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ABSTRACT: Thinning is an iterative object reduction technique for

extracting medial curves from binary objects. During a thinning
process, some border points that satisfy certain topological and geo-

metric constraints are deleted in iteration steps. Parallel thinning

algorithms are composed of parallel reduction operators that delete a
set of object points simultaneously. This article presents 21 parallel

thinning algorithms for (8,4) binary pictures that are derived from

the sufficient conditions for topology preservation accommodated to

the three parallel thinning approaches. VVC 2011 Wiley Periodicals, Inc.

Int J Imaging Syst Technol, 21, 37–44, 2011; Published online in Wiley Online

Library (wileyonlinelibrary.com). DOI 10.1002/ima.20272
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INTRODUCTION

Skeleton is a frequently applied region-based shape descriptor. An

illustrative definition of the skeleton is given using the prairie-fire

analogy: the object boundary is set on fire and the skeleton is

formed by the loci where the fire fronts meet and extinguish each

other (Blum, 1967). It provides simpler objects that summarize the

general forms of the original ones.

Thinning processes simulate the front propagation in digital

spaces: some points in the outmost layer of a binary object that

satisfy certain topological and geometric constraints are deleted in

iteration steps, and the entire process is repeated until stability is

achieved (Lam et al., 1992; Suen and Wang, 1994). Thinning in 2D

digital spaces extracts skeleton-like shape features (that are called

medial curves) in a topology preserving way (Kong and Rosenfeld,

1989; Kong 1995).

Parallel thinning algorithms are composed of parallel reduction

operators that delete a set of object points simultaneously (Hall,

1996). Ronse gave sufficient (but not necessary) conditions for

parallel reduction operators to preserve topology (Ronse, 1988).

There are three strategies for parallel thinning: directional,

subfield-based, and fully parallel (Lam et al., 1992; Suen and

Wang, 1994; Hall, 1996). This article presents 21 parallel thin-

ning algorithms: six of them are directional, 12 use subfield-based

approach (six of them follow the conventional scheme, and the

remaining six ones use our novel iteration-level endpoint check-

ing), and the last three algorithms belong to the fully parallel

type. Our algorithms are based on some sufficient conditions for

topology preservation.

BASIC NOTIONS AND RESULTS

In this article, we use the fundamental concepts of digital topology

as reviewed by Kong and Rosenfeld (Kong and Rosenfeld, 1989).

Let p be a point in the digital space Z2. Let us denote N4 (p) 5
{p, pN, pE, pS, pW} and N8 (p) 5 N4 (p) | {pNE. pSE, pSW, pNW}

the sets of points that are 4-adjacent and 8-adjacent to point p,
respectively (see Fig. 1), and Ni

*(p) 5 Ni(p)\{p} refers to the set

containing the proper i-adjacent neighbors of p (for i 5 4,8).

A 2D binary (8,4) digital picture P is a quadruple P 5
(Z2,8,4,B) (Kong and Rosenfeld, 1989). The elements of Z2 are

called points of P. Each point in B ( Z2 is called a black point or

an object point and value of ‘‘1’’ is assigned to it. Each point in

Z2\B is called a white point and has a value of ‘‘0’’. Eight-connec-

tivity and four-connectivity are, respectively, used for the black

components and the white ones.

A black point is a border point in (8,4) pictures if it is 4-adjacent

to at least one white point. A border point is called an N-border point

if the point marked pN in Figure 1 is white. We can define E-, S-, and

W-border points in the same way. A border point is called an NE-

border point if at least one of the two points marked pN and pE in Fig-
ure 1 is white. Similarly, a border point is called an SW-border point

if at least one of the two points marked pS and pW in Figure 1 is white.

A black point is called an interior point if it is not a border point.

A black point is called a simple point if its deletion preserves the

topology of the picture (Kong and Rosenfeld, 1989). The support

(i.e., the minimal set of points whose values determine the property

in question) of the operator which detects simple points is 33 3.

Thinning algorithms use operators that delete some simple

points which are not endpoints, since preserving endpoints provides

important geometrical information relative to the shape of the
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objects. The algorithms presented in ‘‘Special sufficient conditions

for topology preservation’’ section consider the following three

characterizations of an endpoint.

Definition 1. Black point p in picture (Z2,8,4,B) is an endpoint

of type i if the i-th condition holds:

1. N�
8ðpÞ \ B ¼ fqg:

2. N �
8ðpÞ \ B ¼ fqg; or N�

8ðpÞ \ B ¼ fq; rg and r 2 N�
4ðqÞ

3. N�
8ðpÞ \ B ¼ fqg; or N�

8ðpÞ \ B ¼ fq; rg and r 2 N�
8ðqÞ

Note that condition 1 is more restrictive than condition 2, and

condition 2 is more restrictive than condition 3. That is why we

interchanged conditions 2 and 3. Note that Hall (Hall, 1996) used

different order in the three traditional definitions of an endpoint. Fig-

ure 2 shows some examples of the considered types of endpoints. It

is not hard to see that any endpoint of type i is simple (i5 1,2,3).

