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A B S T R A C T

The land use and land cover pattern of landscapes are key elements of basic landscape structure; accordingly,
this pattern has an important role in landscape management, nature conservation and preservation. In Hungary,
the naturalness of the vegetation was surveyed between 2003 and 2006, and the vegetation-based Natural
Capital Index (NCI) was calculated for almost the entire area of the country. This field-based database gave us
the unique opportunity to analyse the statistical connection between the naturalness of the vegetation and the
landscape (land cover) pattern on a regional scale. In our study, we analysed the efficiency of the regional-level
CORINE Land Cover (CLC) database for the estimation of the naturalness of the vegetation. This connection was
analysed at the country scale using every (2272) Flora Mapping Unit (FMU), or 5.5 × 6.5 km quadrate, of
Hungary. We calculated the shape-, edge- and size-related landscape indices for all FMUs on a landscape level
(including all CLC patches) and a class level (the land cover polygons were classified according to their land
cover characteristics and their level of hemeroby). We determined the Spearman’s correlations to reveal the
statistical connections between the landscape metric parameters and the NCI values. All of the investigated area-
weighted landscape indices: Main Patch Size, (MPS), Main Fractal Dimension Index, (MFDI), Total Edge (TE),
Main Shape Index (MSI) and Number of Shape Characteristic Points (NSCP) on the landscape level showed a
significant statistical connection with the NCI, but the sign of its correlation with the NCI contrasted with the
findings from previous studies on a larger scale. Our study shows that scale has a strong impact on the sign of the
correlation between the naturalness of the vegetation and the landscape structure. On a class level, particularly
the shape-related landscape indices of the “Forest and semi-natural areas” showed statistically significant cor-
relations with the NCI. The correlation strongly depended on the method of classification of the CLC polygons.
Furthermore, the spatial pattern of the land-cover-type-based CLC polygon categories showed higher correlation
values with the NCI than CLC polygon classes, which were categorized according to their hemeroby state. These
results show that although the sign of the spatial pattern change in the main land cover classes is scale-de-
pendent, they can be used to estimate the increase or decrease in the naturalness of the vegetation better than the
spatial changes of the hemeroby-level-based landscape pattern. We can predict the change in the naturalness of
vegetation based on the spatial changes in the land cover pattern.

1. Introduction

According to the pattern and process paradigm, the land cover
pattern predicts the ecological processes occurring in a given landscape
(Herzog et al., 2001; Renetzeder et al., 2010; Tasser et al., 2008; Winter
and Fischer, 2010; Wrbka et al., 2004; Zebisch et al., 2004). Landscape
metrics indicators, calculated on the basis of land cover patches, may be
suitable for estimating vegetation biodiversity and the naturalness of
the vegetation (Herzog et al., 2001; Moser et al., 2002; Schindler et al.,

2008; Szabó et al., 2012, 2013; Zebisch et al., 2004; Zhang et al., 2013).
Studies using landscape metrics have usually applied land cover data;
there are only a few examples in which the quality of the habitat pat-
ches was involved. Most of the examples involving quality (e.g., bio-
diversity, the naturalness of the vegetation) and landscape metric in-
dicators were conducted on a local scale and described the relationship
between the shape (complexity) of the patches and the naturalness of
the vegetation. Landscape metrics calculated on the basis of patch
geometries may be suitable to estimate the degree of naturalness of the
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vegetation (Lausch et al., 2015; Venturelli and Galli, 2006).The area-
weighted means of pattern-level indicators (i.e., land cover indicators)
in a sample quadrate were correlated with the botanical data collected
during field work of the same quadrate (e.g., biodiversity, naturalness
of vegetation; Gimona et al., 2009; Lausch and Herzog, 2002;
Tischendorf, 2001; Uuemaa et al., 2013). Landscape metrics on a re-
gional level were only weakly correlated with the diversity of vegeta-
tion (Gimona et al., 2009).

