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Summary 

Estrogen receptor, progesteron receptor and HER2 are among the most useful 

immunohistochemical markers for proving breast origin of a metastatic carcinoma. 

These antibodies can be helpful in cases of luminal A-like, luminal B-like and HER2 

subtypes but not in cases of triple negative breast cancer (TNBC) which represent 

approximately 15% of all breast cancers. Several immunomarkers as GATA-3, 

mammaglobin A and gross cystic disease fluid protein 15 (GCDFP 15) and NY-BR-1 

have been studied recently to verify the breast origin in metastatic cancer. 

We investigated GATA-3, Mammaglobin A, GCDFP-15, Ny-BR-1 and BCA-225 

immunohistochemical staining on tissue microarrays in a series of TNBCs showing 

keratin 5 (CK5) expression, and therefore being consistent with a basal-like phenotype 

on the basis of the surrogate IHC based molecular classification. 

GATA-3 staining was observed in 82 of 115 triple negative cases (71.3%) including 23 

cases with >5% staining. Mammaglobin-A staining was detected in 30 cases (26.0%) 

including 12 cases with >5% staining. GCDFP-15 was seen in 23 cases (20.0%) 

including 9 cases with >5% staining. Ny-BR-1 positivity was seen in 7 cases (6.0;) 

including 3 patients with >5% staining. BCA-225 staining was observed in 74 cases 

(64.3%). We found GATA-3, mammaglobin-A and GCDFP-15 coexpression in one 

case (0.87%;) and GATA-3 and mammoglobin coexpression and Mammaglobin-A and 

GCDFP-15 coexpression in 2 and 2 cases (1.7%, 1.7%), respectively. 

The expression of GATA-3, mammaglobin-A, GCDFP-15 and NY-BR-1 is lower in 

TNBC-s than in breast carcinomas in general. Although these markers may be positive 

in different other tumors, by using these markers a subset of basal-like TNBC-s can be 

identified. The expression of all the 4 markers was 34.7%. When comparing our result 

with that of others, it is shining that the positivity rates for GATA-3, and GCDFP-15 are 

lower in our tissue microarray based series. 



  



Introduction 

Breast cancer remains the most frequent malignant tumor among women in Europe 

(1DeSantis, 2Malvezzi). Although it is often mentioned as a single disease in such 

statistics, it is obvious that the term refers to several different diseases. 

Perou and coworkers evaluated gene expression in breast cancer samples and 

suggested a molecular classification of the disease (3Perou). In their original 

classification, basal-like, Erb-B2 (human epidermal growth factor receptor 2) 

overexpressing (HER2+), normal-breast-like, and luminal (estrogen receptor positive, 

ER+) breast cancers had been identified. Gene expression profiling is the gold 

standard for the identification of these molecular breast cancer subtypes, but this 

method is not widely available. To make the classification more affordable to most 

pathology laboratories, immunohistochemical (IHC) profiles have been correlated to 

the molecular profiles. According to the IHC surrogate classification, breast carcinomas 

can be classified into luminal A-like (ER+ and/or progesterone receptor (PR)+ and 

HER2- with low proliferation), luminal B-like (ER+ and/or PR+ and HER2+ and/or highly 

proliferating on the basis of Ki-67 labeling), HER2+ non-luminal-like (ER-, PR- and 

HER2+) and triple-negative breast cancer (TNBC; ER-, PR- and HER2-). The latter 

group can be subclassified into basal-like TNBC (keratin (CK) 5/6+ and/or epidermal 

growth factor receptor, EGFR+) and non-basal-like TNBC (CK 5/6- and EGFR-) 

(4Nielsen). 

Metastases of breast cancer develop through either the lymphatic or the blood vessels, 

and affect regional lymph nodes and distant organs, including the lungs, the liver, 

bones, and the brain. Since the lifetime risk of developing cancer is about one out of 

three women (5Hernandez), second primaries are not rare, and must be separated 

from metastases of a known breast cancer. Sometimes, metastasis is the first clinical 

sign of an unknown primary breast cancer. In case of metastatic carcinoma, it is 

essential to prove its metastatic nature and origin. 

