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5Insitute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland
6KTH Royal Institute of Technology, School of Computer Science and Communication, Lindstedtsv€agen 3, 10044 Stockholm, Sweden
7Science for Life Laboratory, Tomtebodav€agen 23A, 17165 Solna, Sweden
8These authors contributed equally
9Lead Contact
*Correspondence: horvath.peter@brc.mta.hu

http://dx.doi.org/10.1016/j.cels.2017.05.012
SUMMARY

High-content, imaging-based screens now routinely
generate data on a scale that precludes manual veri-
fication and interrogation. Software applying ma-
chine learning has become an essential tool to auto-
mate analysis, but these methods require annotated
examples to learn from. Efficiently exploring large
datasets to find relevant examples remains a chal-
lenging bottleneck. Here, we present Advanced Cell
Classifier (ACC), a graphical software package for
phenotypic analysis that addresses these difficulties.
ACC applies machine-learning and image-analysis
methods to high-content data generated by large-
scale, cell-based experiments. It features methods
to mine microscopic image data, discover new phe-
notypes, and improve recognition performance. We
demonstrate that these features substantially expe-
dite the training process, successfully uncover rare
phenotypes, and improve the accuracy of the anal-
ysis. ACC is extensively documented, designed to
be user-friendly for researchers without machine-
learning expertise, and distributed as a free open-
source tool at www.cellclassifier.org.

INTRODUCTION

In thepast, limits in automation, processing, and storage technol-

ogy imposed practical restrictions on the number of images we

could analyze. Typical research projects were limited to a few

dozen to a few hundred. On that scale, it was possible to verify

entire experiments manually. Today, high-content screening

(HCS) experiments easily produce over 10,000 times more data
(Neumann et al., 2010). It is no longer feasible to visually interpret

and verify every data point. As we depend more and more on

automated computational methods for complex and large-scale

image analysis, we run the risk of only partially understanding the

data. Wemust ask ourselves ‘‘Have I understood the data?’’ and

‘‘Is my analysis as accurate as possible?’’ Without the right anal-

ysis tools, our answers to these questionsmay be unsatisfactory.

In this paper, we introduce Advanced Cell Classifier (ACC), a

machine-learning software designed to give a quicker and

more complete understanding of large datasets and to train pre-

dictive models as accurately as possible. In 2011, we released

ACC version 1.0 (ACC v1.0), a graphical image analysis software

tool that offers access to a variety of machine-learning methods

and provides accurate analysis (Horvath et al., 2011). Several

large-scale cell-based phenotypic HCS studies have made use

of ACC v1.0, including at least 15 human genome-wide RNAi

screens and numerous extensive drug screens. These studies

cover a wide variety of biological topics ranging from the studies

of influenza A virus (Banerjee et al., 2014) to studies of acute

lymphoblastic leukemia (Fischer et al., 2015).

ACC v1.0 shared a drawback with other similar machine-

learning HCS analysis software (Orlov et al., 2008; Uhlmann

et al., 2016; Held et al., 2010; Sommer et al., 2011; Laksamee-

thanasan et al., 2013; Ogier and Dorval, 2012; R€amö et al.,

2009; Misselwitz et al., 2010; Jones et al., 2008; Dao et al.,

2016); it lacked discovery and data visualization tools to enable

the user to fully explore and understand their data. We view

this as a crucial shortcoming. Little attention has been given to

the methods used to explore the data, understand it efficiently,

or to ensure the quality of the annotations. The cost of collecting

expert annotations is high and categorizing cells into strict clas-

ses is often ambiguous. Experts are often unsure if they have un-

covered all the important phenotypes buried within the data

because they lack the tools to fully explore it. There are also lim-

itations in the annotation process. Existing software packages

force the user to manually select cells to label or randomly select
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Figure 1. Phenotype Finder Tool

The phenotype finder tool organizes cells into a browsable hierarchy, which facilitates the discovery of new classes.

(A) Cells are represented by dots embedded in a two-dimensional synthetic feature space. Sets of cells annotated by the expert are shown in green, yellow, and

blue. Unannotated cells are shown in gray.

(B) A one-class classifier is used to automatically determine which cells are least similar to the known cell types (pink region).

(C) Cells with the least similarity to known examples are sampled and clustered to construct a dendrogram. The expert can browse and analyze the representative

cells shown in the tree, create a new phenotype class from these cells, or add cells to an existing one. In addition, irrelevant cells can be discarded to improve the

classification results to be obtained in the next run.