Parallel reduction operators delete a set of black points and not

just a single simple point. The following theorem about sufficient

conditions for parallel reduction operators of (8,4) pictures is

derived from Ronse’s results (Ronse, 1988):

Theorem 1. (Kong, 1995) A parallel reduction operator is topol-

ogy preserving for (8,4) pictures if all of the following conditions hold:

1. Only simple points are deleted.

2. For any two 4-adjacent points, p and q are deleted, p is sim-

ple after q is deleted, or q is simple after the deletion of p.
3. No ‘‘small’’ black component contained in a 2 3 2 square is

deleted completely.

It is easy to see that there are 10 possible ‘‘small’’ black compo-

nents contained in a 23 2 square (see Fig. 3).

SPECIAL SUFFICIENT CONDITIONS FOR TOPOLOGY
PRESERVATION

Theorem 1 provides a general method of verifying that a parallel

thinning algorithm preserves topology (Kong, 1995). In this section,

we present new sufficient conditions for topology preservation as a

basis for designing new parallel thinning algorithms.

Let us consider the first three ‘‘small’’ black components (see

Figs. 3a–3c).

Proposition 1. If a parallel reduction operator satisfies Condi-

tion 1 of Theorem 1, then Condition 3 of Theorem 1 is granted for

the ‘‘small’’ black component depicted in Figure 3a.

It is obvious since this black component is formed by a single

nonsimple point.

Proposition 2. If a parallel reduction operator O satisfies

Condition 2 of Theorem 1, then none of the two ‘‘small’’ black

components depicted in Figures 3b–3c can be deleted completely

by O.

Both considered ‘‘small’’ black components are formed by two

4-adjacent simple points. If one of them is deleted, then the remain-

ing point is a single nonsimple point.

We are now ready to state some new sufficient conditions for

topology preservation.

Theorem 2. Let O be a parallel reduction operator. Let p be any

black point in any picture P 5 (Z2,8,4,B) such that p is deleted by

O. The operator O is topology preserving for (8,4) pictures if all of

the following conditions hold:

1. Point p is simple in P.
2. For any simple point q [ N4

* (p) \B, p is simple in

picture (Z2,8,4,B\{q}), or q is simple in picture (Z2,8,

4,B\{p}).
3. Point p does not coincide with the points marked ‘‘x’’ in the

seven black components depicted in Figures 3d–3j.

Proof. We need to show that all conditions of Theorem 1 are

satisfied.

� Condition 1 of Theorem 2 corresponds to Condition 1 of The-

orem 1.

� Condition 2 of Theorem 2 corresponds to Condition 2 of The-

orem 1.

� The first three ‘‘small’’ black components (see Figs. 3a–3c)

cannot be deleted completely by Propositions 1 and 2. In the

Figure 2. Examples of the considered three types of endpoints.

Figure 1. Notations for 4-adjacency and 8-adjacency.

Figure 3. Possible black components contained in a 2 3 2 square. Points marked ‘‘x’’ are the ‘‘protected’’ elements of the last seven black

components (see Condition 3 of Theorem 2).

38 Vol. 21, 37–44 (2011)



remaining seven ‘‘small’’ black components (see Figs. 3d–3j)

points marked ‘‘x’’ cannot be deleted by Condition 3 of Theo-

rem 2. Hence Condition 3 of Theorem 1 hold. n

The general Theorem 2 can be simplified by considering end-

point preserving parallel reductions. Let us state some properties of

the seven ‘‘small’’ black components that are to be taken into

account in Condition 3 of Theorem 2 (see Figs. 3d–3j).

Proposition 3. Let O be a parallel reduction operator that pre-

serves endpoints of type 1. Condition 3 of Theorem 1 is granted for

the two ‘‘small’’ black components depicted in Figures 3d–3e.

This holds since both black components are composed of two

endpoints of type 1. Hence none of these black components is

deleted completely.

Proposition 4. Let O be a parallel reduction operator that

preserves endpoints of type i (i 5 2,3). Condition 3 of Theorem 1 is

granted for the six ‘‘small’’ black components depicted in Figures

3d–3i.

This holds since each of these black components contains at

least one endpoint of type i (i 5 2,3).

In consequences of Propositions 3 and 4, Theorem 2 can be

modified for parallel reductions that preserve some type of

endpoints.

