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Abstract: If multiple pulses, either higher-order or polarization modes, simultaneously travel 
in a fiber, they might overlap in the time domain, hindering dispersion retrieval of the modes 
in question using conventional evaluation techniques. In this work, a high-resolution 
windowed Fourier-ridges (WFR) algorithm is developed for evaluation of spectrally resolved 
interferograms produced by light pulses that are overlapping in time. The sufficiency of one 
spectral interferogram to retrieve the differential group dispersion and the polarization 
dependent chromatic dispersion directly with high accuracy is demonstrated on a meter-long 
HC-800-02 photonic crystal fiber. Results are in accordance with previously published data. 
© 2017 Optical Society of America 
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1. Introduction 

With the invention and fabrication of hollow-core photonic crystal fibers (HC-PCFs) [1–4] 
numerous applications requiring low-loss pulse delivery with special dispersion 
characteristics became available. Since the PCF structure can be modified almost arbitrarily, 
theoretically, the requirements of any specific application can be met with proper design. 
Nevertheless, no matter how advance the manufacturing process becomes, small variations 
between the desired and the realized geometry and therefore in the optical properties still 
remain. As most applications are sensitive to noise introduced by interfering coherent modes, 
detecting the presence of higher-order modes is beneficial. Furthermore, since in birefringent 
fibers polarization mode dispersion can be an issue, determining the differential group 
dispersion (DGD), i.e., the delay between the orthogonally propagating modes is of great 
interest. Considering that the dispersion properties of the polarization directions can be quite 
distinct [2,5], and therefore the effect on the pulse having parallel polarization with the fast or 
slow direction is also different [5], determining the dispersion along both axes is also of vital 
importance. 

Spectrally resolved interferometry is a well-proven, extremely sensitive linear method 
suitable for the chromatic dispersion measurement of fibers as well [6]. Different methods [7] 
can be used to evaluate the recorded interferograms one of which is the windowed Fourier-
transform (WFT) method primarily used in profilometry [8–12]. Over the years two 
approaches have been developed for signal processing based on the WFT [8,10,11]. The first 
approach filters the fringe pattern in the windowed Fourier domain (windowed Fourier-
filtering, WFF) [12–14], while the second approach uses a ridge-based algorithm (windowed 
Fourier-ridges, WFR) [9]. The importance and effects in connection with the window size 
were discussed in details using simulations [9]. The WFF was found suitable for the retrieval 
of the dispersion of beam splitters [10,13] and the DGD in polarization-maintaining fibers 
[14]. Nicholson et al. used a similar technique called sliding-window FT to examine the 
wavelength dependence of the mode structure in a HC-PCF operating at 1550 nm [15], 
however, the WFT was basically a visualization tool, and no quantitative dispersion retrieval 
was done based on it. A low-resolution WFR method was used to retrieve the group beat 
length and group birefringence in highly birefringent HC-PCFs [16]. The WFR technique was 
also employed in the dispersion retrieval of a specially designed Bragg fiber, however, since 
the spectral resolution had to be increased to resolve the resonances appearing in the group 
delay curve of the fiber, the WFT signal was broadened hindering precise ridge tracking [7]. 
The Fourier-transform (FT) method [17,18], on the other hand, was found to be a high-
precision evaluation technique even for higher-order dispersion [5,7]. Its accuracy is 
remarkable especially if the fiber under test exhibits sharp resonances in its spectrum, like the 
Bragg fiber mentioned above [7]. Evaluations based on the wavelet transform using ridge 
tracking and search for center of gravity have also been employed in the spectral phase 
retrieval [19]. The performance of the WFT and the wavelet transform was investigated with 
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simulations [8,9] and experiments [11-12] as well, which revealed that the wavelet transform 
is not necessarily good for fringe pattern analysis, since it provides the results with more 
noise compared to the WFT. 

In the case of birefringent fibers, it is rather hard to ensure that only one polarization 
mode is excited. Similarly, in multimode fibers one cannot guarantee that only the 
fundamental mode is guided. If multiple pulses, either polarization or higher-order modes, 
travel in the fiber, they might overlap in the time domain, which raises difficulties during 
filtering even for the FT method [18]. Provided that the spectrum of the tested fiber sample is 
free from resonances, a high-resolution WFR method might be able to overcome this 
obstacle. 