(D) If a new phenotype is discovered, the region of non-annotated cells changes in the multidimensional feature space.
cells. These methods are inefficient and generate many wasteful

annotations that ultimately do not prove useful for the classifier.

Furthermore, these procedures make it difficult to discover new

phenotypes or to intelligently refine decision boundaries (Smith

and Horvath, 2014).

ACC v2.0 is a completely re-designed and user-friendly soft-

ware tool with the goal of improving the collection and under-

standing of image data and the accuracy of the analysis (Fig-

ure S1). It allows researchers, even those without computer

vision or machine-learning knowledge, to efficiently charac-

terize and exploit their cell-based and image-based HCS ex-

periments, leading to new discoveries. The main differences

between ACC v2.0 and its previous versions include: (1) intelli-

gent methods to explore and annotate large single-cell image

data, including an active learning approach to improve the ac-

curacy of the classifier, and similar cell search, an algorithm to

find similar cells and increase the number of annotations for

rare phenotypes; (2) an easy-to-use report generator to auto-

matically obtain statistics on cell distribution and class inci-

dence; (3) a new, re-designed and user-friendly interface; (4)

detailed documentation, video tutorials, and online resources;

and (5) improved data visualization methods. Finally, and

most importantly, (6) we have implemented phenotype finder,

a novel method to automatically discover new and biologically

relevant cell phenotypes (Figure 1). The source code of ACC
652 Cell Systems 4, 651–655, June 28, 2017
v2.0 is freely distributed as an open-source tool at www.

cellclassifier.org.

RESULTS

To evaluate the effectiveness of the discovery and annotation

tools included in ACC v2.0, we generated a synthetic dataset

simulating images of cells from a high-content screen. This pro-

vided us with completely accurate knowledge concerning every

cell and phenotype in every image, something that is impossible

with images of actual cells. Using this information, we compared

ACC v1.0 with ACC v2.0. A group of annotators were able to

reach much higher recognition accuracy and found even

extremely rare phenotypes in significantly less time using the

tools we developed. A description of the synthetic dataset is

given in the STAR Methods section along with the analysis,

which is summarized in Figure S2.

We also applied ACC v2.0 to a drug screen and a small inter-

fering (siRNA) screen to identify phenotypic classes using real

data. In each case, the annotators were able to discover relevant

phenotypic classes, including rare types, within a short time us-

ing our new methods. Details of the drug and the siRNA screens

are provided in the STAR Methods section. Example images

from the phenotypic classes identified using ACC v2.0 are shown

in Figures 2 and S3.

http://www.cellclassifier.org
http://www.cellclassifier.org


Figure 2. Efficient Example-Based Mining of Relevant Cell Phenotypes

(A) Cells from nine relevant cell phenotypes identified using the phenotype finder on data from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012).

Searching through thousands of images for more examples of a rare phenotype can be cumbersome, but the similar cell search function makes it simple.

(B) Results of the similar cell search given the query examples above. Similar cells were determined by computing the cosine similarity on image feature vectors

between the query example and other cells in the dataset.
DISCUSSION

ACC v2.0 provides several new innovative tools designed to

explore and collect the data necessary to train classifiers more

efficiently and effectively. The ability of the classifier to correctly

recognize cell types ultimately depend on the quality of data pro-

vided. While there is no universally accepted recipe for gener-

ating quality training data, many principles and techniques can

be applied in practice to improve the efficiency and quality of

the annotation process.

Perhaps the most fundamental principle is to ensure that the

training data are complete in the sense that they includes exam-

ples of all the important phenotypes present in the screen.

Although it may seem obvious, practically speaking, this can

be tedious when the amount of data is very large. Another com-

mon issue is imbalance between classes. Often, interesting phe-

notypes are in the minority or occur very infrequently. If the data

are imbalanced due to the presence of a rare class, the lack of

representative data will make learning difficult (He and Garcia,

2009). Given a single example of a rare cell, ACC v2.0 can quickly

identify additional, previously unidentified examples using the

similar cell search feature, thereby helping balance the dataset

and improve classification performance. Another way to improve

data collection is to avoid redundant annotations and to prioritize

annotations that are most useful for boosting classification per-
formance. ACC v2.0 uses active learning to carefully select the

most informative examples for labeling, which avoids irrelevant

examples and refines regions where the classifier is uncertain.