Despite their less than perfect specificity, ER, PR and HER2 are among the most useful 

IHC markers for suggesting breast origin. These antibodies can be helpful in cases of 

luminal A-like, luminal B-like and HER2+ subtypes, but not in cases of TNBC which 

represent approximately 15% of all breast cancers (6Huo). Without the information of 

a previous primary breast carcinoma, and because of its phenotypic overlap with other 

potential primaries, a triple negative case can easily confuse the pathologist. Several 

immunomarkers as GATA-3, mammaglobin, gross cystic disease fluid protein-15 

(GCDFP-15) and NY-BR-1 have been studied recently to verify the breast origin in 

metastatic cancer. 

GATA-3 is a transcription factor with role in cell proliferation and differentiation of breast 

luminal epithelial cells. GATA3 is involved in T-cell-specific cell regulation, in the 

development of the skin and its adnexal structures and in carcinomas (7Deftereos, 

8Chou). Previously, GATA-3 was thought as specific marker of breast and urothelial 

origin, but recent studies have shown its presence in squamous carcinoma of the skin, 



lung, uterine cervix, vulva, larynx and anus, salivary gland tumors, basal cell 

carcinoma, apocrine carcinoma, skin adnexal tumors, Brenner tumor, mesothelioma, 

chromophobe renal cell carcinoma, pancreatic adenocarcinoma, germ cell tumors and 

paraganglioma (9Esheba, 10Liu, 11Ordonez, 12Miettinen). GATA3 and ER are closely 

associated and involved in a positive cross-regulatory loop. This explains the positive 

correlation between GATA3 and ER expression in breast cancers (13Voduc, 14Hoch). 

Although some studies have suggested a prognostic or predictive role for GATA3 

expression (15Tominaga, 16Albergaria, 17Parikh, 18Mehra), it can also be viewed as 

a marker to prove the mammary origin of metastatic cancer. The expression frequency 

of GATA-3 ranges from 47% to 100% among all breast adenocarcinomas (10Liu, 

11Ordonez, 19Cimino-Matthews, 20Ciocca, 21Jacquemier, 22Demir, 13Voduc). 

Mammaglobin A (MG) was described by Watson et al. in 1997 as a 10.5 kD secretory 

protein that shares homology with the uteroglobin family (23Watson1996). The gene 

of MG is located at 11q13, which is frequently amplified in breast carcinoma 

(24Watson1998). MG is generally positive in normal breast epithelium. Besides breast 

carcinomas, several tumors express MG, like endometrial carcinoma, sweat gland 

tumors, gastric, pulmonary, colonic and ovarian tumors and some melanomas (25Han, 

26Bhargava, 27Zafrakas, 28Sasaki, 29Wang, 30Onuma). The overall expression rate 

among all breast carcinomas is approximately 80% (25Han, 26Bhargava, 28Sasaki, 

23Watson1996, 31Al-Joudi, 32Lewis, 33Fritzsche). 

Gross cystic disease fluid protein-15 (GCDFP-15 or BRST-2) was detected in breast 

gross cystic disease fluid by Haagensen et al. in 1977. The monomer of GCDFP-15 

has a molecular weight of 15 kD (34Haagensen). Its gene region was found on 

chromosome 7. GCDFP-15 is normally present in apocrine metaplasia of the breast 

and its presence has been described in salivary and sweat gland tumors and prostatic 

carcinomas (35Wick). The reported expression frequency of GCDFP-15 ranges from 

25% to 85% among all breast adenocarcinomas (25Han, 35Wick, 26Bhargava, 

32Lewis, 33Fritzsche, 36Park). 

