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ABSTRACT 

 

Dispersion measurements on a birefringent hollow-core (HC-800-02) and a solid-core (LMA-PM-5) photonic crystal fiber 

(PCF) are presented using a windowed Fourier-transform (WFT) spectral interferometric method. We investigate the 

optimal value of the spectral window function of the WFT method to reach the highest accuracy in the dispersion 

measurement. This requires the knowledge of the precise position of the polarization axes of the fibers. In order to 

determine the position of the polarization axes we have developed a method based on analyzing the WFT signals, which 

were obtained from a series of interferograms at different excitation ratios of the polarization modes of the PCFs. 
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1. INTRODUCTION 

 

Photonic crystal fibers (PCFs) are special types of optical waveguides whose structure can be modified almost 

arbitrarily, therefore the requirements of any specific application, e.g. high-power and low-loss pulse delivery can be met 

with proper design [1-6]. However, the structure of the manufactured PCFs can be different from the designed geometry, 

which may cause changes in their optical properties including the dispersion. Therefore, it is important to measure the 

dispersion of the PCFs as accurately as possible after the manufacturing process. In the case of birefringent fibers the 

chromatic dispersion belonging to the fast and slow polarization axes of the fiber can be quite different [2,7]. Furthermore, 

the accuracy of the dispersion measurement is highly dependent on the precise excitation of the polarization modes. Since 

in birefringent fibers the polarization mode dispersion (PMD) can also be an issue, determining the differential group delay 

(DGD), i.e. the delay between the orthogonally propagating modes, is also of great importance. 
Spectral interferometry is a frequently used method for measuring the chromatic dispersion of optical fibers [8]. The 

advantage of this method is that it does not require long fiber samples. Several algorithms have been developed to extract 

the spectral phase from the spectral interferograms [9]. One of them is the Fourier-transform method, which proved to be 

an accurate evaluation technique for PCFs [7,9,10]. However, if two pulses travel through the fiber, e.g. because both 

polarization modes are excited, signals belonging to the modes/pulses might overlap in the time domain causing difficulties 

during the evaluation. It has been demonstrated recently that the chromatic dispersion of PCFs can be retrieved for both 

polarization axes simultaneously from a single interferogram using the windowed Fourier-transform (WFT) method even 

when the polarization modes overlap in time [11]. In that case a ridge-based (windowed Fourier-ridges, WFR) algorithm 

was used during the evaluation of the spectral interferogram. Different angular alignment techniques have been reported 

with special experimental requirements to determine the position of the polarization axes in birefringent fibers. These 

techniques either require heating [12] or, mechanical rotation of the fiber [13] or the modulation of the laser frequency 

[14]. 
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In this work, we investigate what the optimal value of the spectral window function of the WFT method is to reach the 

highest accuracy in the dispersion measurement when the polarization modes of PCFs are excited separately or 

simultaneously. Furthermore, a WFT-based angular alignment technique is reported, which can be connected to the 

dispersion measurement of the PCFs without any specific experimental requirements.  

 

2. THEORY 

2.1 Spectrally resolved interferometry 

Spectrally resolved interferometry requires a two-beam interferometer, a broadband light source and a spectrometer. 

The examined optical sample is placed in one arm of the interferometer while the other is used as a reference that produces 

adjustable delay between the two arms. At certain τ time delays spectral interference fringes appear at the output of the 

spectrometer. The frequency-dependent intensity distribution of the interference fringes I(ω) can be described with the 

following expression: 

     ( ) ( ) ( ) 2 ( ) ( ) cos( ( )),ref sam ref samI I I I I                 (1) 

where Isam(ω) and Iref(ω) denote the spectral intensity distributions of the sample and the reference beams, respectively. 