Data quality can also be improved through iterative refinement

of the classifier. During data collection, ACC v2.0 can train a

classifier on existing annotated data and display predicted anno-

tations on unlabeled data. By correcting erroneous predictions,

the user adds valuable data points to the training set, which

can help correct predictive errors.

In total, ACC v2.0 includes powerful new methods to mine

microscopic image data, discover new phenotypes, and

improve recognition performance. While no single method can

be regarded as a silver bullet that solves all annotation problems,

in our experience, the most effective strategy is to alternate be-

tween discovery tools as the biological task demands. ACC v2.0

gives the user access to a large variety of state-of-the-art ma-

chine-learning algorithms, has an intuitive user interface with

advanced visualization, and allows for efficient navigation of im-

age data. It is easy to use, well documented, and comes with

helpful video tutorials. Using synthetic data and existing screens,

we demonstrated that the discovery tools in ACC v2.0 improve

the quality of training datasets and ultimately create classifiers

with better phenotype recognition. Using our software, it is

possible to discover interesting cell phenotypes hidden in large

datasets.
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tact Peter Horvath (horvath.peter@brc.mta.hu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Synthetic Dataset
To evaluate the effectiveness of the discovery and annotation tools included in ACC v2.0 (Figure S1), we designed and generated a

synthetic dataset simulating images of cells from a high content screen. This provided us with completely accurate knowledge con-

cerning every cell and phenotype in every image, something that is impossible with images of actual cells. Using this information, we

compared ACC v1.0 to ACC v2.0 and evaluated how the tools we introduced improved the ability of annotators to discover pheno-

types and train accurate classifiers.

The dataset was organized into 32 plates containing 384 images each. Every image contained human cells simulated using

SIMCEP, a software tool for simulating fluorescence microscopy images of cell populations (Lehmussola et al., 2007). The amount

of cells in each image was sampled uniformly between 5 and 40. In total, 12,288 images and 310,929 cells were generated. While this

is a relatively small dataset by HCS standards, it provides sufficient statistical power to judge the efficacy of our tools. Eight distinct

phenotypic classes were designed by varying the size and shape of the nucleus and cytoplasm, and by varying the number and size

of subcellular vesicles (Figure S2A). Each cell is assigned a phenotype sampled from these classes, ranging in frequency from very

common (appearing with 49.7% probability), to less common (24.8%), to extremely rare (0.01%). Furthermore, each image was

generated with a dominant phenotype (approximately 80%of the cells in the image), and random cell classesmade up the remainder

of the phenotypes in the image. The synthetic images were processed with a CellProfiler pipeline to segment the cells and extract

features. The synthetic data and pipeline are available in Data S1.

Three experts used ACC v1.0 and ACC v2.0 to annotate the dataset. They were given no prior information about the number of

phenotypes or their locations. In each trial, the expert was given 30 minutes to annotate the synthetic data. The goals were (1) to

discover all the phenotypes within the given time and (2) to create a high quality dataset which, when used to train a classifier, results

in the highest accuracy on the whole dataset. The results of the experiment appear in Figure S2. All three experts were able to

discover all eight phenotypes within the time limit using ACC v2.0 (Figure S2B). Using ACC v1.0, the three rarest phenotypes

were only discovered by 2/3 of the experts. The experts were able to find phenotypes faster using ACC v2.0. Using the annotations

collected by the experts, classifiers were trained and used to predict phenotypes for the entire dataset. The phenotypes predicted by

trained classifiers were compared to the true phenotypes and normalized prediction accuracy was computed. The results show a

substantial improvement (a 27% increase in recognition) with annotations collected using ACC v2.0 (Figure S2C). The last pane of

the figure shows timelines of howmany annotationswere collected by each annotator using each version of the software (Figure S2D).

The bold line shows the mean number of collected annotations.