NY-BR-1, a differentiation antigen of the mammary tissue was first described by Jäger 

et al in 2001(37Jager2001). Bioinformatic analysis has revealed that NY-BR1 has a 

DNA-binding site followed by a leucine zipper motif, therefore it could be a transcription 

factor. Due to its five ankyrin tandem repeats, it may have a role in protein-protein 

interactions, as well (37Jager2001). It has been detected in the epithelial cells of 

mammary ducts and lobules and in normal testis. One third of sweat gland tumors 

(38Jager2007) showed positivity with NY-BR1. Although NY-BR-1 positivity was 

demonstrated in a case of vulvar phyllodes tumor (39Giger), there is no other normal 

or tumor tissue which has been reported to express this protein, therefore NY-BR-1 

appears to be a breast-specific protein. In invasive breast carcinomas, the range of 

NY-BR-1 expression has been reported between 46.6% and 70%, showing a strong 

association with ER and lower-grade carcinomas (38Jager2007, 40Varga, 

41Theurillat, 42Seil, 43Woodard, 44Balafoutas, 45Liu). 



BCA-225 is a glycoprotein with a molecular weight between 225.000-250.000 kD. It 

was first identified by Mesa-Tejada and coworkers in 1988 (46Mesa-Tejada). Although 

it was previously described as a specific immunomarker of breast carcinoma, a later 

study by Loy and associates concluded that BCA-225 is commonly expressed in 

human adenocarcinomas of different origins, and is therefore not specific for the breast 

(47Loy). BCA-225 expression was often present in adenocarcinomas of the breast 

(98%), kidney (94%), ovary (80%), lung (74%) and intermediate expression rates 

(36%-68%) were found in adenocarcinomas of the prostate, bile ducts, thyroid, 

endometrium, endocervix and pancreas (47Loy). 

Although the mentioned “breast markers” have been tested in several series of breast 

carcinomas, only a few cases of TNBC have been assessed for them. TNBC also 

constitute a heterogeneous group of breast carcinomas, and basal-like carcinomas 

have not been specifically investigated for the expression of the above markers. The 

aim of the present study was to look at the IHC staining of GATA-3, MG, GCDFP-15, 

Ny-BR-1 and BCA-225 in a series of TNBCs showing CK5 expression, and therefore 

being consistent with a basal-like phenotype on the basis of the surrogate IHC based 

molecular classification. 

 

Materials and methods 

Case selection and tissue microarray construction 

Invasive breast carcinomas operated on at the Bács-Kiskun County Teaching Hospital, 

Kecskemét between August 2005 and August 2015 and fulfilling the criteria of TNBC 

and CK5 positivity by IHC were selected for tissue microarray (TMA) construction. All 

of the specimens were fixed in 10% neutral buffered formalin for at least 24 hours. Only 

cases with more than 3 paraffin blocks available were used; otherwise the cases 

represent a consecutive series of such tumors, ER, PR and HER-2 IHC results were 

obtained from the histopathology reports. 

The TMAs were constructed from archived paraffin-embedded blocks using a TMA 

builder device (Histopathology Ltd, Pécs, Hungary). Each TMA contained 20 tumor 

tissue cores, 2 mm in diameter. These were arranged in 5 rows and 4 columns and an 

additional row contained 2 non-mammary control tissues for orientation and 

identification purposes. Each carcinoma was represented in duplicate in 2 different 

TMAs, and the areas sampled were preferentially from the edge of the tumors. Care 

was taken to include minor amounts of normal paratumoral breast tissue in each TMA 

to serve as internal controls for the IHC reactions. 

IHC for GATA-3, MG, GCDFP-15, NY-BR-1 and BCA-225 was performed using the 

antibodies and details listed in Table 1. All antibodies were used on both sets of TMAs, 

(i.e. two 2-mm-diameter cores of each tumor), except for BCA-225, where only one set 

of cores (and TMAs) was immunostained. The stains were assessed by the two 



authors by evaluating the proportion of nuclear (GATA-3) and cytoplasmic (MG, 

GCDFP-15 and BCA-225) or both nuclear and cytoplasmic (NY-BR-1) labeling of 

tumor cells. A staining of 5% or more cells was considered a positive result. 

 

Results 

 

All markers could be evaluated in only 115 of the 118 tumors sampled, therefore the 

result are reported for these 115 cases. In 3 cases, the tissue cores were not evaluable 

due to necrosis or lack of tumor cells. The series included 4 recurrent tumors (including 

1 with intramammary nodal recurrence only) and 10 cases treated with neoadjuvant 

systemic therapy with no or minimal (0-10%) regression. The basic characteristics of 

these tumors are summarized in Table 2. 

