
Nordic Journal of Computing

VALIDATING JAVASCRIPT GUIDELINES ACROSS

MULTIPLE WEB BROWSERS

ZOLTÁN HERCZEG GÁBOR LÓKI TAMÁS SZIRBUCZ

ÁKOS KISS
Department of Software Engineering, University of Szeged

Honvéd tér 6., H-6720 Szeged, Hungary
{zherczeg,loki,szirbucz,akiss}@inf.u-szeged.hu

Abstract. Nowadays, JavaScript is the language for developing dynamic websites.
Previously, several guidelines were published about how to write efficient JavaScript
code. Our research focuses on whether programmers should still adhere to these
guidelines or can they rely on the state-of-the-art JavaScript execution engines to
achieve good performance results. In this paper, we present the experiments where
we validate programming guidelines for JavaScript execution performance across
multiple state-of-the-art web browsers. We present our observations, and conclude
that the importance of guidelines does not decrease with the introduction of JIT
technology.

ACM CCS Categories and Subject Descriptors: D.3.3 [Programming Lan-
guages]: Language Constructs and Features — JavaScript

Key words: JavaScript, programming guidelines, just-in-time compilation

1. Introduction

Although, in the past, there were several choices for client-side scripting of web
pages, like JavaScript, VBScript, PerlScript, and even Tcl/Tk [Loban 2001], there
is no doubt that nowadays JavaScript is the language for developing dynamic web-
sites. This happened that way even though JavaScript is not the ideal programming
language. Being an interpreted language, it is usually considered slow for complex
tasks, and the cross-browser problems do not make the life of JavaScript program-
mers easier either. However, new solutions are emerging for these shortcomings. In
2006, Google Web Toolkit (GWT) [Google, Inc. 2006] was released to ease the devel-
opment of browser-independent JavaScript applications. In addition, the JavaScript
engines of the browsers became faster as well, mostly by introducing just-in-time
(JIT) compilation techniques [Krall 1998]: Mozilla came with TraceMonkey [Mozilla
Foundation 2008], WebKit introduced its SquirrelFish Extreme [Stachowiak 2008],
and Google announced Chrome with its V8 JavaScript engine [Google, Inc. 2008].
Opera Software is developing its Carakan engine [Lindström 2009] and Microsoft is
including Chakra in Internet Explorer 9 [Niyogi 2010].

In the past, several guidelines were published about how to write an efficient
JavaScript code [Greenberg 2001][Garcia 2005][Zakas 2009]. Our research focuses
on whether programmers should still adhere to these guidelines or can they rely on
state-of-the-art JavaScript engines to achieve good performance results – as pro-
grammers do rely on classic compilers to generate optimal code in the case of static

Received October 3, 2010.



2 HERCZEG ET AL.

languages, like C. In this paper, as a follow-up of our previous experiments [Herczeg
et al. 2009], we validate JavaScript guidelines across multiple web browsers.

The structure of the rest of the paper is as follows: In Section 2, we present
the most well-known coding guidelines for JavaScript, and give a short explanation
for them. In Section 3, we discuss how these guidelines could – or could not – be
automatized (i.e., turned into optimizations), what the gain would be, and what
the barriers are. In Section 4, we present the key result of our paper, the measured
effect of programming guidelines across several web browsers. In Section 5, we give
an overview on related work, while in Section 6, we present our conclusions.

2. Optimization Guidelines

There are several guidelines to aid the JavaScript programmers in writing fast (or
faster) code. Some of these guidelines are based on well-known static compiler
optimization techniques, while others focus on JavaScript language specialties. In
the following subsections, we give an overview of these techniques.

2.1 Using Local Variables

Every time a variable is accessed in JavaScript, a complex lookup method is called
that involves searching through the whole scope chain. However, all execution
engines are known to speed up the lookup of local variables. Thus, guidelines
suggest using local variables instead of global ones whenever possible (see Fig. 1).