In this work a WFR algorithm with high spectral resolution is used to evaluate the 
chromatic dispersion of a HC-800-02 PCF (NKT Photonics) [5,20] along both polarization 
directions while obtaining DGD information as well. We demonstrate that the WFR algorithm 
is suitable for evaluation of spectrally resolved interferograms obtained in the case of two 
sample pulses overlapping in time. It is shown that recording one interferogram is sufficient 
to retrieve the dispersion curves for the two polarization directions and the DGD curve 
directly with high accuracy. Results are in accordance with previously published data [5], 
corroborating the applicability of the WFR method even in cases where no attention is paid to 
the excitation of only one polarization direction. 

2. Theory 

In spectrally resolved interferometry a combination of a two-beam interferometer, a 
broadband light source and a spectrometer is used. The optical sample under study is placed 
in one arm of the interferometer while the other is used as a reference and produces adjustable 
delay. At given τ time delays between the arms spectral interference fringes appear at the 
output of the spectrometer. The frequency-dependent intensity distribution of the fringes I(ω) 
can be written as 

 ( ) ( ) ( ) 2 ( ) ( ) cos( ( )),r s r sI I I I Iω ω ω ω ω ω= + + Φ  (1) 

where Ir(ω) and Is(ω) describe the spectral intensity distributions of the reference and the 
sample beams respectively, and Φ(ω) stands for the spectral phase difference between the two 
arms: 

 ( ) ( ) ,ω ϕ ω ωτΦ = +  (2) 

where φ(ω) denotes the spectral phase of the sample, and ωτ is the phase induced by the path 
length difference between the two arms. In most cases the spectral phase is used to describe 
the changes in the temporal intensity profile of an ultrashort laser pulse as a result of 
propagation in a dispersive optical medium. The coefficients of the Taylor expansion of φ(ω) 
can be used to characterize the spectral phase, 

 
0 0 0

2 3
2 3

0 0 0 02 3

1 1
( ) ( ) ( ) ( ) ( ) ...,

2 6

d d d

d d dω ω ω ω ω ω

ϕ ϕ ϕϕ ω ϕ ω ω ω ω ω ω ω
ω ω ω= = =

≈ + − + − + − + (3) 

where ω0 denotes the carrier frequency of the pulse. The derivatives of the spectral phase with 
respect to the angular frequency evaluated at ω0 are called the constant phase term (φ(ω0)), 
the group delay (GD), the group-delay dispersion (GDD) and the third-order dispersion 
(TOD), respectively, as follows: 
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Using these coefficients, the GDD(ω) function and the dispersion parameter D of the sample 
can be calculated, 

 0 0 0( ) ( ) ( )( ) ...,GDD GDD TODω ω ω ω ω= + − +  (5) 

 
2

( ) 2
( ) ,

GDD c
D

L

ω πω
λ

⋅= −  (6) 

where λ is the wavelength, c is the velocity of light in vacuum, and L denotes the length of the 
fiber. Please note that the GDD is proportional to the length of the fiber while D is normalized 
to the length. 

Once the spectral interferogram is recorded, the spectral phase and thus the dispersion can 
be retrieved in several ways [7,12]. The evaluation method considered here is based on the 
windowed Fourier-ridges algorithm [9,10]. First, an inverse Fourier-transform is performed 
on the interferogram given by Eq. (1) that is multiplied by a window function: 

 ( , ) ( ) ( ) exp( ) ,IW t I g i t dω ω ω ω
∞

−∞

Ω = − Ω  (7) 

where 

 
2

( ) expg
ωω

 − Ω − Ω = −  ΔΩ   
 (8) 

is a Gaussian window function, Ω is the central frequency and ΔΩ is the width of the window 
function. As Ω is changed, a series of the windowed interferograms are obtained. Introducing 

( ) ( ) ( )s ra I Iω ω ω= +  and ( ) ( ) ( )2 s rb I Iω ω ω= , and substituting the cosine function in 

Eq. (1) with the corresponding complex exponential function we get 

 
( ) ( )

( ) ( ) exp( ( )) exp( ( )).
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b b
I a i i

ω ωω ω ω ω= + Φ + − Φ  (9) 

Note that since a(ω) in Eq. (9) is a slowly varying function of ω its inverse Fourier-transform 
appears around t = 0. On the other hand, b(ω), which contains the important information on 
the dispersion of the sample, changes rapidly with ω and its inverse Fourier-transform results 
in two symmetrical signals around τ + GD(ω0) and –τ– GD(ω0). Considering the one 
appearing at τ + GD(ω0) from Eq. (7) we get 

 [ ]( )
( , ) ( ) exp ( ) .