Vegetation may be characterized on the basis of the evaluation of
field surveys (Alexander et al., 2016 Deák et al., 2015Deák et al., 2015).
Different evaluation systems were developed, and in Hungary, social
behaviour types (Borhidi, 1995) are often used to express the in-
formation about plant communities’ stability, regeneration ability,
naturalness and degree of disturbance. The method was adopted for
national conditions from the system of Grime (1979). Furthermore, a
new possibility is the application of the Natural Capital Index (NCI),
which reflects the qualitative and quantitative (spatial) characteristics
of the natural or semi-natural vegetation (Czúcz et al., 2012; ten Brink,
2000, 2007; ten Brink et al., 2002). Both indicators use vegetation data
of field surveys, and the main difference is that SBT values are de-
termined at the level of quadrats on a large scale, whereas the NCI is
determined on a regional scale for almost the entire country. Hemeroby
is used in ecological studies to express the degree of human influence on
ecosystems and is associated with the human-induced disturbance in a
landscape (Jalas, 1955). The calculation is based on land use, the share
of neophytic and therophytic species, and soil characteristics (Sukopp,
1976) and may be used as the inverse of naturalness (Anderson, 1991;
Jalas, 1955). The higher the degree of hemeroby, the more harmful the
human influence and the more disturbed and transformed a landscape
becomes (Machado, 2004).

Combining the indices of naturalness and landscape metrics can
provide a possibility to accelerate surveys; i.e., if there is a strong sta-
tistical relationship between a landscape metric and a measure of ve-
getation naturalness, the latter’s value can be predicted using the
characteristics of habitat patches and their spatial pattern. Currently,
most researchers prefer using landscape change tendencies as indicators

for vegetation naturalness instead of using indicators requiring vege-
tation mapping (Bürgi and Russel, 2001; Frank et al., 2012; Frondoni
et al., 2011; Kerényi and Szabó, 2007; OECD, 2001; Rüdisser et al.,
2016; Walz, 2008, 2011; Walz and Syrbe, 2013; Zebisch et al., 2004).
However, it is difficult to calculate the changes in naturalness on the
basis of the changes in landscape patterns because the statistical re-
lationship between landscape metrics indicators and naturalness is not
linear (Blaschke, 2006; Tischendorf, 2001). Several authors emphasize
that their class-level landscape pattern can be used more effectively in
the estimation of naturalness than those landscape level analyses that
were calculated on the basis of the total number of the patches (Lausch
and Herzog, 2002; Renetzeder et al., 2010; Szabó et al., 2012, 2013;
Tischendorf, 2001).

Regarding the limited accessibility of vegetation based landscape
naturalness indicators on an appropriate scale, no research has been
conducted to a country wide extent using data on a medium scale. In
this study, we applied medium scale data of naturalness (Natural
Capital Index) with landscape metrics calculated from the CLC 2006
database and revealed whether there was a deterministic relationship
between the data based on field vegetation surveys and the landscape
metrics derived from the spatial characteristics of habitat patches on a
1:100 000 scale. We investigated whether hemeroby- or land-cover-
based categorization had a stronger correlation with the NCI. We also
aimed to study the scale sensitivity of this connection. Furthermore, we
intended to ascertain whether the relationship in our regional-level
analyses had the same sign as previous, high resolution, large scale
analyses and to reveal how landscape-pattern-change tendencies can be
used as indicators to estimate the changes in the naturalness of the
vegetation.

2. Materials and methods

2.1. Case study area

Hungary (Fig. 1.) is located in Central Europe (between N
45.48—48.35 and E 16.50—22.48). Its total area is 93 033 km2, it has

Fig. 1. NCI values of 5.5 × 6.5 km FMU quadrate areas of Hungary based on botanical field survey between 2003 and 2006.
Source: Czúcz et al., 2012.
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elevations ranging from 77 m to 1014 m a.s.l., and it is situated in the
Carpathian Basin. The northern and western parts of the country are
mountainous and hilly areas characterized by forests. The hills and
mountains of the Carpathian Basin were characterized by oak and
beech forests, parts of which were cleared for mining and agriculture
(grape vine cultivation, arable land cultivation). In these areas, the
species composition of forests is semi-natural or dominated by planta-
tions of non-native species due to economy-based forest management.