2.2 Using Global Static Data

In general, guidelines suggest using local variables instead of global ones, as ex-
plained in the above section. There is one exception to this rule, however. In most
static languages, it is possible to define variables inside functions whose lifetime
spans across the entire run of the program, called static variables, which are of-
ten constants, too. However, JavaScript does not support the concept of either
constants or static variables, and initializations are nothing more but assignments.

Thus, if an array literal is used in an assignment, as shown in the example of
Fig. 2(a), the array will be constructed every time when the execution reaches the
assignment. These superfluous operations can take considerable time – even more
than the lookup of a global variable would cost –, thus guidelines suggest using
globally initialized variables in this special case, as presented in Fig. 2(b).

2.3 Caching Object Members

Whenever the same object members are accessed several times in a script, e.g., in
a loop, it is advised to cache the values of the members in local variables, as shown
in Fig. 3. The reason for this is similar to the explanation given in Section 2.1;
member resolution is expected to be slower than local variable lookup.

for (i = 0; i < 10000000; ++i) ; for (var i = 0; i < 10000000; ++i) ;

(a) (b)

Fig. 1: Using local variables instead of global ones.



VALIDATING JAVASCRIPT GUIDELINES . . . 3

function hexDigit (s) {
var digits = ["0","1","2","3",

"4","5","6","7",
"8","9","a","b",
"c","d","e","f" ];

return digits[s];
}

for (var i = 0; i < 5000000; ++i)
hexDigit(i & 0xf);

var digits = ["0","1","2","3",
"4","5","6","7",
"8","9","a","b",
"c","d","e","f"];

function hexDigit (s) {
return digits[s];

}

for (var i = 0; i < 5000000; ++i)
hexDigit(i & 0xf);

(a) (b)

Fig. 2: Moving static data out of functions.

var o = {a: 678,b: 956}
var r
for(var i=0;i<30000000;++i)

r = o.a + o.b

var o = {a: 678,b: 956}
var r
var ca = o.a
var cb = o.b
for(var i=0;i<30000000;++i)

r = ca + cb

(a) (b)

Fig. 3: Caching object members in variables.

2.4 Avoiding With

The with language construct of JavaScript adds a computed object to the top of
the scope chain and executes its body with this augmented scope chain. It is a very
helpful feature if the chain of object references or the name of the object is very
long, but in practice it increases the execution time. Again, guidelines suggest that
better performance result can be achieved if local variables are used for accessing
object members instead of with statements (see Fig. 4).

var o = new Object()
o.ext1 = new Object()
o.a = 23
o.ext1.ext2 = new Object()
o.ext1.b = 19
o.ext1.ext2.c = 36

with (o) {
with (ext1) {
with (ext2) {

for(var i=0;i<2000000;++i)
a = b + c

}
}

}

var o = new Object()
o.ext1 = new Object()
o.a = 23
o.ext1.ext2 = new Object()
o.ext1.b = 19
o.ext1.ext2.c = 36

var ext1 = o.ext1
var ext2 = ext1.ext2
for(var i=0;i<2000000;++i)

o.a = ext1.b + ext2.c

(a) (b)

Fig. 4: Avoiding with statements.



4 HERCZEG ET AL.

function create() {
this.str = "String"
this.int = 56
this.num = 6.7
this.get = function()

{ return this.int }
}
var object
for(var i=0;i<3000000;++i)
object = new create()

var object
for(var i=0;i<3000000;++i) {

object = new Object()
object.str = "String"
object.int = 56
object.num = 6.7
object.get = function()
{ return this.int }

}

var object
for(var i=0;i<3000000;++i) {
object = {

str: "String",
int: 56,
num: 6.7,
get: function()
{ return this.int }

}
}

(a) (b) (c)

Fig. 5: Creating objects.

function funcs() { return " " }
function funcd() { return "." }
function funcl() { return "_" }

var code = "dsdllsdsdlls";
var len = code.length
var res = ""
for (var j = 0; j < 50000; ++j) {

for (var i = 0; i < len; ++i)
res += eval(

"func"+code.charAt(i)+"()")
}

function funcs() { return " " }
function funcd() { return "." }
function funcl() { return "_" }

var code = "dsdllsdsdlls";
var len = code.length
var res = ""
for (var j = 0; j < 50000; ++j) {

for (var i = 0; i < len; ++i)
switch (code.charAt(i)) {
case ’s’ : res += funcs() ; break
case ’d’ : res += funcd() ; break
case ’l’ : res += funcl() ; break
}

}

(a) (b)

Fig. 6: Avoiding eval.