2f

b
W t g i t i d

ω ω ω ω ω
∞

−∞

Ω = − Ω − Φ  (10) 

The width ΔΩ of the window function should be set to fulfil the following two conditions: in 
the vicinity of Ω the fringe amplitude is constant, i.e., b(ω) = b(Ω) and a linear approximation 
can be used for the spectral phase, i.e., 

 ( ) ( ) ( ).
d

d
ω ω

ω Ω

ΦΦ = Φ Ω + − Ω  (11) 

From Eqs. (2) and (4) we get 

 ( ) .
d

GD
d

ω τ
ω
Φ = +  (12) 

By introducing 
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from Eq. (10) we get 

 [ ] [ ]( )
( , ) exp ( ( ) ) ( ) exp ( ( ( )) )

2f

b
W t i t g i t dξ ξ ξ

∞

−∞

Ω ′Ω = − Φ Ω − Ω − Φ Ω  (14) 

where Φʹ(Ω) denotes the first derivative of the spectral phase with respect to the angular 
frequency ω evaluated at Ω. Rewriting Eq. (14) 

 [ ] [ ]( )
( , ) exp ( ( ) ) ( ( )) ,

2f

b
W t i t G t

Ω ′Ω = − Φ Ω − Ω − Φ Ω  (15) 

we obtain a signal with a Gaussian envelope, where the ridge of the envelope is given by 

 ( ) ( ).pt ′Ω = Φ Ω  (16) 

Using Eqs. (12) and (16) we get 

 ( ) ( ) .pGD t τΩ = Ω −  (17) 

By determining the ridges of the WFT signal, tp at each Ω frequency the relative GD curve of 
the sample can be obtained. If the time delay τ is changed, the relative GD curve moves along 
the time axis as well, but since its shape does not change, the relative GD of the sample can 
be determined by fitting a polynomial to the ridges. Differentiating Eq. (17) the GDD of the 
sample can also be retrieved 

 ( ) .pdt
GDD

d
Ω =

Ω
 (18) 

Using Eq. (6) the dispersion parameter of the sample can be evaluated: 

 
2

2
( ) .pdtc

D
dL

π
λ

Ω = −
Ω

 (19) 

Although D is not dependent on the time delay τ, selecting the proper delay is of crucial 
importance since it is proportional to the fringe density and therefore affects their visibility. 

Consider the case when two pulses having orthogonal polarization directions propagate in 
the sample arm. Equation (1) is modified as 

 
( ) ( ) ( ) ( ) 2 ( ) ( ) cos( ( ))

2 ( ) ( ) cos( ( )) 2 ( ) ( ) cos( ( )),

r sx sy r sx x

r sy y sx sy xy

I I I I I I

I I I I

ω ω ω ω ω ω ω

ω ω ω ω ω ω

= + + + Φ +

+ Φ + Φ
 (20) 

where 2
0 cossx sxI I α=  and 2

0 sinsy syI I α=  are the projections of intensities of the sample 

pulses onto the plane of the polarization of the reference pulse. α denotes the angle between 
the polarization plane x-z of the sample pulse and the polarization plane of the reference 
pulse. 0sxI  and 0syI  are the intensities of the sample pulses polarized linearly in the x-z and y-

z planes, respectively. The first two interference terms describe the interference of the 
reference pulse and the sample pulse propagating along the fast (x) and the slow (y) axes, 
respectively, and the last term expresses the interference between the sample pulses. The 
corresponding spectral phases can be written as 
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Now the ( , )fW tΩ  is composed of three terms, therefore three tp ridges can be defined: 
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Note, that the interference of the two sample pulses with each other and the reference pulse, 
results in three GD curves: 
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 (23) 