GATA-3 labelling was characterized by intense nuclear staining in the tumor cells. In a 

few specimens, weak nuclear staining was noted in a very small minority of 

lymphocytes, but this could not be confounded with either tumor cell positivity or the 

staining of normal mammary epithelium. MG, GCDFP-15, NY-BR-1 and BCA-225 

positivity was identified as obvious cytoplasmatic staining. Although the data sheet of 

NY-BR-1 suggests that occasional nuclear staining may occur with this antibody, this 

was not noted in tumor cells, but was present in a few normal breast epithelial cells. 

Examples of diffuse and focal IHC staining are presented in Figure 1, to demonstrate 

the range of positive reactions seen in the tumor samples. 

The IHC results are displayed in Table 3 and 4, which show both the proportion of 

tumors demonstrating any degree of staining with a given marker and the proportion 

considered positive according to the 5% cut-off in this study. Taking any staining into 

account, GATA3 and BCA-225 labeling was seen in the majority of the cases, followed 

by MG and GCDFP-15, and NY-BR-1 immunoreactivity was seen in only a few tumor 

samples. Using the 5% cut-off, there was a marked drop in the proportion of cases 

showing GATA3 positivity, but reductions were seen with all markers. Only one third of 

the cases showed notable (at least 5%) staining with the 4 markers considered to be 

more specific for a breast origin if a few caveats are kept in mind. Using the frequency 

of labeling in this series, Figure 2 shows the hierarchical help that each of the markers 

can give in the assessment of a mammary origin of CK5 positive TNBC. It is clear from 

the figure as from overall data, that NY-BR-1 is not of great help in this context. BCA-

225 which is breast specific only in its name, stained only 25/76 of the tumors negative 

for all 4 other markers. 

 

 

Discussion 



 

TNBCs are defined by their negativity for ER, PR and HER2. Despite this defining 

phenotypic character, they still represent a heterogeneous group of breast carcinomas 

(48Abramson). Some subsets of TNBCs can be relatively well identified using IHC, for 

example androgen receptor and diffuse GCDFP-15 positivity can identify apocrine 

carcinomas (49Vranic), and it has been suggested that tumors expressing CK5 and/or 

EGFR are those that best match the molecular subtype of basal-like carcinomas 

(50Nielsen). Basal-like TNBCs are often circumscribed (a feature shared by many 

metastases), predominantly solid, without much lumen-forming tendency, and they 

often feature necrosis, squamous metaplasia, all rendering their identification as breast 

carcinoma more difficult. They are aggressive tumors with a tendency to give distant 

metastases on the short term. Metastases to the breast are rare, but metastases from 

TNBCs are relatively common.  

Proving the mammary origin of TNBCs may be problematic, as ER, one of the most 

commonly used, but not specific markers of breast origin is by definition absent in these 

tumors. In the present study we investigated the expression of 5 markers developed 

or used to support the mammary origin of cancers according to the descriptions in the 

data sheets, namely GATA-3, MG, GCDFP-15, NY-BR-1 and BCA-225 by IHC in a 

series of TNBCs deemed to be of the basal-like type on the basis of their CK5 

expression.  

Using the 5% cut-off which is readily detectable, BCA-225 showed the highest 

expression rate with about one third of the cases staining, but this was well below the 

98% staining rate found for breast cancers in general. Therefore, despite not being 

specific for breast cancer, the marker is also not sensitive enough. Owing to these 

features, it was dropped from further considerations. 

Overall, more than 90% of breast cancers are GATA3 positive (45Liu), whereas only 

about 50%, 20 to 30% and 46-70% show positivity for MG (30Onuma), GCDFP-15 and 

NY-BR1 (45Liu, 44Balafoutas), respectively. Most of the reported series suggest that 

positivity for both GATA3 and NY-BR-1 is more common in ER-positive tumors. GATA3 

somatic mutations and microarray data have linked GATA3 to the estrogen signaling 

pathway, and therefore it is not surprising that the expression of this protein is lower in 

TNBCs, than in ER+ tumors or breast cancers in general, in keeping with previous 

results (Table 5). 