2.5 Creating Objects

The most important suggestion of guidelines about object creation is to avoid creat-
ing objects like in object-oriented (OO) languages, since this kind of object creation
has to be solved through a function call. It is proposed to use the JavaScript Ob-
ject Notation (JSON) form, which allows specifying object literals in the script
code. In Fig. 5, some possible object creation approaches are presented: in subfig-
ure (a), the object creation is implemented in OO way, while subfigure (b) shows
an inlined object creation solution, and subfigure (c) gives a JSON-based object
creation example.

2.6 Avoiding Eval

The eval function evaluates a string and executes it as if it were script code. This
language feature can help hiding or obfuscating the script code, and can also help
executing dynamic script code, but it has its own cost. Each string that is passed
to the eval function has to be parsed and executed on-the-fly. This cost has to be
paid every time the execution reaches an eval function call. So, trying to avoid eval
is considered as a good idea whenever there is an alternative solution, as shown in
Fig. 6.



VALIDATING JAVASCRIPT GUIDELINES . . . 5

function abs(a) {
return a>=0 ? a : -a

}
var a
for(var i=0;i<8000000;++i)
a = abs(4000000-i);

var a
for(var i=0;i<8000000;++i)

a = Math.abs(4000000-i);

var a
for(var i=0;i<8000000;++i)
a = (4000000-i) >= 0 ?

(4000000-i) :
-(4000000-i);

(a) (b) (c)

Fig. 7: Function inlining

function get_roots(a, b, c) {
var ret = {
x1:((-b+Math.sqrt(b*b-4*a*c))

/(2*a)),
x2:((-b-Math.sqrt(b*b-4*a*c))

/(2*a))
}
return ret

}

for (var i = 0; i < 2000000; ++i)
get_roots(i & 0xff, i & 0x7, 10)

function get_roots(a, b, c) {
var sq = Math.sqrt(b*b-4*a*c);
var ret = {
x1: ((-b + sq) / (2*a)),
x2: ((-b - sq) / (2*a))

}
return ret

}

for (var i = 0; i < 2000000; ++i)
get_roots(i & 0xff, i & 0x7, 10)

(a) (b)

Fig. 8: Common sub-expression elimination.

2.7 Function Inlining

Function inlining is a traditional compiler optimization technique [Muchnick 1997]
that replaces a function call with the body of the called function. In JavaScript,
performing a function call is an expensive operation. It takes several preparatory
steps to perform: allocating space for parameters, copying the parameters, and
resolving the function name. With function inlining, as shown in the example in
Fig. 7, the cost of these steps can be saved. (For the sake of completeness, in the
example we give two function call-based implementations beside the inlined version;
subfigure (a) shows the call of a user-defined function, while subfigure (b) utilizes
a built-in function.)

2.8 Common Sub-expression Elimination

Common sub-expression elimination (CSE) is another performance-targeted com-
piler optimization technique [Muchnick 1997] that searches for instances of identical
expressions and replaces them with a single variable holding the computed value.
In the guidelines, this is suggested to be done manually (see Fig. 8), since a typical
JavaScript engine does not support this optimization. Using a single local variable
for a common sub-expression is expected to be always faster than leaving the code
unchanged.