ϕ(ω) is the spectral phase difference between the two arms: 

( ) ( ) ,               (2) 

where φ(ω) is the spectral phase of the sample and ωτ is the phase term that depends on the path length difference between 

the two arms. In most cases the effect of an optical medium on the temporal shape of an ultrashort laser pulse can be 

characterized by the spectral phase. The coefficients of the Taylor expansion of φ(ω) can be used to describe the spectral 

phase, 
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where ω0 is the carrier angular frequency of the pulse. The derivatives of the spectral phase with respect to the angular 

frequency evaluated at ω0 are called the constant phase term (φ(ω0)), the group delay (GD), the group-delay dispersion 

(GDD) and the third-order dispersion (TOD), respectively, as follows: 
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Using these dispersion coefficients, the GDD(ω) function and the dispersion parameter D(ω) of the sample can be 

calculated as 
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where λ is the wavelength, c is the velocity of light in vacuum, and L stands for the length of the optical medium, e.g. fiber. 

 

2.2 Windowed Fourier-transform evaluation method 

 

There are several methods for the evaluation of the recorded spectral interferograms and to retrieve the spectral phase 

and thus the dispersion of an optical sample [9]. In this work the windowed Fourier-ridges algorithm was used to evaluate 

the interferograms. The steps of the evaluation method are illustrated in Fig. 1. First, an inverse Fourier-transform is 

performed on the intensity distribution of the interferogram given by Eq. (1) that is multiplied by a window function [Fig. 

1(a)]: 
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is a Gaussian window function, Ω is the central angular frequency and ΔΩ is the width of the window function. A series 

of windowed interferograms is obtained by changing Ω [Fig. 1(b)]. Introducing      sam refa I I     and 

     2 sam refb I I   , and exchanging the cosine function in Eq. (1) with the corresponding complex exponential 

function we get 

( ) ( )
( ) ( ) exp( ( )) exp( ( )).

2 2

b b
I a i i

 
                  (9) 

Since a(ω) in Eq. (9) is a slowly varying function of ω its inverse Fourier-transform appears around t = 0. On the other 

hand, b(ω), which contains the important information on the dispersion of the sample, changes rapidly with ω and its 

inverse Fourier-transform results in two symmetrical signals around τ+GD(ω0) and –τ– GD(ω0) [Fig. 1(b)]. Considering 

the one appearing at τ+GD(ω0) from Eq. (7) we get 
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The width ΔΩ of the spectral window function should be set to meet the following two requirements: in the vicinity of Ω 

the fringe amplitude should be constant, i.e., b(ω) = b(Ω) and the spectral phase can be approximated by a linear function, 

i.e.,  
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From Eqs. (2) and (4) we get 
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By performing the integrations [11] in Eq. (10) we get the following expression  
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i.e. a signal with a Gaussian envelope, where the ridge of the envelope is given by 

( ) ( ).pt             (14) 

Using Eqs. (12) and (14) we get 

( ) ( ) .pGD t             (15) 

 
Fig. 1. Steps of the windowed Fourier-transform method: (a) the intensity distribution of the interferogram multiplied by 

Gaussian window functions, (b) series of windowed interferograms by changing the central angular frequency of the window 

function, (c) symmetrical signals after performing an inverse Fourier-transform on the interferograms and (d) the resulting 

WFT signal.  
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By determining the ridges of the WFT signal, tp at each Ω frequency the relative GD curve of the sample can be obtained 

[Fig. 1(d)]. If the time delay τ is changed, the relative GD curve moves along the time axis, but since its shape does not 

change the relative GD of the sample can be determined by fitting a polynomial to the ridges. Differentiating Eq. (15) the 

GDD of the sample can also be retrieved 

( ) .
pdt

GDD
d

 


        (16) 

Using Eq. (6) the dispersion parameter of the sample can be evaluated: 

2
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        (17) 

Although D is not dependent on the time delay τ, selecting the proper delay is of crucial importance since it is proportional 

to the fringe density and thus affects the visibility. 

