compounds were diluted and added to the cells. Initial concentrations of the bioactive compounds
were 100 µM, while in the case of the EO it was 0.04% (v/v). After 48 h, 20 µL of MTT (thiazolyl
blue tetrazolium bromide, MilliporeSigma) solution (from a 5 mg/mL stock) were added to each well.
After 4 h, 100 µL of sodium dodecyl sulfate (SDS, MilliporeSigma) was added to each well and the
plates were further incubated at 37 ◦C overnight. The cell growth was determined by measuring the
optical density. Inhibitory concentration 50 (IC50) was evaluated, where the compounds reduced the
growth of the treated HeLa cells by 50%.

2.4. Anti-Chlamydial Assay

EBs of C. trachomatis D (4 × 104 IFU/mL) were incubated with N. sativa EO (0.0025% v/v) and its
bioactive compounds at various concentrations (25, 50 µM) in a sucrose–phosphate–glutamic acid
buffer (SPG) for 2 h at 37 ◦C. As a control, C. trachomatis D was also incubated in SPG alone. To quantify
the anti-chlamydial effects of compounds, confluent HeLa cells were infected with compounds-treated
C. trachomatis D or the non-treated controls. After 48 h, the cells were fixed with acetone at −20 ◦C
for 10 min, and the number of C. trachomatis D inclusions was determined by immunofluorescence
assay [18].

2.5. Determination of Minimal Inhibitory Concentrations

Minimal inhibitory concentrations (MICs) of the effective compounds were evaluated by a
previously described method [21]. Briefly, HeLa cells were infected with C. trachomatis D (1 multiplicity
of infection) and treated with the compounds in two-fold dilutions for 1 h at 37 ◦C. The initial
concentrations of compounds were 100 µM. HeLa cells infected with C. trachomatis D alone were used
as controls. After 48 h, the cells were washed and resuspended in water. The number of infectious EBs
was determined by direct quantitative PCR using the following primers: pykF forward 5’-GTT GCC
AAC GCC ATT TAC GAT GG-3’; pykF reverse 5’-TGC ATG TAC AGG ATG GGC TCC TA-3’.

2.6. Statistical Analysis

All values are expressed as a mean ± standard deviation of three replicates from three independent
experiments. Statistical analysis of the data was carried out with SigmaPlot for Windows Version 12.0
software (Systat Software, San Jose, CA USA), using the two-tailed t-test for independent samples.
Differences were considered statistically significant at p < 0.05.

3. Results

3.1. Cytotoxicity Assay

Before the assessment of the anti-chlamydial activity of the compounds, HeLa cells were incubated
with increasing concentrations of N. sativa EO and its bioactive components for 48 h. The cell viability
was measured by MTT assay, and IC50 values were evaluated (Table 1). No significant cytotoxicity was
observed following the exposure of HeLa cells to p-cy, Thq, Car, and Thy up to 100 µM. By contrast,
N. sativa EO exerted cytotoxic properties towards HeLa cells and its IC50 value was defined at 0.009%
(v/v). A four-fold lower concentration than its IC50 was used in the anti-chlamydial assay, in order to
avoid the direct toxic effects of EO.

3.2. Anti-Chlamydial Assay

In order to determine the anti-chlamydial activity of N. sativa EO and its compounds, 0.0025%
(v/v) of EO were incubated with the EB suspension for 2 h. The active components of EO were tested at
concentrations of 25 or 50 µM. As shown in Figure 1, all of the compounds tested significantly reduced
the infectivity yield after 2 h of treatment. Treatment of EBs with N. sativa EO completely inhibited the
replication of C. trachomatis D. The same results were observed when the chlamydial EB suspension
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was treated with Thq, Car, or Thy at concentrations of 50 µM (Figure 2). Moreover, exposure to 25 µM
of Thq was able to reduce the formation of inclusions by 100%. Among the components of N. sativa,
p-cy proved to be the least effective, although it inhibited the growth of C. trachomatis D by more than
50% even at the lowest concentration examined.

Table 1. Cytotoxic effects of Nigella sativa essential oil (EO) and its bioactive compounds on HeLa cells.

Compounds IC50

p-cymene >100 µM
thymoquinone >100 µM

carvacrol >100 µM
thymol >100 µM

N. sativa essential oil 0.009% (v/v)

Figure 1. Anti-chlamydial effects of compounds at 25 and 50 µM. The N. sativa essential oil (EO) was
tested at a concentration of 0.0025% (v/v). p-cy: p-cymene; Thq: thymoquinone; Car: carvacrol; Thy:
thymol; * p < 0.05.