Drug HCS Dataset
To demonstrate the capabilities of ACC v2.0 on real data, we analysed a dataset of MCF-7 breast cancer cells (BBBC021v1 (Caie

et al., 2010), available from the Broad Bioimage Benchmark Collection (Ljosa et al., 2012): https://www.broadinstitute.org/bbbc/

BBBC021/) treated with a collection of 113 small molecules in 8 different concentrations for 24 hours. A subset of this dataset is

formatted for ACC and supplied as a test dataset with the software (www.cellclassifier.org/download/). The molecule set consists

of a mechanistically distinct set of targeted and cancer-relevant cytotoxic compounds inducing a broad range of gross and subtle

phenotypes. Cells were fixed, labelled for DNA, F-actin, and b-tubulin, and imaged by fluorescent microscopy acquiring multiple im-

ages of all data points and technical repeats (Caie et al., 2010). This resulted in 39,600 images containing approximately

2,000,000 cells.

The images were segmented and features were extracted with CellProfiler 2.2.0 (CellProfiler pipeline provided as File S1). To

demonstrate the phenotype discovering capabilities of ACC v2.0, we started by manually annotating a few cells from a single class

(standard abundant cells from the most common phenotype). We then used the phenotype finder tool to identify interesting cell
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phenotypes. Representative cells from each phenotypic class appear in Figure 2A. Names of the phenotypic classes were

selected by using Cellular Microscopy Phenotype Ontology (CMPO; http://www.ebi.ac.uk/cmpo/), which provides a species-

neutral controlled vocabulary for cellular phenotypes. To increase the number of annotations for rare classes such as multinucle-

ated cells, we used the ‘find similar cells’ tool (Figure 2B). To improve the classifier’s ability to distinguish between classes, we

used the active learning module to refine decision boundaries. After approximately one hour we obtained around 1,500 annotated

cells from 9 phenotype classes.

Finally, we assessed the predictive capability of the classifiers trained using the data we collected. We applied several different

popular supervised classification methods and chose the one with best 10-fold cross validation performance. The Logistic Boost

classifier achieved 88.4%, the highest recognition accuracy (Figure S4), and was applied to the entire screen. The final results of

the analysis showing the number of cells in every phenotypic group for the different drug treatments can be found in Data S2.

We evaluated whether the identified phenotypes correlated to any known effects of the used drugs (Table S1). While most of the

identified phenotypes were determined to be non-drug specific, we highlight two phenotypes showing strongly correlated charac-

teristics to specific well-known drug effects: (a) multinucleated; and (b) bundled microtubule, cells with collapsed microtubule. The

Cytochalasin B treatment leads to the classification of 20% of cells in the multinucleated group. Cytochalasin B is known to inhibit

both the rate of actin polymerization and the interaction of the actin filaments in solution (MacLean-Fletcher and Pollard, 1980), thus

preventing the formation of contractile microfilaments. This can result in a disturbed cell cycle, yielding an increased number of nuclei

with variable shape and size within the cell (Cooper, 1987). The bundled microtubules group contains samples of a characteristic

phenotype with microtubular bundles crossing through the centre of the cell. Most of the cells in this phenotypic class were treated

with Taxol (Paclitaxel), Docetaxel, or Epothilone B. All of these agents bind the b-tubulin, and stabilize microtubules. They inhibit the

microtubule function and alter their dynamics, as well as enhance the polymerization of tubulin, whereby they have antimitotic effect

(M€uhlradt and Sasse, 1997). In this case, the software identified a characteristic phenotype linked to different agents with the same

mechanism of action.

We also identified phenotypes that correlate with well-known physiological cell status: (1) increased amount of punctate actin

foci; and (2) fragmented nucleus, often the hallmark of apoptosis. The cells identified in the punctate actin class received Cyto-

chalasin D as top hit. Cytochalasin D is an actin depolymerizing drug and can also induce the actin aggregation (Mortensen and

Larsson, 2003). Interestingly, some of the cells treated with Rapamycin correlated strongly with this phenotype, while most of the

Rapamycin–treated cells were classified to abundant or elongated cells classes. Rapamycin targets the mTOR (a mammalian

target of Rapamycin-complex) with an essential role in the cell cycle and responses to changing nutrient levels. Inhibition of

mTOR signalling by Rapamycin leads to defects in mitochondrial function, cell proliferation, cytoskeletal organization, protein syn-

thesis, and can result in cell death in many ways: apoptosis, necrosis or autophagy (Laplante and Sabatini, 2009). Thanks to the

new tools in ACC v2.0, we were also able to find the cells in a rarer actin-related phenotype of Rapamycin, reported to affect the