Consider the case when two pulses having orthogonal polarization directions propagate in the sample arm. Eq. (1) is 

modified as 

( ) ( ) ( ) ( ) 2 ( ) ( ) cos( ( ))

2 ( ) ( ) cos( ( )) 2 ( ) ( ) cos( ( )),

ref samX samY ref samX X

ref samY Y samX samY XY

I I I I I I

I I I I

       

       

    

 
      (18) 

where 
2

0 cossamX samXI I  and 
2

0 sinsamY samYI I  are the projections of intensities of the sample pulses onto the plane of 

the polarization of the reference pulse. α denotes the angle between the polarization plane x-z of the sample pulse and the 

polarization plane of the reference pulse. 
0samXI  and 

0samYI  are the intensities of the sample pulses polarized linearly in the 

x-z and y-z planes, respectively. The first two interference terms express the interference of the reference pulse and the 

sample pulse propagating along the fast (X) and the slow (Y) axes, respectively, and the last term describes the interference 

between the sample pulses. The corresponding spectral phases can be written as 
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In this case the ( , )fW t  is composed of three terms, thus three tp can be defined: 
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Note, that the interference of the two sample pulses with each other and the reference pulse results in three GD curves: 
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3. RESULTS AND DISCUSSION 

3.1 Experimental setup 

 
The experimental setup as shown in Fig. 2 was based on a Mach-Zehnder interferometer illuminated by a Ti:Sapphire 

laser (Femtolasers, Rainbow, producing pulses of 6 fs at 800 nm, FWHM = 150 nm). The samples, an 89.9-cm-long, 

hollow-core (HC-800-02, NKT Photonics) and a 92.5-cm-long, solid-core (LMA-PM-5 PCF, NKT Photonics) fiber, were 

placed into the sample arm and a high-resolution spectrometer (Ocean Optics, HR4000, 700 to 900 nm, spectral resolution 

0.2 nm) was placed at the output of the interferometer. Both optical fibers were birefringent. A half-wave plate (HWP) was 

placed in the sample arm before the fibers to adjust the excitation of the polarization modes of the fibers. Another half-

wave plate was put in the reference arm to produce beams with matching polarization. A polarizer (Pol 1) was put before 

the input of the interferometer to ensure the purity of the linear polarization. The light was coupled into the fibers with a 
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30.0-mm-focal-length NIR achromatic lens (Lens 1) and a 19.0-mm-focal-length NIR achromatic lens (Lens 2) was placed 

after the fibers as collimating optics. The same lenses were placed in the reference arm to compensate their dispersion in 

the sample arm. A polarizer (Pol 2) at the output of the interferometer was used to optimize the visibility of the interference 

fringes and to facilitate the interference of orthogonally polarized beams if set to 45° with respect to the interfering 

polarization directions. 

 

Fig. 2. Experimental setup: spectrally resolved Mach-Zehnder interferometer with the studied fibers in the sample arm. 

Measurements were performed under different excitation conditions of the tested fibers. In the first case the fast or the 

slow polarization mode was excited separately and interfered with the reference beam. In the second measurement both 

polarization modes were excited simultaneously and interfered with each other and also with the reference beam. 

Interferograms were recorded at different τ time delays between the two arms in both aforementioned cases. When both 

polarization modes were excited simultaneously without the reference beam, a PMD measurement was performed. 

 

3.2 Optimal value of the width of the spectral window function 

First, we investigated the optimal width of the spectral window function of the windowed Fourier-transform method 

to reach the highest accuracy in the dispersion measurement. By reducing the width of the window function the spectral 

resolution is improved and the requirement in Eq. (11) is also met. However, it results in a worse temporal resolution of 

the signal, because  

8 ln(2)
FWHMt





,        (22) 

where 
FWHMt  is the full width of half maximum of the pulse. Increasing the width of the window the temporal resolution 

becomes better, however, the linear approximation of the spectral phase is not fulfilled at a certain width of the window 

function. Due to the effect of the second order the pulse is broadened in time but the maximum of the pulse is not shifted. 