The Great Hungarian Plain situated in the central and southern parts
of the Carpathian Basin is filled with Quaternary alluvial sandy deposits
and Pleistocene loess. Holocene wetland sediments and alluvial sedi-
ments can be found in this region (Lóczy, 2015 Mezősi, 2011). The soils
of the Carpathian Basin have good quality (Chernozem) and are suitable
for cultivation, or are salty and/or water-logged thus less suitable for
cultivation. The Great Hungarian Plain was characterized by forest-
steppes in the Holocene, but due to the intensive agricultural produc-
tion, the area has been dominantly utilized as arable land since the last
centuries (Csorba, 2005; Szilassi et al., 2006; Csorba and Szabó, 2009).
While natural habitats often have complex shapes with convex and
concave edges, agricultural lands tend to be characterized by sharp-

lined edges (Lausch et al., 2015; Venturelli and Galli, 2006).

2.2. Databases used

2.2.1. Natural capital index
For characterizing the naturalness of Hungarian landscapes, we

calculated the NCI, which represents the value of the naturalness of the
vegetation and the proportion of the natural vegetation into rectangular
landscape units (“quadrats”) of 5.5 × 6.5 km according to the grid
system of the Central European Flora Mapping Units (FMUs) (Horváth
et al., 2008). The vegetation-based NCI was defined as a product of the
remaining ecosystem size (quantity) and its quality (Czúcz et al., 2008).
The naturalness of each FMU quadrat was characterized using primary
data from the Hungarian Vegetation Mapping (HVM) database.

Large-scale vegetation mapping comprising the entire area of
Hungary was performed by almost 200 field surveyors between 2003
and 2006, resulting in the HVM database (Molnár et al., 2007 Horváth
et al., 2008). Within this survey, 86 different types of natural and semi-
natural habitat types were distinguished, with a detailed habitat guide
to assist the participants and to standardize the process. The

Table 1
The two types of class-level categorizations of the CLC polygons based on thematic nomenclature (hierarchy) (Source: EEA and ETC-TE, 2002) and hemeroby level (Walz and Stein, 2014).
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identification of attribute levels was supported by a detailed protocol
(Bölöni et al., 2008).

Raw values of naturalness of vegetation given at the level of field
survey hexagons (35 ha) were spatially aggregated for each FMU
quadrat using the NCI aggregation framework (Czúcz et al., 2008 Czúcz
et al.q, 2012), resulting in an area-weighted mean of the NCI values
characterizing the ecological status (closeness to an ideal “pristine”
state) of the vegetation of each quadrat. Due to data gaps in the HVM
database, only 2 272 quadrates (80% of the total) were available to
calculate the NCI values (Fig. 1).

2.2.2. Land cover data
The CORINE Land Cover database (CLC) is a land cover map pre-

pared using a uniform methodology for the countries of the European
Union (EEA and ETC-TE 2002, EEA 2006). Its scale is 1:100 000; the
minimum mapping unit was 25 ha for habitat patches and at least
100 m width for linear landscape elements. Mapping is repeated every
six years; thus, three states of land cover have been available since the
year 2000. In the case of Hungary, more than 40 000 polygons were
delineated and classified into 5 main groups and 28 subgroups with at
least 85% thematic accuracy (EEA, 2006).

We used the CLC 2000 and the CLC 2006 databases to determine the
class level landscape metrics and to study the relationship between
landscape metric and the naturalness of the vegetation (NCI). This
period is more or less identical to the NCI map’s vegetation survey
(2003–2006; Molnár et al., 2007 Horváth et al., 2008). The CLC 2000
and the CLC 2012 databases were used for estimating the changes in the
naturalness between 2000 and 2012.

According to the CLC nomenclature, CLC polygons were categorized
into five further categories based on their land cover type: 1, artificial
surfaces (AS); 2, agricultural areas (AA); 3, forests and semi-natural
areas (FSN); 4, wetlands (WL); and 5, water bodies (WB). To prepare
class-level analyses, we used two methods to group the CORINE land
cover polygons: first, on the basis of the main land cover categories
defined by the CORINE nomenclature (EEA and ETC-TE, 2002), and
second, on the basis of their hemeroby level which expresses human
impact (Frondoni et al., 2011; Walz and Stein, 2014) (Table 1).