3. Experimental 

The experimental setup shown in Fig. 1 comprised a Mach-Zehnder interferometer 
illuminated by an ultrabroadband Ti:Sapphire oscillator (Femtolasers, Rainbow, 6 fs@800 
nm, FWHM = 150 nm) and a high-resolution spectrometer (Ocean Optics, HR4000, 700 to 
900 nm, spectral resolution 0.2 nm). The fiber under test was a 97.5-cm-long hollow-core 
PCF (HC-800-02, NKT Photonics) [20], identical to the one tested in a previous work [5]. A 
polarizer before the setup was used to ensure the purity of linear polarization. A half-wave 
plate was placed in the sample arm before the fiber to facilitate the excitation of one or both 
polarization modes of the fiber simultaneously. A half-wave plate was placed in the reference 
arm as well to produce beams with matching polarization. Near-IR achromatic lenses of 30 
mm and 19 mm focal lengths served as coupling and collimating optics, respectively. Since 
identical lenses were placed in the reference arm, their dispersion was compensated. A 
polarizer at the output of the interferometer was used to optimize the visibility of the fringes 
and to facilitate the interference of orthogonally polarized beams if set to 45° with respect to 
the interfering polarization directions. 

After the spectrally resolved interferogram is obtained at the output of the spectrometer it 
can be evaluated in several ways. In the case of the WFR method the use of Gaussian window 
functions with varying central frequencies [blue-dashed curve in Fig. 1] results in a similar 
signal as shown below. 
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Fig. 1. Scheme of the experimental setup with a simulated spectrally resolved interferogram 
and a WFT signal obtained after processing this interferogram. Ti:S: Ti:Sapphire oscillator, 
MZI: Mach-Zehnder interferometer, Pol1 and Pol2: first and second linear polarizer, BS1 and 
BS2: first and second beam splitter, HWP: half-wave plate, and L1 and L2: coupling and 
collimating lenses. 

4. Results and discussion 

As established earlier, although the HC-800-02 fiber is single-mode, it supports two 
orthogonally polarized modes. If both are excited, either accidentally or intentionally, they 
may interfere with each other and also with the reference beam, provided it has a matching 
polarization component. Recording and evaluating such an interferogram may provide 
information on the chromatic dispersion properties of both polarization modes and the DGD 
as well. 

To test this hypothesis the half-wave plate in the sample arm was set to excite both 
polarization modes of the fiber equally, and the polarizer at the output and the half-wave plate 
in the reference arm were set also at 45° with respect to the polarization directions of the fiber 
[2,14,15]. The resulting interferogram is shown in Fig. 2(a). First, it was processed with the 
conventional FT method. Having taken the inverse FT we can see three signals [Fig. 2(b)]: 
the first appearing at approximately 1 ps belongs to the DGD, the second and the third around 
9 and 10 ps can be assigned to the interference of the pulse traveling in the fast and the slow 
axis of the fiber with the reference pulse, respectively. Note that here only the amplitudes of 
these complex signals are shown. The spectral phase is usually obtained by performing a FT 
on the complex signal of interest which is filtered first [blue-dashed curve in Fig. 2(b)]. As 
can be seen, in this case the last two signals overlap in time, which hinders filtering the 
correct signal and the dispersion retrieval along a given direction [18]. If we filter these 
signals together anyway and perform a FT, the spectral phase can only be obtained [Fig. 2(c)] 
with a large error. This is corroborated by the large misfit seen between the retrieved and the 
fitted curves regardless of the order of the fitted polynomial [Fig. 2(d)]. 
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Fig. 2. (a) The recorded interferogram, (b) its Fourier-transform, (c) the retrieved spectral 
phase without the linear phase term, and (d) the difference between the measured and fitted 
phase curve when both polarization modes are excited simultaneously with the reference beam. 

Exactly the same interferogram was also evaluated using the WFR method. The width of 
the window function was carefully set to be small enough to fulfill the criteria stated in 
Section 2 and Eq. (11), but large enough to avoid spectral narrowing, which would broaden 
the WFT signal in time. In order to minimize the time broadening and the peak-shifting effect 
caused by the GDD and TOD, respectively, we set the width of the window function to limit 
the time broadening to 10%. That was achieved by choosing a window function having a 
width of 5 THz. The spectral resolution was 4 THz, therefore the window functions slightly 
overlapped. Since the time delay between the arms of the interferometer is unchanged, the 
WFT signals corresponding to the interfering sample pulses and the reference pulses also 
appear around 9 and 10 ps, however, in this case they can be distinguished [Figs. 3(a) and 
3(b)] while with the conventional FT method they cannot. After obtaining the WFT signals 
the center of gravity of the three signals was determined over the spectral range of 2.1 and 2.5 
PHz. In the following step a polynomial of the desired order, in our case a fifth order 
polynomial, was fitted to these data, and the actual GD curves were acquired [blue curves in 
Fig. 3(a)]. 