However, the third order causes asymmetry in the shape of the pulse, which shifts the maximum of the pulse, therefore its 

effect must be eliminated. Considering these, the optimal value of the width of the window function was selected to reach 

a balance between the temporal and the spectral resolution of the WFT signal. The investigation was based on empirical 

facts in the case of both fibers. As an example, the resulting WFT signals of the fast mode excited in the hollow-core fiber 

are shown in Fig. 3. When setting ΔΩ at 1 THz neither the temporal nor the spectral resolution was high enough therefore 

the WFT signal spread both temporally and spectrally [Fig. 3(a)]. By increasing the width of the window function to 5 THz 

the temporal shape of the resulting WFT signal became well-defined while the spectral resolution also improved [Fig. 

3(b)].  
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Fig. 3. WFT signals of the fast polarization mode excited in the hollow-core fiber when the width of the window function is set 

to (a) 1 THz, (b) 5 THz and (c) 10 THz. 

By selecting a 10-THz-wide window function the temporal resolution increased further [Fig. 3(c)], however, even the 

smaller, 5 THz width was sufficient for precise dispersion measurement under all excitation conditions of the hollow-core 

fiber. Note that in the case of the solid-core fiber the 5 THz width of the window function was favorable only when the 

two polarization modes were excited separately but when they were excited simultaneously not even the 10-THz-wide 

window function was enough (see chapter 3.4). 

3.3 Dispersion measurement of the hollow-core fiber 

 

After selecting the optimal width of the window function 10 spectral interferograms were evaluated for all excitation 

conditions. The resulting WFT signals are shown in Fig. 4. As can be seen, by determining the ridges of the signals the 

relative GD curves and DGD curve could be retrieved even when both polarization directions were excited simultaneously 

and interfered with the reference beam. Based on these observations recording a single interferogram is sufficient to retrieve 

the relative GD curves and thus the dispersion properties of both polarization modes and the DGD curve at the same time. 
To confirm this statement, the D curves were determined and compared with each other for the different excitation 

conditions of the fiber. 
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Fig. 4. Windowed Fourier-transform of the recorded interferograms when (a) only the fast or (b) the slow mode interferes with 

the reference beam individually, when (c) both polarization modes are excited simultaneously without the reference beam, and 

when (d) both polarization modes are excited simultaneously with the reference beam. These WFT signals were obtained at the 

same τ time delay between the two arms of the interferometer. 

 

In the evaluation process the best fit to the retrieved relative GD curve was obtained with a seventh-order polynomial, thus 

the dispersion coefficients for both polarization directions were determined up to the eighth order. The GDD and the D 

curves were calculated from the dispersion coefficients using Eqs. (5) and (6). The D curves belonging to the fast and the 

slow polarization axes and the DGD curves were obtained between 752 nm and 858 nm in the case of separate and 

simultaneous excitation of the two modes, respectively. The resulting curves are shown in Fig. 5. 

 
Fig. 5. (a)  Dispersion curves determined during simultaneous excitation of the fast (black curve) and the slow modes (red curve) 

and separate excitation of the fast (green-dashed curve) and the slow axes (blue-dashed curve). (b) Differential group delay curves 

normalized to the length of the fiber determined during simultaneous excitation of the polarization modes with (black curve) and 

without (green-dashed curves) the reference beam. 

 

As can be concluded the curves are completely identical independently from the excitation conditions of the polarization 

modes. This indeed confirms that a single interferogram is sufficient to the complete dispersion characterization of the 

tested hollow-core fiber. In addition, the dominance of the higher order dispersion terms can be predicted from the shape 

of the WFT signals without further analysis. 
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3.4 Dispersion measurement of the solid-core fiber 

 

The above mentioned measurements were repeated with a solid-core fiber sample as well, i.e. the spectral 

interferograms were recorded under all four excitation conditions. First, the width of the Gaussian window function was 

set to 5 THz. The WFT signals obtained in this case are shown in Fig. 6. As can be seen the ridges of the WFT signals, i.e. 