Data on the staining frequency of GATA3, MG, GCDFP-15 and NY-BR-1 in TNBC are 

limited. Studies reporting on the expression of these markers on a relatively large 

number of primary or secondary TNBCs are summarized in Table 5. On the basis of 

these data, the sensitivity of GATA-3, Mammaglobin-A, GCDFP-15 and NY-BR-1 to 

suggest a mammary origin are 43.5% (95%CI 0.396-0.476), 16.4% (95%CI: 0.136-

0.196), 15.1% (95%CI: 0.127-0.179), 5.4% (95%CI: 0.027-0.103), respectively. 



Despite the fact that GATA-3 expression has been linked with ER expression, this was 
the marker to show the highest frequency of staining in CK5 expressing TNBCs. When 
5% and more staining was chosen as a cut-off for positivity, the frequency of each 
marker decreased (Tables 3 and 4). Lower percentages of staining must be interpreted 
with caution as the specificity of such a low labeling is uncertain. 
 

When our results are compared with those of others (Table 5), the positivity rates for 

GATA-3, and GCDFP-15 are lower in our TMA based series. A potential weakness of 

the present study could be the use of TMAs, because MG and GCDFP-15 often stain 

breast carcinomas in a patchy pattern (32Lewis), and the sensitivity of detecting these 

markers can be lower in TMAs than on whole slide sections. This could be one possible 

cause of the discrepancy between our results and those of others listed in Table 5, 

although two 2-mm-diameter cores are a relatively good representation of a tumor in 

TMA based studies. Another issue behind the difference in results might stem from the 

fact, that we studied a distinct subset of TNBCs. 

TNBCs are heterogeneous (48Abramson), and some of them, belonging to the luminal 

androgen receptor positive group, are characterized by forkhead-box A1 (FOXA1) 

protein overexpression (51Sasahara). FOXA1 and GATA-3 are both involved in the 

downstream of the ER pathway. Diffuse GCDPF-15 is also a marker of apocrine 

differentiation in IHC studies (49Vranic, 52KőváriAPMIS). Such tumors were excluded 

by selecting basal-like matching carcinomas on the basis of their CK5 expression. 

Such differences in the subgroups analyzed may also contribute to the lower rates of 

positivity of GATA-3 and GCDFP-15 in this series. 

Possible differences may also be attributable to the use of different antibodies/clones. 

But this is unlikely to be a major source of differences as 4 studies used the same 

antibody clones as we used for GATA3 (6Huo, 7Deftereos, 53Ordonez, 54Krings). 

To our knowledge, this is the largest series of TNBC analyzed for the expression of 4 

markers of mammary origin, moreover the series includes exclusively TNBC of a 

distinct subtype, namely tumors expressing CK5 and therefore most likely to coincide 

with basal-like breast carcinomas (50Nielsen). If we consider the documented lack of 

specificity of BCA-225 (47Loy), the remaining 4 breast markers fail to show any 

staining in about 15% of CK5 expressing TNBCs. A more detectable (at least 5%) 

expression of any of the 4 markers was seen in around one third of the cases, leaving 

the remaining two thirds unidentified as of mammary origin. Of the 4 markers, NY-BR-

1 is rarely expressed in the tumor subset studied, and therefore its use adds practically 

nothing to the use of the other three. 

The expression of GATA3, MG, GCDFP-15 and NY-BR-1 is lower in TNBCs than in 

breast carcinomas in general. Although these markers may be positive in different 

other tumors, by using them, a subset of basal-like TNBC-s can be identified as of 

mammary origin. Though the positive staining supports a breast origin, negativity for 

all markers does not exclude this. Therefore we suggest using GATA-3, MG and 



GCDFP-15 as an IHC panel to establish breast origin when ER and PR are negative. 

Obviously, at the primary site, histological features such as the presence of in situ 

carcinoma of similar grade may also suggest the primary nature of the tumor, but this 

help is missing in the metastatic setting. One should be prepared to find a relatively 

high number of basal-like TNBCs to be negative for all the studied breast markers. 
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Figure legends: 

Figure 1.  