Land cover types are usually divided into 7 hemeroby categories,
and as there are no ahemerobic areas in the Carpathian Basin that
would be totally free from human impact, we divided the 28 CLC
polygons found in Hungary into 6 categories by modifying Walz and
Stein, 2014 methodology (Table 1).

3. Methods

3.1. Landscape metrics

The CORINE databases (CLC 2000; CLC 2006) were applied to cal-
culate the landscape metrics. Patch-level landscape indices were cal-
culated for each land cover polygon with the V-LATE extension of the
Arc GIS 10.1 software (Lang and Tiede, 2003).

In the course of our landscape metrics analyses, we calculated the
following patch-level landscape metrics indicators: size, shape, and the
length of the edges. These indicators are labelled as the indices of the
diversity or naturalness of vegetation (Fu et al., 2006; Moser et al.,
2002; Renezteder, 2010; Uuemaa et al., 2013; Walz, 2011; Table 2).

Based on the patch-level landscape indices, area-weighted values
were calculated on class and landscape levels in every FMU quadrates.
Landscape-level area-weighted mean indices of each CLC polygon were
calculated for every FMU quadrate based on all land cover polygons (3
level in CLC 2000 and 2006) having their centroids inside the FMU
quadrates.

The area-weighted mean (AWM) landscape metrics have also been
calculated at the class level for the centroids of polygons which were
found inside the FMU quadrates for each main CLC land cover cate-
gories and for hemeroby categories. AWM equals the sum, across all

patches in the quadrate, of the corresponding patch metric value mul-
tiplied by the proportional abundance of the patch and divided by the
sum of patch areas.

3.2. Statistical analysis

We revealed the statistical connections between landscape metrics
(see Table 3) and the NCI for all FMU quadrates of Hungary on a
landscape level (including all CLC polygons) and for the grouped CLC
polygons (grouping by land cover and hemeroby level; class level) with
IBM SPSS Statistics 22 software. The distribution of the variables was
analysed with the Shapiro-Wilk test, but most variables did not follow
the normal distribution; therefore, we applied the non-parametric
Spearman rank correlation coefficient (Sokal and Rohlf, 1969).

To estimate the change in vegetation naturalness, we used those
landscape metrics indicators calculated on the basis of the shape of the
FSN polygons that showed significant Spearman's correlations with the
NCI value at the 0.01 level and exhibited changes between 2000 and
2012.

We estimated the increase or decrease in vegetation naturalness on
the basis of the change tendencies of the landscape indicators. Based on
the CLC 2000 and the CLC 2012 maps, we specified those class-level
landscape metrics indicators that exhibited a statistically significant
relationship with the NCI at the 0.01 level of significance and then
subtracted them from each other. The changes in landscape metrics
indicators were taken into account only in quadrates where the change
in the landscape metrics indicators was the same sign as their statistical
relationship with the NCI. Although we could not estimate the extent of
the changes with this method, we could identify, on a country scale, the
FMU quadrates where the vegetation naturalness increased or de-
creased between 2000 and 2012.

The values (AWMPS) and the complexity (AWTE, AWMFRACT, and
AWNSCP) calculated based on the CLC FSN polygons at the class level
increased between 2000 and 2012; therefore, our estimate suggests that
the value of the NCI also increased. Where each of the previously
mentioned landscape metrics decreased, our estimate suggests that the
naturalness of the vegetation and the NCI value representing natural-
ness also decreased. The signs of the two metrics indicators that did not
change or changed with opposite signs were categorized into the “not
estimable change” category. Quadrates having no FSN polygons were
also placed in this category.

4. Results

4.1. Correlation of vegetation-based naturalness with landscape metrics

Landscape metrics derived from CLC 2000 and CLC 2006 had si-
milar values, and the sign of their correlations with the NCI values was
identical, as well (Table 3). Accordingly, the land cover did not change
relevantly in the period of a field survey of vegetation naturalness.