2.9 Loop Unrolling

Loop unrolling [Ueberhuber 1997] is yet another compiler optimization technique
(Fig. 9) that is suggested by the guidelines to be applied manually. It is most



6 HERCZEG ET AL.

var iterations = 100000000
var counter=0

for(i=iterations;i>0;--i) {
counter++

}

var iterations = 100000000
var counter=0
var n = iterations % 8
if (n>0)

do {
counter++

} while (--n)
n = iterations >> 3
if (n > 0)

do {
counter++
counter++
counter++
counter++
counter++
counter++
counter++
counter++

} while (--n)

(a) (b)

Fig. 9: Loop unrolling.

effective if the loop body is small but the loop runs long. The performance gain
comes from the absence of most of the loop test and increment instructions.

2.10 HTML DOM

Almost every guideline contains suggestions for optimizing HTML Document Ob-
ject Model (DOM) based object accesses, e.g., dynamic HTML generation. The
most typical recommendation is not to access DOM objects too frequently, since
the DOM bindings are expected to be slow. However, these guidelines are less
JavaScript language feature-related, thus they are not in the scope of this paper.
Therefore, we do not discuss them further.

3. Static Optimization Difficulties

The guidelines in the previous sections give directions for JavaScript programmers
on how to write effective code. It would be very convenient however, if these per-
formance speed-up techniques would not need to be applied manually, but could be
turned to automatic code transformations, i.e., compiler optimizations. The domain
of compiler optimizations is a well-studied research area [Muchnick 1997][Nielson et

al. 1999][Morgan 1998][Cooper and Torczon 2004][Allen and Kennedy 2002]. The
experience with static languages is that optimization algorithms are worth to apply,
since the price of the techniques is only to be paid at compilation time, and the
gain in performance is considerable. Thus, the need for optimization algorithms
naturally rises for dynamic languages as well, and the already-existing guidelines
could act as natural starting points for designing these techniques. However, as
we will see below, the language features of JavaScript make all static optimization
techniques ineffective.

First, let’s consider Fig. 10. The loop in function test1 is supposedly infinite,
which continuously prints “Hello World!” messages. However, the loop in the
example stops after three iterations, because of the parameter used in the given
function call. That parameter is passed to eval and there it redefines the print



VALIDATING JAVASCRIPT GUIDELINES . . . 7

function test1(cmd)
{

var a = 0
eval(cmd)

while (a < 3)
print("Hello world!")

}

test1("var pr = print; print = function(text) { a++ ; pr(text) } ")

Fig. 10: Eval, function redefinition, and access to local variables.

var def = __defineSetter__

function test2(name)
{

def(name, function(value) { print("Hello world!") ; a++ } )

for (a = 0 ; a < 3 ; /* Do nothing */ ) {
var a
b = void(0)

}
}

test2("b")

Fig. 11: Setter function.

identifier from the built-in function to a user-defined one. Moreover, since the new
implementation of print is defined inside the scope of the test1 function, it can
access its local variables as well. (And, since the loop index variable is incremented
every time print is invoked, the loop will terminate in this case.)

The example in Fig. 11 produces the same output as Fig. 10, but achieves it in
different ways. The code shows that one does not have to use eval to get hardly
predictable results. In the example, a setter function is used to turn assignments to
variable b into function calls. Similarly to the previous example, the local variables
of function test2 can be accessed in the called function, too. Additionally, as the
example shows, the definition of the setter method can be obfuscated; it is done
via the def function call in this case. Thus, theoretically, any function call can be
a setter function.

The last example in Fig. 12 shows an uncommon use of valueOf. The valueOf
method of an object is implicitly called when an operator requires the primitive

var x = 0
Number.prototype.valueOf = function() { return x++ }

function test3(a)
{

while (a < 3)
print("Hello world!")

}

test3(new Number(0))

Fig. 12: Overriding the valueOf() method.



8 HERCZEG ET AL.

value of an identifier. Thus, in this case the loop test implicitly increases the loop
index. Unfortunately, this effect is completely invisible to a static analyzer of the
test3 function.

The above examples show several changes that can happen to variables and func-
tions that static optimization algorithms cannot foresee. Since compiler optimiza-
tions always have to be safe, these language features make the application of com-
plex optimization algorithms, automatized programming guidelines to JavaScript
practically infeasible. Thus, it seems that guidelines have to remain guidelines
only. In the following section, we investigate how effective they are in the case of
state-of-the-art JavaScript engines.