Figure 2. Immunofluorescence-stained inclusions of C. trachomatis D in HeLa cells. The cells were
infected with (A) C. trachomatis D alone or with C. trachomatis D pre-incubated with (B) thymoquinone;
(C) carvacrol; (D) thymol at a concentration of 50 µM. Pictures were acquired by a digital camera
attached to a fluorescence microscope.
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3.3. Determination of Minimal Inhibitory Concentrations

As all of the bioactive compounds tested showed antimicrobial activity in the anti-chlamydial
assay, their MICs were evaluated by direct quantitative PCR (Figure 3). HeLa cells were infected
with C. trachomatis D and at the same time treated with two-fold serial dilutions of p-cy, Thq, Car,
or Thy. After 1 h, the cells were washed and the medium was replaced. Direct PCR was performed
from the cells 48 h later in order to determine the number of infectious C. trachomatis D. Untreated
but infected cells were used as controls. Treatment of the EBs with 100 µM of Thq for 1 h completely
inactivated the EBs of C. trachomatis D. We did not observe complete inhibition for the other bioactive
compounds—even at the highest concentrations tested. The MICs of p-cy and Thq were defined at
3.12 µM, while the lowest concentration that significantly inhibited the replication of C. trachomatis D
was 6.25 µM in the cases of Car and Thy.

Figure 3. Inhibitory effects of the bioactive compounds of N. sativa EO on C. trachomatis D at different
concentrations evaluated by direct quantitative PCR. HeLa cells infected with C. trachomatis D alone
were used as controls. (A) p-cy: p-cymene; Thq: thymoquinone; (B) Car: carvacrol; Thy: thymol;
* p < 0.05.

4. Discussion

The emergence of AMR is considered as a major public health problem due to the appearance of
reduced or missing response of microorganisms to the applied antimicrobial agents. C. trachomatis
infection is the most commonly reported sexually transmitted, bacterial infection, with an estimated
131 million new cases [22]. In addition, it has been found that Chlamydia spp. possess several
different mechanisms associated with AMR development, despite their unique lifecycle characteristics.
Under exposure to certain conditions, such as the presence of interferon-γ, β-lactam antibiotics,
or deprivation of nutrients, C. trachomatis can transform to a persistent state, which can be defined by
reduced replication and the occurrence of aberrant bodies [8]. Moreover, a recently published study
demonstrated that azithromycin, which is the first choice drug in the therapy of chlamydial infections,
could induce persistent infection in vitro [23]. Subinhibitory concentrations of the antimicrobial
drugs were also able to induce AMR of certain chlamydial strains [5–7]. The ideal anti-chlamydial
agents would be able to inhibit the growth of chlamydiae without exerting selective pressure for
the development of AMR. The main advantages of natural-based products are that they apply less
selective pressure against pathogens and exert remarkable effects on the inhibition of efflux pumps and
AMR reversal [24,25]. The most common natural bioactive agents are volatile phenolic compounds,
such as p-cy, Thq, Car, Thy, cinnamaldehyde, eugenol, limonene, and menthol, which are secondary
metabolites of medicinal plants [15].

Our previous study revealed that EO extracted from N. sativa inhibited the growth of S. aureus,
including methicillin resistant S. aureus, and exerted antibiofilm activity. Regarding the bioactive
compounds of N. sativa EO, both staphylococcus strains were sensitive to Thq and Car [12]. In this
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present study, we demonstrated that the N. sativa EO was able to completely inactivate the EBs of
C. trachomatis D after 2 h exposure time at a concentration that was four-fold lower than its IC50

evaluated on HeLa cells. Moreover, all of the bioactive constituents (p-cy, Thq, Car, Thy) showed a direct
antibacterial effect against C. trachomatis D. As only one study related to anti-chlamydial activity of EOs
has been published, further studies are needed to clarify the exact mechanisms of their effects. Car and
Thq were able to damage the cell membrane of S. aureus and Listeria monocytogenes [14,26]. Thy, which
is the most common constituent of EOs obtained from Thymus spp. and p-cy, exerted antimicrobial
activity against a broad spectrum of pathogens, including Gram-positive and Gram-negative bacteria
and fungi. Similar to other monoterpenes, Thy and p-cy were able to damage bacterial lipid membranes;
therefore, the possible mechanisms related to anti-chlamydial activity of Thq, Car, Thy, and p-cy might
be associated with the disruption of the lipid bilayers [15,27].

MICs of the compounds were evaluated by direct quantitative PCR and defined at 6.25 (Car, Thy)
and 3.12 µM (p-cy, Thq), respectively. We were not able to detect complete inhibition of C. trachomatis
D, except in the case of Thq, which could be the result of the shorter exposure time (1 h). This finding
supports the fact that the efficacy of their antimicrobial activity is time-dependent [16].

We are planning further experiments to evaluate the antimicrobial effects of N. sativa EO and its
bioactive compounds on intracellularly replicating C. trachomatis RBs and their synergistic effects with
clinically used antibiotics.

5. Conclusions

It can be concluded that bioactive compounds of N. sativa EO inhibited the replication of
C. trachomatis D in vitro. These findings suggest that N. sativa EO or its bioactive constituents could be
used as effective antimicrobial agents against C. trachomatis D. As numerous EOs possess antimicrobial
activity and in turn can enhance the effect of antibiotics, further studies could support the use of
bioactive components of N. sativa EO as potential phytotherapeutics in anti-chlamydial therapy.
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