F-actin reorganization by blocking the kinase activity of mTOR (Liu et al., 2008). Demecolcine (Colcemid) and Vincristine treatment

resulted in an overrepresented number of cells of the phenotype fragmented nucleus. By inhibiting the polymerization of micro-

tubules, they can arrest the cells in the metaphase, which can ultimately lead to apoptosis (Fujikawa-Yamamoto et al., 1994; Jor-

dan and Wilson, 2004). These drugs are known to bind the tubulin and destabilize the microtubules, in contrast to the stabilizing

agents, such as Docetaxel and Paclitaxel described above with a strong bundled microtubules phenotype (Kavallaris, 2010). This

demonstrates the power of the ACC v2.0 to correctly categorize the drugs with opposite biological functions although they would

have a potentially similar end-point outcome (cell death). As these results show, ACC v2.0 is an effective tool to find the novel,

unknown biological effects of drugs or silencing/overexpression of certain genes, as well as for mining previously described phe-

notypes of interest.

siRNA HCS Dataset
We analysed images derived from a pilot siRNAs screen targeting selected hit factors as well as a suite of positive and negative con-

trols for a genome-wide screen on 60S ribosomal subunit biogenesis in HeLa cells. The assay relies on an inducible RPL29-GFP re-

porter as a read-out, similar to our recent genome-wide analysis of 40S synthesis using RPS2-YFP (Badertscher et al., 2015). In brief,

cells were transfected with the respective siRNAs by reverse transfection in 384 well plates. Reporter construct expression was

induced by addition of tetracycline after 44 hours. 8 hours later, the culture medium was replaced by medium lacking tetracycline

and cells were incubated for another 20 hours. Then, cells were fixed, DNA stained with Hoechst, and images taken by fluorescent

microscopy acquiring 9 images per well.

Images were segmented based on Hoechst staining of cell nuclei, and 150 diverse features were extracted, including nuclear and

cytoplasmic fluorescence intensities. We started by manually annotating a few cells from a single class of a mock-treated well. We

then used the phenotype finder tool to identify interesting cell phenotypes. Representative cells from each phenotypic class appear in

Figure S3A. To increase the number of annotations for rare classes such as large nuclei, we used the find similar cells tool (Fig-

ure S3B). We acquired �500 annotated cells from 7 phenotype classes.

Finally, we assessed the predictive capability of the classifiers trained using the data we collected. We applied several different

popular supervised classification methods and chose the one with best 10-fold cross validation performance. The Artificial Neural

Network classifier achieved 95%, the highest recognition accuracy (Figure S5), and was applied to the entire screen.
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METHOD DETAILS

Overview of the Software
ACC v2.0 is a software tool to apply sophisticatedmachine learning analysis tomicroscopic image data. Particular attention has been

given to user-friendliness and tools to help non-experts explore their data, understand it, and train machine learning algorithms to be

as accurate as possible. Figure S1A shows themain interface which consists of amenu bar, a toolbar, themain window, and cell view

windows focusing on details of the currently highlighted cell. A separate image selector window allows the user to quickly switch

between images and plates from the experiment (S1B). ACC v2.0 works in Windows, Linux, and Macintosh environments, and takes

images as input with support for most common image formats (e.g. tif, bmp, png). In addition to the original image data, ACC v2.0

requires features, the image measurements extracted from the segmented objects (in txt, csv, or HDF5 format), and it supports con-

tours of segmented sub-cellular/cellular objects (e.g. cells membranes and nuclei), such as those produced byCellProfiler (Carpenter

et al., 2006).

Detailed documentation (File S2 and File S3) provides step-by-step instructions to use the software, and a series of video tutorials

with how-to examples are also available (Movies S1–S5). A detailed flowchart diagram of the usage and services is presented on

Figure S6. Typically, analysis begins with the user starting a project (‘‘Getting started’’, Movie S1) and importing data (‘‘ACC and