Theorem 3. Let O be a parallel reduction operator that considers

endpoints of type i (i5 1,2,3). Let p be any black point in any

picture P 5 (Z2,8,4,B) such that p is deleted by O. The operator O
is topology preserving for (8,4) pictures if all of the following

conditions hold:

1. Point p is simple and not an endpoint of type i in P.
2. For any point q [ N4

* (p) \ B being simple but not an end-

point of type i, p is simple in picture (Z2,8,4,B\{q}), or q is

simple in picture (Z2,8,4,B\{p}).
3. Third condition is as follows:

� If i 5 1, then point p does not coincide with the points

marked ‘‘x’’ in the five ‘‘small’’ black components

depicted in Figures 3f–3j.

� If i [ {2,3}, then point p does not coincide with the point

marked ‘‘x’’ in the ‘‘small’’ black component depicted in

Figure 3j.

Notice that the Condition 3 of Theorem 2 was remarkably

changed by reducing the number of ‘‘small’’ black components to

be considered.

21 VARIATIONS ON THINNING ALGORITHMS

In this section various parallel thinning algorithms are presented

that are based on some sufficient conditions for topology preserva-

tion (see Theorem 3) and the three characterizations of an endpoint

(see Definition 1).

A. Directional Thinning Algorithms. An iteration step of direc-

tional (or border sequential, or subiteration) algorithms is divided

into a number of successive subiterations, where only border points

of a certain kind can be deleted. Note that 2-subiteration (Zhang

and Suen, 1984; Lü and Wang, 1986; Chen and Hsu, 1989; Gou and

Hall, 1989; Zhang and Wang, 1996) and 4-subiteration (Stefanelli

and Rosenfeld, 1971; Rosenfeld, 1975; Davies and Plummer, 1981;

Arcelli et al., 1994) algorithms have been developed for this task.

The support of their parallel reductions is usually 33 3.

In this subsection we present three 2-subiteration algorithms

denoted by SI-2-i and three 4-subiteration ones denoted by SI-4-i,
where i (i 5 1,2,3) is the type of endpoints (see Definition 1) to be

preserved.

The two deletion directions of the 2-subiteration algorithms

are d2(1) 5 NE and d2(2) 5 SW. At the j-th subiteration, some

d2(j)-border points can be deleted (j 5 1,2).

In the case of 4-subiteration directional algorithms, the four

deletion directions are d4(1) 5 N, d4(2) 5 E, d4(3) 5 S, and

d4(4) 5 W. Some d4(j)-border points can be deleted by the j-th sub-

iteration (j 5 1,2,3,4).

We are now ready to sketch the three 2-subiteration directional

algorithms SI-2-i and the three 4-subiteration algorithms SI-4-i (i 5
1,2,3):

Algorithm SI-k-i
Input: picture (Z2,8,4,X)
Output: picture (Z2,8,4,Y)

// endpoints of type i are preserved
Y 5 X
repeat

// one iteration step

for j51 to k do

// j-th subiteration

D(j)5{p | p is SI-k-i-dk(j)-deletable in Y}

Y5 Y \ D(j)
until D(1)|. . .|D (k) 5 Ø

Before we define the considered types of deletable points, some

properties of the ‘‘small’’ black components to be taken into con-

sideration are stated.

Proposition 5. Consider the NE-subiteration of algorithm SI-2-i

(i 5 1,2,3). There is at least one point in both ‘‘small’’ black com-

ponents depicted in Figures 3g and 3j that is not an NE-border

point. Consequently, these two ‘‘small’’ black components need

not to be checked in the NE-subiteration.

Proposition 6. Consider the SW-subiteration of algorithm SI-2-i

(i 5 1,2,3). There is at least one point in both ‘‘small’’ black com-

ponents depicted in Figures 3h and 3j that is not an SW-border

point. Consequently, these two ‘‘small’’ black components need

not to be checked in the SW-subiteration.

Proposition 7. Consider b-border points (for b 5 N,E,S,W).

There is at least one point in each of the five ‘‘small’’ black compo-

nents in Figures 3f–3j that is not a b-border point. Hence that point

cannot be deleted by the reduction assigned to any subiteration of

the 4-subiteration algorithm SI-4-i (i 5 1,2,3). Consequently, the

five ‘‘small’’ black components depicted in Figures 3f–3j need not

to be checked in the 4-subiteration case.

In consequences of Propositions 5 and 6, SI-2-i-b-deletable

points can be defined as follows:

Definition 2. A black point p is SI-2-i-b-deletable (i 5 1,2,3;

b5 NE,SW) if all of the following conditions hold:

1. Point p is simple and b-border but not an endpoint of type i

(see Condition 1 of Theorem 3).