The (landscape level) landscape metrics (size, shape, and edge
length of the patches) calculated on the basis of the total number of the
land cover polygons showed statistically significant correlations with
the NCI values (p < 0.01) in 2000 and 2006. The correlations usually
indicated a moderate level of relationship on a landscape level in class
level AA. The FSN exhibited higher correlation coefficients with NCI in
both 2000 and 2006. These two land cover categories are more suitable
for describing the naturalness of the vegetation than the landscape-level
shape characteristics of all land cover patches. However, we must em-
phasize that the signs of the Spearman's ρ describing the statistical re-
lationship between the landscape pattern and the NCI were contrary to
each other depending on whether the AA or the FSN polygons were
being examined.

Three out of the five main land cover CLC categories did not show a
significant relationship with the NCI values per quadrate: AS, WL, WB.
This may be attributed to the fact that these land cover types were

P. Szilassi et al. Ecological Indicators 81 (2017) 252–259

255



characterized by only a few patches in most of the quadrates, so their
area-weighted means represent the shapes of only a few patches per
quadrate.

The correlation between the NCI and the hemeroby level of the land
cover patches (determined on the class level) was not as strong as with
AA and FSN, but the connections were significant (p < 0.01).
Spearman’s ρ values were less than 0.5 and had the largest values at the
oligohemerobic level (r = 0.31–0.46; p < 0.01) both in 2000 and
2006. In addition, NCI showed a strong correlation with the β-eu-
hemerobic level (between −0.42 and −0.48) (Table 4).

The signs of the landscape metrics calculated on the basis of the
hemeroby levels of the CLC categories and those of the NCI correlations
are different from each other on each hemeroby level. While those
hemeroby categories that are characterized by low human impact
(oligohemerobic, mesohemerobic, α-euhemerobic) were in positive
correlation with the NCI values for all of the analysed landscape metrics
indicators, those categories that were characterized by high human
impact (β-euhemerobic, polyhemerobic) changed to negative correla-
tions.

4.2. Qualitative estimation of the change in vegetation-based naturalness
between 2000 and 2012

According to our estimations, the naturalness of the vegetation in-
creased in the central part of the Carpathian Basin (Fig. 2).

In this area, the cultivation of arable lands was abandoned in many
cases, and abandonment induced an increase in semi-natural areas and
forests. Contrary to this tendency, the human impact around Budapest

(the capital city) and bigger cities grew between 2000 and 2012.
According to our estimate based on the pattern changes of FSN poly-
gons, the naturalness of the vegetation decreased in these areas.

5. Discussion

Although previous studies indicate that the CLC database cannot be
used for estimating biodiversity (Gimona et al., 2009), we were able to
show that the landscape metrics calculated on the basis of a regional
scale CLC database had a statistically significant correlation with the
vegetation-based naturalness (NCI) of the FMU quadrates.

Landscape level indicators describing the shape (i.e., patch geo-
metry) of land cover patches were negatively correlated with NCI. The
complex cultivated land patches having longer cultivated land edges
indicated more agricultural land and a decrease in vegetation natural-
ness on a regional scale. The sign of the correlations between the NCI
and the shape metrics differed depending on the metrics at the land-
scape or class level. Our results proved that class-level indicators
showed a stronger statistical correlation with the NCI; therefore, they
were more suitable for describing the hemeroby level than landscape-
level indicators (Lausch and Herzog, 2002; Tischendorf, 2001). Fur-
thermore, the landscape metrics determined by the main land cover
types were more suitable for estimating the direction of changes in
vegetation naturalness than those categorized by hemeroby level, as
reflected in the strength of the correlation. The landscape metrics of the
FSN and the AA polygons showed significant correlations with the
naturalness of the vegetation (r = 0.613 and r = −0.494). Due to the
dominance of agricultural land use and its spatial pattern, the AA

Table 2
Descriptions and corresponding questions of the applied landscape indices (Blaschke, 2006; Forman 1995; Fu et al., 2006; Moser et al., 2002; Renezteder, 2010; Turner, 1990; Uuemaa
et al., 2013; Walz, 2011).

Structural feature Index Name and description Corresponding question

Area MPS Mean Patch Size is computed by dividing the area of the patches of the total landscape (or class) by
the number of patches

What is the average patch size, and how are the
values distributed?