4. Measurements

In this section, we present the effect of the programming guidelines presented in
Section 2 on JavaScript execution performance. All data was measured on an
Intel Pentium T2330 dual-core processor running at 1.6 GHz and equipped with 1
GB of memory. For the experiments, we used the latest available versions of the
web browsers most common at the time of writing this paper. Namely, we used
(with the code name of the JavaScript execution engine given in parentheses, where
known): Apple Safari r50495 nightly build (SquirrelFish Extreme/Nitro), Google
Chrome 3.0.195.27 (V8), Mozilla Firefox 3.6 Beta 1 (TraceMonkey), Opera 10.10
Beta (Futhark), and Microsoft Internet Explorer 8.0.6001.18702IC.

Fig. 13 and Fig. 14 present the measurements in a normalized view. The figures
are composed of subcharts where each subchart corresponds to the effect of a pro-
gramming guideline on a web browser. Each row denotes one of the web browsers
mentioned above and each column corresponds to a guideline discussed in Section 2.

In each subchart, the bars represent the execution time of the example programs
from Section 2. Each bar is labeled with (a), (b), or (c) – where applicable –, which
refer to the example programs in the corresponding subfigures. (In the figures of
Section 2, (a) marked the original unoptimized code, while (b) and (c) denoted
code with guidelines applied.) In all subcharts, the execution time of the original
unoptimized code (a) was used for normalization.

The inspection of the results reveals that the efficiency of the guidelines varies
heavily across browsers. Moreover, only two browsers, Firefox and Internet Explorer
profit from all of the guidelines. In the other three browsers, the use of built-in
functions causes a clear performance loss (for Safari and Chrome, the loss was so
high that we were not able to plot the bars correctly) and the different object cre-
ation techniques bring no definite gain either. (In the charts, where a programming
guideline causes performance loss, we denote the corresponding execution time with
a bar of darker color.)

Nevertheless, we can set up some categories for the guidelines based on the scale
of the resulting gain. Global static data, Avoiding eval, Loop unrolling, and Local
variables are guidelines which result in a more than 50% runtime reduction in all
browsers (Firefox being an exception for Local variables).

Another category is of those programming guidelines, which still bring gain but
the speed-up is not so significant. Common sub-expression elimination, Function
inlining (c), and Caching members fall into this group (Firefox being an exception
again, now for Caching members).

The final category consists of Creating objects and Function inlining (b), where no
clear suggestion can be made. Either leaving the code as is or applying a guideline
can be a good or a bad choice, depending on the browser that will be used to



VALIDATING JAVASCRIPT GUIDELINES . . . 9

0%

50%

100%

S
af

ar
i

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

C
hr

om
e

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

F
ire

fo
x

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

O
pe

ra
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

(a)    (b)
Local Variables

0%

50%

100%

In
te

rn
et

 E
xp

lo
re

r
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

(a)    (b)
Global Static Data

(a)    (b)
Caching Members

(a)    (b)
Avoiding With

Fig. 13: The effect of the guidelines.



10 HERCZEG ET AL.

0%

50%

100%

S
af

ar
i

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

C
hr

om
e

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

F
ire

fo
x

N
or

m
al

iz
ed

 e
xe

cu
tio

n 
tim

e

0%

50%

100%

O
pe

ra
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

(a)    (b)    (c)
Creating Objects

0%

50%

100%

In
te

rn
et

 E
xp

lo
re

r
N

or
m

al
iz

ed
 e

xe
cu

tio
n 

tim
e

(a)    (b)
Avoiding Eval

(a)    (b)    (c)
Function Inlining

(a)    (b)
CSE

(a)    (b)
Loop Unrolling

Fig. 14: The effect of the guidelines.