the relative GD curves can be determined for both polarization axes when the fast [Fig. 6(a)] or the slow [Fig. 6(b)] modes 

were excited separately. However, the temporal resolution was not high enough to determine the ridges of the WFT signals 

in the case of the PMD measurement or when both polarization modes interfered simultaneously with the reference beam 

[Fig. 6(c) and (d)]. This can be explained by the very small, about 0.55-ps time delay between the relative GD curves 

belonging to the fast and the slow modes, which is also observable in Fig. 6(a) and (b). Therefore, the evaluation was 

performed on the interferograms using a wider, namely a 10-THz window function to increase the temporal resolution of 

the windowed Fourier-transform. The resulting WFT signals are shown in Fig. 6(e) and (f) without the relative GD curves 

for the better visibility of the ridges. The WFT signal of the DGD with an almost constant value was well resolved in both 

cases but the WFT signals of the fast and slow modes still overlapped and could not be separated completely.  

 

 
Fig. 6. Windowed Fourier-transform of the recorded interferograms obtained with a 5-THz window function when (a) only the 

fast or (b) the slow mode interferes with the reference beam individually, and when both polarization modes are excited 

simultaneously (c) without and (d) with the reference beam. WFT signals obtained with a 10-THz window function when (e) 

both polarization modes are excited simultaneously (e) without and (f) with the reference beam. These WFT signals were obtained 

at the same τ time delay between the two arms of the interferometer. 
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To compare the separated and the simultaneous excitation of the polarization modes the D curves were also calculated in 

the case of this fiber. The dispersion coefficients were determined up to the third order by a second-order polynomial fitting 

to the relative GD curve. The D curves were acquired for all excitation conditions from 738 nm to 862 nm and the resulting 

curves are shown in Fig. 7. As can be seen the D curves were identical when the fast and the slow modes were excited 

separately using a 5-THz window function. In the case of the simultaneous excitation of the modes the neither the 5, nor 

the 10-THz width was precise enough. The agreement between the D curves belonging to the two orthogonal polarization 

axes was expected because of the constant GD difference between them. Consequently, the DGD, obtained by subtracting 

the GD curves of the two orthogonal modes when they were excited separately had an almost constant value of 0.585 

ps/m±0.004 ps/m for the entire wavelength range.  

 
Fig. 7. Dispersion curves along the fast (red curve) and the slow (black dashed curve) polarization directions obtained with 5-

THz window function during separated excitation and in the case of simultaneous excitation of the fast (blue curve) and the slow 

modes (green-dashed curve) obtained with 10-THz window function. 

 

3.5 Measurement of the position of the polarization axes 

 

As previously mentioned the windowed Fourier-transform method has a big advantage in contrast to the other 

evaluation techniques, namely that it provides information on the sign and the dominance of the chromatic dispersion of 

the fiber. In addition, the intensity of the WFT signals visually provides information on the extent of the excitation of the 

polarization modes. To prove this hypothesis, we did a measurement by adjusting the angle of the half-wave plate before 

the optical fiber in one degree steps over the entire 360° range at a given time delay, i.e. the excitation ratio of the two 

polarization modes. The polarizer at the output of the interferometer and the half-wave plate in the reference arm were set 

to 45° with respect to the polarization directions of the fiber to get interference in every HWP position. Note that these 

measurements were feasible only in the case of the hollow-core fiber since the interference of both polarization modes of 

the solid-core fiber with the reference beam produced indistinguishable WFT signals [recall Fig. 6(d) and (f)]. 