Edges TE Total Edge length in landscape involving patch type includes landscape boundary and background
segments involving patch type

How much of a landscape or a patch type is
composed of edges?

Shape complexity SI Shape Index equals patch perimeter divided by the minimum perimeter possible for a maximally
compact patch (in a circle) of the corresponding patch area.

How compact are the patches on average (in
comparison to a circle)?

FRACT Fractal Dimension Index equals 2 times the logarithm of patch perimeter (m) divided by the
logarithm of patch area (m2)

How complex or irregular is the form of the
patch?

NSCP The Number of Shape Characteristic Points is an index characterizing two-dimensional geometric
shapes by the minimum number of points necessary to describe their boundary. The NSCP
calculation algorithm only takes into account the vertices between vectors enclosing an angle
lower than 160°.

How complex or irregular is the form of the
patch?

Table 3
The Spearman’s correlations between (NCI) and the landscape level metrics derived from land cover patches of CLC 2000 and CLC 2006.

AWMPS AWTE AWMSI AW
MFRACT

AWNSCP N

CLC
2006

CLC
2000

CLC 2000 CLC 2006 CLC 2000 CLC 2006 CLC 2000 CLC 2006 CLC 2000 CLC 2006 CLC 2000 CLC 2006

landscape level
analyses

all CLC
patches

−0.496a −0.471a −0.477a −0.448a −0.466a −0.438a −0.409a −0.372a −0.372a −0.366a 2272 2272

CLC polygon
categories
for the class
level
analyses of
the
landscape
pattern

1 Artificial
surfaces (AS)

−0.239a −0.223a −0.177a −0.168a 0.029 0.022 0.154a 0.139a −0.042 −0.033 2029 2054

2 Agricultural
areas (AA)

−0.516a −0.494a −0.503a −0.480a −0.510a −0.492a −0.499a −0.483a −0.468a −0.461a 2262 2263

3 Forest and
semi natural
areas (FSN)

0.624a 0.613a 0.612a 0.603a 0.564a 0.559a 0.451a 0.456a 0.599a 0.597a 2272 2123

4 Wetlands
(WL)

0.205 0.224a 0.151 0.171 0.006 0.006 −0.119 −0.128a 0.126 0.148a 773 613

5 Water
bodies (WB)

0.069 0.079 0.032 0.042 −0.027 −0.022 0.079 0.074 0.045 0.045 806 836

aCorrelation is significant at the 0.01 level.
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patches (most of which depict arable land) were considered the land-
scape matrix of Hungary, and the FSN polygons appeared as island-like
patches in the matrix. Our results imply that a substantial part of
Hungary is intensively utilized as an agricultural landscape because
both the landscape metrics calculated on the basis of agricultural lands
and the landscape-level landscape indices calculated on the basis of all
land cover polygons are positively correlated with each other and the
NCI to describe vegetation naturalness. The pattern of the agricultural
land cover types is dominant in the landscape-level landscape pattern.

Accordingly, the pattern of the AA land use type must be taken into
account, and it has a different sign than the pattern of the semi-natural
(island-like) habitat patches located in the matrix when estimating the
naturalness. Class-level metrics calculated on the basis of FSN polygons
exhibit negative correlations with NCI values compared with the me-
trics of the AA areas. If the average size, edge length, and complexity of
the agricultural land cover patches (matrix) increase while the FSN
polygons in the matrix become more compact and their edge length
decreases, the procedure indicates a decrease in vegetation naturalness.

Furthermore, there was greater vegetation based diversity when
FSN patches had more complex shapes and larger sizes and when the
AA patches were compact and had smaller parcels. However, we em-
phasize that it is true only when landscape metrics are calculated based
on small, regional sale (ca. 1:100.000) land cover maps. A larger scale
can change the sign of the correlation coefficients at both the AA class
level and the cumulative landscape level.