VALIDATING JAVASCRIPT GUIDELINES . . . 11

execute the code. (Nonetheless, for creating objects, the JSON notation might still
be a valid approach, since in four browsers out of five, it speeds up the execution,
and the performance loss is marginal for the remaining one.)

We have deliberately left out the Avoiding with guideline from the above classifi-
cation. It is interesting to see how different the effect of the guideline is depending
on the execution model of the JavaScript engine of the browser. While in those
browsers where JIT technology is used (Safari, Chrome, and Firefox), the effect of
the guideline is huge, in the case of interpreters (Opera and Internet Explorer) it
is not that significant. (Global static data and Caching members show a bit similar
tendency but because of Chrome, the results are ambiguous in those cases.)

Here, we have to refer to our previous work [Herczeg et al. 2009]. In that paper, we
experimented with WebKit, which is the basis of the here-used Safari web browser.
WebKit is a good subject for experimentation, since it contains both a JavaScript
interpreter and a JIT compiler. We executed the same examples as we presented in
Section 2 in both execution models and made some interesting observations. One
of the observations was that all programs that conformed to the guidelines were
faster than their unoptimized counterparts, irrespectively of the execution model.
Another observation of ours was that the effect of the guidelines was in almost all
cases higher in JIT execution model than in interpreted mode.

In the light of our multi-browser experiments discussed above, we can state that
the observations do not change substantially. If we omit the (b) options of object
creation and function calls, we can state that almost all programs that conform to the
guidelines are faster on all widespread browsers than their unoptimized counterparts,
irrespectively of the execution model (JSON object creation in Opera being the only
weak exception). Moreover, based on the results of Avoiding with and partially on
the results of Global static data and Caching members also, we can also state that
often the effect of the guidelines on performance can be higher in JIT execution
model than in an interpreter.

Thus, the conclusions remain valid as well. Performance guidelines are still useful
and valid for interpreter and JIT-based JavaScript engines alike. Thus, program-
mers should not leave all the optimization work to JavaScript engines. Moreover, it
seems that the importance of the guidelines does not decrease with the introduction
of JIT engines but it might even increase!

5. Related Works

Since we are not aware of any previous studies on the effect and efficiency of
JavaScript programming guidelines, in this section we present works related to two
key topics of the paper: programming guidelines and JIT compilation technology.

5.1 Programming Guidelines

Nowadays, the quality of the source code is getting more and more important [Bakota
et al. 2008]. There are many studies and papers about how the quality of the
source code influences the appearance tendency of errors and bugs in a software
product [Gyimóthy et al. 2005]. This revelation leads many project owners to
publish coding guidelines regardless of the language. Hence, guidelines are avail-
able for Java [Geotechnical Software Services 2008], PHP [Waring 2003], Action
Script [Terracini 2007] and many other commonly used languages.

The coding guidelines mostly contain forms and transformations of the source
code in order to make it more readable and understandable. However, there are



12 HERCZEG ET AL.

several guidelines which suggest code optimization transformations as well. The
majority of JavaScript-targeted guidelines belong to the second group [Greenberg
2001][Garcia 2005][Zakas 2009]. These guidelines not only contain code transforma-
tions, but usually they provide a way to measure their effect in the user’s browser
as well. This way, the users can test the worthiness of the optimizations themselves.

Since performance-targeted coding guidelines are sometimes based on classic com-
piler optimization techniques, we have to mention them here. Static compiler opti-
mizations have a long history, and several books have been written in the past, which
give a good summary of the domain [Muchnick 1997][Nielson et al. 1999][Morgan
1998][Cooper and Torczon 2004][Allen and Kennedy 2002].

5.2 Just-in-Time Compilation

Currently, there are two distinct approaches for the just-in-time compilation of
JavaScript. The relatively new, trace-based approach is used by Mozilla’s Trace-
Monkey [Mozilla Foundation 2008]. A trace is a runtime profile of JavaScript code.
Machine code is generated only for frequently executed code paths guarded by side
exits, which provide fall-back mechanism when the execution flow leaves a code
path [Chang et al. 2009][Gal et al. 2009]. Thus, the tracing engine can adapt to
the current execution flow.