Four WFT signals obtained by the evaluation of the interferograms are shown in Fig. 8. As can be seen only the WFT 

signal of the slow mode appeared when the angle of the HWP was set to 17°, i.e. only the slow polarization mode was 

excited. When the value of the angle was adjusted to 39° the WFT signals of the fast mode and the DGD also appeared 

along with the one belonging to the slow mode. The WFT signals of the slow mode and the DGD disappeared when the 

angle of the HWP was adjusted further to 62° thus only the fast polarization mode was excited. At 84° all the three above 

mentioned signals appeared again. According to these measurements it is possible to determine the angle of the HWP at 

which the fast or the slow mode is excited the most, i.e. the position of the polarization axes of the fiber can be determined. 

This knowledge contributes to precise chromatic dispersion measurement as well. 
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Fig. 8. WFT signals under different excitation conditions when the half-wave plate before the fiber was set to the angle of (a) 

17°, (b) 39°, (c) 62° and (d) 84°. 

 

The steps of our method are depicted in Fig. 9. The windowed Fourier-transform was performed on the interferograms 

but only at a selected central angular frequency of the spectral window function, namely at 2.355 PHz corresponding to 

the 800 nm central wavelength of the Ti:Sapphire laser. This way the WFT signals were obtained only at that frequency as 

if taking a section from the previous WFT signals [Fig. 9(a)]. As shown in Fig. 9(b) the WFT signals retrieved in such a 

manner were well separated temporally at the chosen frequency thus the intensity maxima of the signals corresponding to 

the two polarization modes could be determined. Provided that the evaluation is performed on all 360 interferograms the 

change in the intensity of the signal belonging to a given polarization axis can be determined depending on the angle of 

the HWP. 

 
Fig. 9. Determination of the position of the polarization axes: (a) a section of the WFT signals is taken at 2.355 PHz central 

angular frequency of the window function, (b) the relative intensity of the selected section as a function of the time delay and (c) 

the relative intensity in the case of the signal belonging to the fast axis as a function of the angle of the half-wave plate. 
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The intensity of the fast polarization mode as a function of the angle of the half-wave plate is depicted in Fig. 9(c). A 

cosine function was fit to the measured data to determine the angle belonging to the most excited state of the mode. The 

resulting value of the position of the fast axis was 62.49°±0.3°. Naturally, the position of the slow axis can be determined 

in the same way. 

The advantage of the method is that it does not require a specific experimental setup thus it is possible to do this 

measurement before the dispersion measurement of the fiber. On the other hand, the number of the recorded interferograms 

is quite high and the method can be used only if the WFT signals of the modes are well separated in the time domain, i.e. 

at least 1 ps time delay is needed between the modes. 

 

4. CONCLUSION 

 
The WFR algorithm was applied for dispersion retrieval at a hollow-core (HC800-02) and a solid-core (LMA-PM-5) 

fiber utilizing a Mach-Zehnder interferometer illuminated by a Ti:Sapphire laser. A high-resolution spectrometer was used 

during the measurements. The optimal value of the spectral window function was investigated and it was found that the 5-

THz-width was sufficient for accurate chromatic dispersion measurement of the fibers when the polarization modes were 

excited separately. In the case of the hollow-core fiber the DGD curves and the D curves of the fast and the slow 

polarization modes were obtained between 752 nm and 858 nm, and it was sufficient to record a single interferogram to 

determine these curves. However, in the case of the solid-core fiber the D curves along the fast and the slow modes could 

have been retrieved from 738 nm to 862 nm only when the two modes were excited separately. Even though the width of 

the window function was increased to 10 THz that was not enough to resolve the spectrally and temporally overlapped 

signals of the two orthogonal modes of the solid-core fiber. The DGD curve had an almost constant value of 0.585 

ps/m±0.004 ps/m, which was obtained by subtracting the relative GD curves of the two polarization modes when they 

were excited separately. 

A method was developed to determine the position of the polarization axes of the hollow-core fiber based on the 

observation of the excitation ratio of the polarization modes. It was shown that the position of the fast polarization axis 

was at 62.49°±0.3°. This method was not suitable to examine the solid-core fiber because that would have required at least 

a 1-ps time delay between the two polarization modes.  
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