Both Hungary and the EU member states are characterized by a
tendency towards increasing compactness of patches given the land-
scape level metrics resulting from intensive land cultivation, where the
parcels were large and had a regular shape (Moser et al., 2002). Our
study revealed opposite signs of the correlations in case of the shape
complexity indices (AWTE, AWMSI, AWMFRACT and AWNSCP), be-
cause this process can only be identified in such large scale land cover
maps where the elemental patches are agricultural parcels (tesseras).
The homogeneous patches of agricultural lands in the CLC database do
not show this “fine” pattern, as the minimum patch size was 25 ha.
Accordingly, several smaller agricultural parcels merged with their
environs. This difference in scale may be the reason for statistical cor-
relations with the opposite sign between the shape related landscape
level metrics and indices of naturalness compared with the results of
Moser et al., 2002 and Renetzeder et al., 2010. Previous studies
(Gimona, 2009; Moser et al., 2002; Venturelli and Galli, 2006) showed
that this relationship varies by landscape type; i.e., patch shape com-
plexity does not presume an absolute relationship with natural value in
every landscape. There is a significantly positive correlation between
complex patch shape and biodiversity in the case of the natural or semi-
natural landscapes (Mander et al., 2005; Moser et al., 2002; Renetzeder
et al., 2010). The relationship between the class level NSCP values
calculated on the basis of FSN and the NCI values corresponded to these
results; however, the landscape-level analysis did not correspond to
them due to the predominance of agricultural land.

We identified a class-level land cover patch group, which is the most
suitable for estimating the trends in vegetation-based naturalness on a
regional scale. Class-level landscape metrics (AWMPS, AWTE,
AWMFRACT, AWMSI and AWNSCP) calculated on the basis of the FSN
polygons indicated statistically significant correlations at the 0.01 level
(r = 0.451–0.624) with vegetation-based naturalness. These class-level
indicators are the most suitable for estimating the changes in the nat-
uralness of the vegetation.

FSN land cover patches that are characterized by a few bordering
points and mainly linear, regular borderlines indicate significant human
impact. They are characteristic of plantation-like forests having low
naturalness and of grasslands surrounded by arable lands. In contrast,
FSN patches having a complex shape with irregular edges indicate a
higher level of naturalness (Moser et al., 2002). The greater extent of
irregular FSN patch edges with complex shapes indicated higher NCI.
AWTE, AWMSI, AWMFRACT and AWNSCP were appropriate tools forTa
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describing the shape characteristics of the patches. This relationship is
presumably not linear (Tischendorf, 2001); therefore, only the direction
of change, i.e., the increasing or decreasing naturalness of the vegeta-
tion, can be used to estimate the changes in the FSN polygons’ natur-
alness.

International literature indicates that increasing human impact re-
sults in a tendency of the average size of landscape level land cover
polygons (AWEMPS) to grow in local scale (Moser et al., 2002). Our
analysis on the landscape-level with the same index corroborated this
result, but when we analysed FSN polygons on the class level, the
tendency was the opposite, which means that the increasing size of
semi-natural patches indicated the increasing naturalness of a certain
area.

6. Conclusions

We conducted a spatial analysis of landscape metrics derived from
regional scale land cover maps (CLC 2000; CLC 2006) to reveal whether
there is a significant relationship with an indicator of vegetation nat-
uralness (i.e. Natural Capital Index).

The regional scale map of vegetation naturalness (NCI, based on the
national vegetation field survey) showed significant statistical correla-
tion with the landscape pattern acquired from the regional scale CLC
database. We proved that shape- and size-related landscape indices
could be appropriate for describing the naturalness of vegetation and
for predicting the possible changes of vegetation-based naturalness on
regional scale.

We demonstrated that the class level indices are more suitable for
describing the naturalness of vegetation than the landscape level in-
dices. The hemeroby-based classification of CLC polygons showed
weaker correlations with the vegetation-based naturalness than the
land-cover-based (main CLC classes) categorisation. The correlations
we obtained now had opposite signs when compared with the previous
studies concerning the statistical analyses of the connection between
class-level, shape-related indices of agricultural areas and vegetation-

based naturalness. This result emphasises the scale sensitivity of land-
scape pattern analyses. These correlations reflect the direction of
changes in vegetation-based naturalness in regional scale and are ap-
propriate to estimate future trends. We estimated the directions of
change in vegetation-based naturalness in regional scale.
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