The classic approach is to generate JIT code for all JavaScript functions. This
approach is employed by Google’s V8 [Google, Inc. 2008] and Apple’s SquirrelFish
Extreme [Stachowiak 2008] engines. Although the generated code is not adaptive,
the fast paths in the generated code are based on static profiles.

6. Summary

In this paper, we investigated whether guidelines for JavaScript programs are still
necessary and valid? This is a timely question, since in these days, new JavaScript
engines are introduced in most of the popular web browsers, which apply state-
of-the-art just-in-time compilation technology. However, it is important to know
whether guidelines compiled for older engines are still valid for the new solutions.
In our paper, we gave an overview of the most important JavaScript coding guide-
lines and investigated their effect in five widespread web browsers, some of them
being still interpreter-based and some already applying JIT technology. Our in-
vestigations have led to the following observations (which underpin some earlier
observations of ours):

◦ Generally, programs that conform to the guidelines are faster on all widespread
browsers than their unoptimized counterparts, irrespectively of the execution
model of the browser.

◦ Often, the effect of the guidelines on performance can be higher in JIT exe-
cution model than in an interpreter.

Thus, we can conclude that performance guidelines still seem to be valid, for
interpreter and JIT-based JavaScript engines alike. Moreover, since static compiler
optimizations are not applicable to JavaScript because of language features, as
discussed in this paper, we predict that the importance of the guidelines will not
decrease in the near future.

There is still work to be done on the field of guidelines. In our current exper-
iments, we investigated artificial example programs only. In future research, we
plan to repeat the experiments on de facto standard JavaScript benchmark suites,
like SunSpider [Apple, Inc. 2007] or the V8 Benchmark Suite [Google, Inc. 2009],



VALIDATING JAVASCRIPT GUIDELINES . . . 13

and on our own compilation, codenamed WindScorpion [University of Szeged 2008],
thus measuring the effect of coding guidelines on real-life (or close to real-life) ap-
plications.

Acknowledgements

This research was partially supported by the TÁMOP-4.2.2/08/1/2008-0008 pro-
gram of the Hungarian National Development Agency.

References

Allen, Randy and Kennedy, Ken. 2002. Optimizing Compilers for Modern Architec-
tures: A Dependence-Based Approach. Morgan Kaufmann.

Apple, Inc. 2007. SunSpider JavaScript benchmark.
http://www2.webkit.org/perf/sunspider-0.9/sunspider.html (Accessed 3 Octo-
ber 2010).

Bakota, Tibor, Beszédes, Árpád, Ferenc, Rudolf, and Gyimóthy, Tibor. 2008.
Continuous Software Quality Supervision Using SourceInventory and Columbus. In
Research Demonstrations of 30th International Conference on Software Engineering
(ICSE’08).

Chang, Mason, Smith, Edwin, Reitmaier, Rick, Bebenita, Michael, Gal, An-

dreas, Wimmer, Christian, Eich, Brendan, and Franz, Michael. 2009. Trac-
ing for web 3.0: trace compilation for the next generation web applications. In Pro-
ceedings of the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE 2009). Washington, DC, USA, 71–80.

Cooper, Keith D. and Torczon, Linda. 2004. Engineering a Compiler. Morgan
Kaufmann.

Gal, Andreas, Eich, Brendan, Shaver, Mike, Anderson, David, Man-

delin, David, Haghighat, Mohammad R., Kaplan, Blake, Hoare, Graydon,

Zbarsky, Boris, Orendorff, Jason, Ruderman, Jesse, Smith, Edwin, Reit-

maier, Rick, Bebenita, Michael, Chang, Mason, and Franz, Michael. 2009.
Trace-based Just-in-Time Type Specialization for Dynamic Languages. In Proceed-
ings of the 2009 ACM SIGPLAN conference on Programming language design and
implementation (PLDI’09). Dublin, Ireland, 465–478.