Examples of noticeable (at least 5%) GATA-3, Mammaglobin-A, GCDFP-15, NY-BR-

1 and BCA-225 staining on the left (A, C, E, G, I, respectively) as opposed to focal and 

weak staining with these markers (B, D, F, H, J, respectively) on the right. Arrows in B 

indicate the few weakly stained nuclei. 

 

 

Figure 2. Hierarchical labeling of the tumors with 4 “breast specific” markers. 

 

  



Table 1 Details of the antibody used for IHC 

Antibody Source Clone / Catalog number Dilution 

GATA3 Santa Cruz, Dallas, TX HG3-31 / sc-268 1:50 

MG Biocare, Concord, CA 1A5 / PM 269 AA, H RTU 

GCDFP-15 Cell Marque, Rocklin, CA 23A3 / CMC791 1:200 

NY-BR-1 Thermo-Fisher, Rockford, IL NY-BR1#2 / MS-1932-P0 1:300 

BCA-225 Biogenex, Fremont, CA CU18 / AM135-5M RTU 

 

RTU: ready to use 

  



Table 2 

Basic pathologic features of the tumors selected for TMA 

Histological type n (%) 

No special type (ductal) 106 (92.3%) 

Medullary-like 7 (6.1%) 

Metaplastic (“matrix producing”) carcinoma 1 (0.8%) 

Mixed micropapillary carcinoma 1 (0.8%) 

Histological grade  

Grade III 112 (97.3%) 

Grade II 3 (2.7%) 

(y)(r)pT category of the tumors  

Tx 1 (0.8%) 

T0* 1 (0.8%) 

T1b or c 57 (49.6%) 

T2 47 (40.9%) 

T3 3 (2.7%) 

T4 6 (5.2%) 

Nodal status (y)(r)pN category of the tumors  

Nx 3 (2.7%) 

N0** 66 (57.4%) 

N1*** 33 (28.7%) 

N2 9 (7.8%) 

N3 4 (3.4%) 

 (y)(r)pT and (y)(r)pN categories refer to the TNM classification based pT and pN 

categories of primary tumors (n= 101) together with those of recurrent tumors (r, n=4) 

and tumors after primary (i.e. neoadjuvant) systemic treatment (y, n=10). * One case 

with intramammary nodal recurrence; ** including 4 patients with isolated tumor cells; 

*** including 10 cases with micrometastasis.  



Table 3. Breast marker expressions in the tumors investigated  

Marker Any positive staining (%; 95%CI) 

n=115 

>5% positive staining (%) 

n=115 

GATA3 82 (71.3; 0.624-0.787) 23 (20; 0.137-0.282) 

MG 30 (26.0; 0.189-0.348) 12 (10.4; 0.060-0.173) 

GCDFP-15 23 (20.0; 0.137-0.282) 9 (7.8; 0.041-0.142) 

NY-BR-1 7 (6.0; 0.029-0.120) 3 (2.6, 0.008-0.073) 

BCA-225 74 (64.3; 0.552-0.725) 40 (34.7; 0.266-0.438) 

GATA3 and MG 21 (18.2; 0.122-0.263) 2 (1.7, 0.004-0.061) 

MG and GCDFP-15 12 (10.4; 0.060-0.173) 2 (1.7, 0.004-0.061) 

GATA-3, MG and GCDFP-15 9 (7.8; 0.041-0.142) 1 (0.87; 0.001-0.047) 

NY-BR-1 and GATA-3 3 (2.6, 0.008-0.073) 0 (0; 0.000-0.031) 

Ny-BR-1 and GCDFP-15 2 (1.7, 0.004-0.061) 2 (1.7, 0.004-0.061) 

Any markers (without BCA-225) 97 (84.3; 0.766-0.898) 40 (34.7; 0.266-0.438) 

 

CI: confidence interval 



Table 4. Mutual breast marker expressions in the tumors investigated 

 