CellProfiler’’, Movie S2, and ‘‘Input data structure’’, Movie S3). We provide a CellProfiler module designed to export necessary seg-

mentation and feature data directly to ACC v2.0 (File S4). The next step is to begin exploring the data and assigning annotations to

cells as members of a phenotypic class. Instructions on how to define classes, customize the visualization, and navigate the data are

provided in Movie S1. Several innovative annotation strategies are available in ACC v2.0 which greatly improve the efficiency and

quality of data annotation. These include the phenotype finder (Figure S1C, Figure 1), similar cell search, active learning, as well

as manual and random selection. Examples on how to apply these strategies are shown in Movie S4. Once the annotated data is

collected, up to sixteen different classifiers may be chosen to predict phenotypes for unannotated cells (Figure S1E) including

well-known methods such as support vector machine (SVM), multilayer perceptron (MLP), and random forest using theWeka frame-

work (Witten and Frank, 2005). Initial predictions may contain errors, but these can be corrected by replacing the incorrect prediction

with the correct annotation and re-training the classifier. This process can be repeated until satisfactory results are achieved. Finally,

the improved classifier is applied to the entire experiment and user selects the desired formats of the output including (a) cell-by-cell

classification; (b) incidence and distribution of the different classes; (c) phenotype-based statistics of any selected features

(Movie S5).

Phenotype Finder
Screening datasets often consist of tens of thousands of images, or orders of magnitude more. The amount of data is often so sub-

stantial that it exceeds the capabilities of a human expert to observe everything. Therefore, it is difficult for the annotator to know

whether the training data he/she collected contains examples representing all the important phenotypes present in the screen. To

address this, ACC v2.0 includes a phenotype finder tool which helps find and define new phenotypes efficiently, without requiring

a priori knowledge about the underlying dataset (Figure 1). It does this by hierarchically grouping cells based on their appearance.

Images of the cells are organized into a browsable tree-like structure (Figure 1C) which allows the user to quickly identify previously

unseen phenotypes or subpopulations within a known phenotype (Movie S4). The phenotype finder operates on the assumption that

true phenotypes will cluster together in a space of relevant image features. Using a bottom-up approach, a dendrogram can be con-

structed by first defining each observation (cell) as its own cluster, and bymaking pairwise similarity comparisons between each clus-

ter. The dendrogram is constructed by greedily merging themost similar clusters first, and proceeding up the hierarchy until the entire

set belongs to a single cluster (Figure S1D). In ACC v2.0, the similarity metric is defined as the Euclidean distance between the mean

of the feature vectors associated with cells belonging to each cluster.

The computational complexity and memory consumption associated with hierarchical clustering means it cannot be directly

applied to very large data sets (in practice, 25,000-50,000 cells can be clustered on a standard computer with 16 GB memory in

15-80 s). Because of this limitation, unless the dataset is small, the phenotype finder must be applied to subsets of the data - cells

belonging to a known phenotype or cells that are hypothesized to belong to an undiscovered phenotype. In the first case, existing

annotations are used to train a classifier that predicts which cells belong to a selected known phenotype. These are sampled and

clustered using hierarchical clustering. In the second case, a one-class classifier is used to identify cells that do not fall within any

currently known phenotype. One-class classification, also known as unary classification (Moya et al., 1993), is a method that can

perform this task by estimating the support of a high-dimensional distribution given a set of positive samples (Figures 1A and 1B).

A one-class SVM (Schölkopf et al., 2000) predicts the probability that a given cell belongs to any of the known phenotypes in this

manner. Cells are sorted based on this probability, and the cells least likely to belong to an existing phenotype are clustered using

hierarchical clustering (Figure 1C). The one-class SVM can be sensitive to the features it is provided. Oftentimes, HCS data contains

some redundant features or features with little discriminative power. Feature selectionmethods can help by reducing the feature vec-

tor to the most informative features. We have tested three methods on synthetic and real HCS data: information gain, principal

component analysis (PCA), and factor analysis. We found that information gain proves to be the most useful method, and the optimal

number of selected features is in the range of 10-20 (Figure S7).

Once a subset of cells has been selected and the dendrogram has been constructed, it is displayed as a collapsible tree interface

which allows the user to view themember cells for each cluster in the hierarchy and to quickly create new annotations from a cluster in
e3 Cell Systems 4, 651–655.e1–e5, June 28, 2017



the dendrogram (Figure 1C). If the user determines that the cluster shows signs of novelty it can be annotated as a new class, other-

wise it can be inserted into an existing phenotype. If a new phenotype is discovered, the class boundaries will change (Figure 1D).

Iteratively applying the phenotype finder in this manner will allow the user to quickly identify rare phenotypes or subpopulations within

an existing phenotype.