Garcia, Edel. 2005. JavaScript optimization FAQs.
http://www.miislita.com/searchito/javascript-optimization.html (Accessed
3 October 2010).

Geotechnical Software Services. 2008. Java Programming Style Guidelines – version
6.1.
http://geosoft.no/development/javastyle.html (Accessed 1 July 2009).

Google, Inc. 2006. Google Web Toolkit.
http://code.google.com/webtoolkit/ (Accessed 7 November 2009).

Google, Inc. 2008. Google V8 Engine.
http://code.google.com/p/v8/ (Accessed 7 November 2009).

Google, Inc. 2009. V8 Benchmark Suite – version 5.
http://v8.googlecode.com/svn/data/benchmarks/v5/run.html (Accessed 3 Octo-
ber 2010).

Greenberg, Jeff. 2001. JavaScript optimization.
http://home.earthlink.net/~kendrasg/info/js_opt/ (Accessed 7 November
2009).

Gyimóthy, Tibor, Ferenc, Rudolf, and Siket, István. 2005. Empirical Validation
of Object-Oriented Metrics on Open Source Software for Fault Prediction. In IEEE
Transactions on Software Engineering, Volume 31. IEEE Computer Society, 897–910.



14 HERCZEG ET AL.

Herczeg, Zoltán, Lóki, Gábor, Szirbucz, Tamás, and Kiss, Ákos. 2009. Guidelines
for JavaScript Programs: Are They Still Necessary? In Proceedings of the 11th
Symposium on Programming Languages and Software Tools (SPLST’09) and 7th
Nordic Workshop on Model Driven Software Engineering (NW-MODE’09). Tampere
University of Technology, Tampere, Finland, 59–71.

Krall, Andreas. 1998. Efficient JavaVM Just-in-Time Compilation. In Proceedings of
the 1998 International Conference of Parallel Architectures and Compilation Tech-
niques (PACT’98). Paris, France, 205–212.

Lindström, Jens. 2009. Carakan.
http://my.opera.com/core/blog/2009/02/04/carakan (Accessed 9 November
2009).

Loban, Scott. 2001. Language Choices for Client-Side Scripting.
http://www.peachpit.com/articles/article.aspx?p=24266 (Accessed 1 July
2009).

Morgan, Robert. 1998. Building an Optimizing Compiler. Digital Press.
Mozilla Foundation. 2008. TraceMonkey.

https://wiki.mozilla.org/JavaScript:TraceMonkey (Accessed 1 July 2009).
Muchnick, Steven S. 1997. Advanced Compiler Design and Implementation. Morgan

Kaufmann.
Nielson, Flemming, Nielson, Hanne Riis, and Hankin, Chris. 1999. Principles of

Program Analysis. Springer.
Niyogi, Shanku. 2010. The New JavaScript Engine in Internet Explorer 9.

http://blogs.msdn.com/b/ie/archive/2010/03/18/

the-new-javascript-engine-in-internet-explorer-9.aspx (Accessed 30
October 2010).

Stachowiak, Maciej. 2008. Introducing SquirrelFish Extreme.
http://webkit.org/blog/214/introducing-squirrelfish-extreme/ (Accessed 1
July 2009).

Terracini, Fabio. 2007. Adobe Flex Coding Guidelines – version 1.2.
http://blog.dclick.com.br/wp-content/uploads/

adobe-flex-coding-guidelines-v12-english.pdf (Accessed 1 July 2009).
Ueberhuber, Christoph W. 1997. Numerical computation: methods, software, and

analysis. Springer.
University of Szeged. 2008. WindScorpion.

http://www.sed.hu/webkit/?page=downloads (Accessed 3 October 2010).
Waring, Paul. 2003. PHP coding guidelines.

http://www.evolt.org/node/60247 (Accessed 1 July 2009).
Zakas, Nicholas C. 2009. Speed up your JavaScript: The talk.

http://www.nczonline.net/blog/2009/06/05/speed-up-your-javascript-the-talk/

(Accessed 1 July 2009).