As can be seen, by determining the ridges of the aforementioned three signals in principle, 
a single recorded interferogram is sufficient to retrieve the relative GD curves and thus the 
dispersion properties of both polarization modes along with the DGD curve at the same time. 
To test the precision of this approach, the WFR method was also applied on interferograms 
recorded while only one polarization direction was excited that interfered with the reference 
beam [Figs. 3(c) and 3(d)]. Note that these WFT signals appeared at different time positions 
contrary to the case when both polarization modes were excited simultaneously. That is 
simply because they were recorded at different time delays between the arms of the 
interferometer. About 20 interferograms were evaluated for the fast and the slow directions in 
total. Additionally, the PMD was measured while exciting both polarization modes equally 
and blocking the reference arm [Fig. 3(e)]. 
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Fig. 3. (a) Windowed Fourier-transform of the recorded interferogram and (b) amplitude 
profile along a selected frequency of 2.4 THz when both polarization modes are excited 
simultaneously and interfere with the reference beam. WFT signals when (c) the fast or (d) the 
slow mode individually interferes with the reference beam set at the same position in both 
cases, and (e) both polarization modes are excited without the reference beam. 

In Fig. 4 the retrieved D curves for the fast and the slow axes and the DGD curves are 
shown in the case of simultaneous and separate excitation between 762 nm (2.47 PHz) and 
867 nm (2.17 PHz). As can be seen the curves are completely identical regardless of the 
excitation conditions. Also, these results are in complete agreement with previously published 
results [5] obtained with the conventional FT method when the polarization modes were 
excited separately [Fig. 4 green-dotted curves]. Note that this observation confirms the 
sufficiency of a single interferogram for high-precision characterization of the polarization 
dependent chromatic dispersion and the DGD using the WFR algorithm in the case of the 
tested birefringent HC-PCF sample. Although the DGD curve can be determined by exciting 
the orthogonal polarization modes separately and subtracting their GD curves obtained at the 
same delay, it should be emphasized that its direct retrieval using our method is more precise, 
especially in the case of longer fiber samples [5]. Although the WFR method is slightly more 
time-consuming than the FT technique, the complete dispersion characterization from a single 
recorded interferogram makes it rather appealing. Furthermore, there is a possibility to predict 
the sign and the dominance of higher order dispersion visually from the shape of the ridges of 
the WFT signal without further signal processing. For instance, the convex shape of the ridges 
indicates the dominance of the positive TOD component. The fact that an asymmetry appears 
in the lower frequency domain suggests negative GDD [21]. These observations are also in 
complete agreement with previously published data [5]. 
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Fig. 4. Dispersion along (a) the fast and (b) the slow axes for a 97.5-cm-long sample 
determined during simultaneous (red curve) and separate excitation (blue-dashed curve) of the 
polarization modes. (c) Differential group delay curves referring to a 1-m-long fiber 
determined during simultaneous excitation of the polarization modes with (red curve) and 
without (blue-dashed curve) the reference beam. The results of the FT method during separate 
excitation of the polarization modes are also shown for comparison (green-dotted curve) [5]. 

5. Conclusions 

The differential group dispersion and the polarization dependent chromatic dispersion of a 
HC-800-02 photonic crystal fiber were retrieved experimentally between 762 and 867 nm 
utilizing an ultrabroadband Ti:Sapphire oscillator, a Mach-Zehnder interferometer, and a 
high-resolution spectrometer. A WFR algorithm with high spectral resolution was developed 
to process spectrally resolved interferograms resulting in WFT signals that are very close to 
each other in the time domain. 

It is shown, that the DGD and the chromatic dispersion along the two polarization 
directions can be determined directly with high accuracy using a single interferogram if we 
excite both orthogonal modes simultaneously and have them interfere with a reference beam. 
Another advantage of the method is that the sign and the dominance of higher order 
dispersion can also be predicted visually from the shape of the ridges of the WFT signal 
without further signal processing. All results are in accordance with previously published data 
[5], corroborating the applicability of the WFR method even in cases where no attention is 
paid to the excitation of only one polarization direction. 
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