Any staining GATA3+ GATA3- MG+ MG- GCDFP-15+ GCDFP-15- NY-BR-1+ NY-BR-1- 

GATA3+         

GATA3- na        

MG+ 21 8       

MG- 61 25 na      

GCDFP-15+ 16 6 11 11     

GCDFP-15- 66 27 18 75 na    

NY-BR-1+ 2 3 0 5 1 4   

NY-BR-1- 80 30 29 81 21 89 na  

BCA225+ 57 16 23 50 16 57 3 70 

BCA225- 25 17 6 36 6 36 2 40 

 
        

5% cut-off GATA3+ GATA3- MG+ MG- GCDFP-15+ GCDFP-15- NY-BR-1+ NY-BR-1- 

GATA3+         

GATA3- na        

MG+ 2 10       

MG- 21 82 na      

GCDFP-15+ 2 6 2 6     

GCDFP-15- 21 86 10 97 na    

NY-BR-1+ 0 1 0 1 0 1   

NY-BR-1- 23 91 12 102 8 106 na  

BCA225+ 8 31 4 35 4 35 0 39 

BCA225- 15 61 8 68 4 72 1 75 

  



Table 5. Summary of results from other series exploring the labeling of TNBCs 

Author (year) cut off Tumor type GATA-3 MG GCDFP-15 NY-BR-1 

Ordonez et al. (11) any staining metastatic TNBC 12/40 (30%) 7/40 (17.5%) 6/40 (15%) -- 

Krings et al. (54) any staining primary TNBC 72/109 (66%) 28/107 (26.1%) 17/109 (15.5%) -- 
      -- 

Braxton et al. (55) >10% metastatic TNBC 30/35 (85.7%) 9/35 (25.7%) 5/35 (14.2%) -- 

Cimino-Matthews et al. (19) >5% primary TNBC 19/44 (43.1%) -- -- -- 
  metastatic TNBC 5/9 (55.5%) -- -- -- 

Lew et al. (56) any staining metastatic TNBC 11/13 (84.6%) 4/13 (30.7%) 1/13 (7.6%) -- 

Huo et al. (6) 
any staining 
>5% 

primary TNBC 
25/62 (40.3%) 
14/62 (22.58%) 

16/62 (25.8%) 
7/62 (11.2%) 

9/62 (14.5%) 
4/62 (6.4%) 

-- 

 any staining 
>5% 

metastatic TNBC 
30/68 (44.1%) 
18/68 (26.4%) 

22/68 (32.3%) 
10/68 (14.7%) 

11/68 (16.1%) 
6/68 (8.8%) 

-- 

Lewis et al. (32) any staining 
primary basal-

like TNBC 
-- 5/24 (20.8%) 1/5 (20%) -- 

Rakhshani et al. (57) >10% 
primary basal-

like TNBC 
-- 6/66 (9%) 12/66 (18.1%) -- 

Darb-Esfahani et al. (58) any staining primary TNBC -- -- 34/130 (26.1%) -- 

Pala et al. (59) >5% primary TNBC -- -- 8/41 (19.5%) -- 

Deftereos et al. (7) H-score 99.4 primary TNBC 7/28 (25%) 2/28 (7.1%) 5/28 (17.8%) -- 

Clark et al. (60) at least 4% primary TNBC 22/30 (73.3%) -- -- -- 

Gloyeske et al. (61) 
any staining 
>10 H-score 

 
primary TNBC 

 
22/30 (73%) 

 
6/31 (19%) 

5/32 (16%) 
 

 
5/30 (17%) 

Our work 
any staining 
>5% 

primary (or 
recurrent) TNBC 

82/115 (71.3%) 
23/115 (20.0%) 

30/115 (26.0%) 
12/115 (10.4%) 

23/115 (20.0%) 
9/115 (7.8%) 

7/115 (6.0%) 
3/115 (2.6%) 

Sensitivity; 95% CI*   43.7%; 0.397-0.477 16.3%; 0.135-0.195 15,1%; 0,127-0,179 5.5%; 0.028-0.105 

 

* For calculating sensitivity values, all publications with data were considered, and whenever there were data with two staining cut-

offs, the >5% data were included only. 
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