Similar Cell Search
Often, important or interesting phenotypes occur very infrequently. While the phenotype finder can help initially discover the pheno-

type, without sufficient examples of the phenotype to train with, the classifier may struggle to identify it reliably. ACC v2.0 offers a

solution to this issue. Given a single example of a rare cell, it can quickly identify new examples with similar appearance to the

selected cell. This is accomplished by computing the cosine similarity on a reduced feature vector between the query cell and all

other cells in the screen (Ljosa et al., 2013). The feature set is reduced in a pre-processing step to remove highly correlated features.

The cells are sorted according to their similarity score, and the most similar cells are presented to the user (Figures 2B and S3B). The

user may then select these cells and add them to the corresponding classes. In this manner, rare and important phenotypes can be

quickly populated with reliable annotations.

Active Learning Methods to Prioritize Useful Annotations
Expert annotations are costly to acquire, but typically no guidance is provided as to which cells are useful to annotate. The user is

often left to select cells manually, or is presented with a random sampling of cells. But there is no guarantee on the usefulness of the

labels provided with these strategies. It can be advantageous to avoid redundant annotations and prioritize annotations that will be

most useful for increasing classification performance. ACC v2.0 uses active learning to carefully select the cell which, if annotated,

will be most useful in improving the classification accuracy. It avoids uninformative examples and refines regions where the classifier

is uncertain. Using the currently annotated set (Figure S8A), a classifier is trained andmakes predictions on unlabeled data and uses a

query strategy to estimate which example will bemost useful to improve classification performance (Figure S8B).We use two popular

query strategies: uncertainty sampling and query by committee (Smith andHorvath, 2014). Uncertainty sampling selects the instance

it is least certain how to label based on the classifier prediction probabilities. Query by committee selects the instance with the most

disagreement between different classification algorithms. The expert annotates the requested cell, and the annotation is added to the

training set. A new predictive model is trained and a new cell is selected for annotation according to the query strategy (Figure S8C).

This process is repeated and iteratively improves classification performance. Potentially, new phenotypes can be discovered by

exploring the boundary between classes (Figures S8D–S8E).

Manual Correction of Predictions
Another practical method of improving the quality of training data is to iteratively refine classifier performance by correcting errors in

its predictions. ACC v2.0 can train a classifier on existing annotated data and visualize predicted annotations on unlabeled data. The

user can visually inspect these predictions and add new annotations by confirming correct labels or by correcting erroneous predic-

tions. By adding corrective annotations where the classifier made a mistake, the user adds valuable data points to the training set to

improve performance.

Annotation of Manually Selected Cells
This annotation method is standard in most cell classification software. The expert is free to navigate the data and select which cells

he/she wishes to annotate. Manual exploration has its merits, as the expert may often have a good intuition about which cells are

useful to annotate early in process. However, there are several dangers to relying solely on this method. The user may be biased to-

wards easy or redundant examples, may not balance the number of examples between classes, and may fail to discover rare phe-

notypes. When performing manual annotation, it is recommended that cells are selected from several different images. We also note

that is it always possible to override other annotation modes and switch to a manual annotation if the user notices something inter-

esting in the image.

Annotation of Randomly Selected Cells
To ensure a representative sampling of the data, it can be advantageous to randomly sample from the screen. This is a forced choice

mode: the expert is required to annotate the phenotype class of a randomly selected cell from a randomly chosen image. This anno-

tation mode thereby avoids selection bias by the user (Misselwitz et al., 2010). However, with this method and with manual annota-

tion, luck may be required to discover rare phenotypes in large datasets.

DATA AND SOFTWARE AVAILABILITY

In this work we used the HCS image set BBBC021v1 (Caie et al., 2010), available from the Broad Bioimage Benchmark Collection

(Ljosa et al., 2012). It is composed of 39,600 image files (13,200 fields of view imaged in three channels) in TIFF format. It can be

downloaded at: https://www.broadinstitute.org/bbbc/BBBC021/. For any copyright issues regarding the dataset, follow the instruc-

tions provided at the referenced website.
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ACC v2.0 is freely distributed at www.cellclassifier.org as an open-source tool. It is written in MATLAB R2015a and requires the

Image Processing Toolbox 9.2. The source code, standalone versions, video tutorials, help documentation files, and additional mod-

ules are available at the official repository for all future software releases www.cellclassifier.org. Further developing the source code

requires Matlab license. However, Windows, Linux, andMacintosh standalone compiled versions— that do not require license— are

also available online. All the ACC materials are copyright protected and distributed under GNU General Public License version

3 (GPLv3).
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