2. For any point q [ N4
* (p) being simple and b-border but

not an endpoint of type i, p is simple after q is deleted,

or q is simple after the deletion of p (see Condition 2 of

Theorem 3).

3. For the i 5 1 case (see Condition 3 of Theorem 3):
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� At the NE-subiteration, point p does not coincide with

points marked ‘‘x’’ in the three ‘‘small’’ black components

depicted in Figures 3f, 3h, and 3i.

� At the SW-subiteration, point p does not coincide with

points marked ‘‘x’’ in the three ‘‘small’’ black components

depicted in Figures 3f, 3g, and 3i.

In consequence of Proposition 7, we can define SI-4-i-j-delet-
able points as follows:

Definition 3. A black point p is SI-4-i-b-deletable (i 5 1,2,3; b
5 N,E,S,W) if both of the following conditions hold:

1. Point p is simple and b-border but not an endpoint of type i

(see Condition 1 of Theorem 3).

2. For any point q [ N4
*(p) being simple and b-border but not an

endpoint of type i, p is simple after q is deleted, or q is simple

after the deletion of p (see Condition 2 of Theorem 3).

It can readily be seen that deletable points of the proposed direc-

tional algorithms SI-k-i (k 5 2,4; i 5 1,2,3) are derived directly

from the corresponding sufficient conditions for topology preserva-

tion. Hence all of the six algorithms are topology preserving.

Note that subiteration-based algorithms are sensitive to the

orders of the deletion directions. Choosing different orders of direc-

tions yields various medial curves. To reduce their asymmetry, the

order of the directions within each iteration step can be selected

randomly.

B. Subfield-Based Thinning Algorithms. The second

approach for parallel thinning is the subfield-based (or subfield-se-

quential) strategy. Subfield-based thinning algorithms with 3 3 3

support partition the digital space into some subsets which are alter-

natively activated, and only some points in the active subfield can

be deleted (Preston and Duff, 1984; Guo and Hall, 1989; Gökmen

and Hall, 1990; Neusius et al., 1992). In the case of Z2, two kinds of

partitions into two and four subfields were introduced (Hall, 1996).

Let us denote SFk(j) the j-th subfield in the k-subfield partitions

(k 5 2,4; j 5 0,1,. . .,k-1; see Fig. 4). Without loss of generality, we

can assume that (0,0) [ SFk (0) (i.e., the origin as a point in Z2 is in

the 0th subfield).

Now, let us state some properties of these two partitions.

Proposition 8. For the 2-subfield case (see Fig. 4a), two points p

and q [ N8
* (p) are in the same subfield if q [ N8 (p)\N4 (p).

Proposition 9. For the 4-subfield case (see Fig. 4b), two points

p and q [ N8
* (p) are not in the same subfield.

In consequences of Propositions 8 and 9, Theorem 3 can be dra-

matically simplified for subfield-based reductions.

Theorem 4. (Hall, 1996) A k-subfield (k5 2,4) parallel reduction

operator that does not delete endpoints of type i (i 5 1,2,3) is topol-

ogy preserving for (8,4) pictures if only simple points are deleted.

Notice that the Condition 1 of Theorem 1 need to be checked

since Conditions 2 and 3 automatically hold.

In this subsection we present 12 subfield-based parallel thin-

ning algorithms that are derived from a single sufficient condi-

tion for topology preservation (see Theorem 4). These algo-

rithms use the 2-subfield and 4-subfield partitions (see Fig. 4)

and the three conventional characterizations of an endpoint (see

Definition 1).

The first six k-subfield (k 5 2,4) algorithms SF-k-i using

endpoints of type i (i 5 1,2,3) are described as follows:

Algorithm SF-k-i
Input: picture (Z2,8,4,X)

Output: picture (Z2,8,4,Y)

// endpoints of type i are preserved
Y5 X

repeat

// one iteration step

for j 5 0 to k-1 do

// subfield SFk(j) is activated

D(j) 5 {p | p is SF-i-deletable in Y \ SFk(j)}

Y5 Y \ D(j)
until D(0)|. . .|D(k 2 1)5 Ø

According to Theorem 4, we can define SF-i-deletable points as
follows:

Definition 4. A black point is SF-i-deletable (i 5 1,2,3) if it is

simple but not an endpoint of type i.
To reduce the noise sensitivity and the number of skeletal points,

we introduce a modified subfield-based thinning scheme. It takes

the endpoints into consideration at the beginning of iteration steps,

instead of preserving them in each parallel reduction as it is accus-

tomed in existing subfield-based thinning algorithms.

The following six k-subfield (k5 2,4) algorithms SF-IL-k-i pre-

serving endpoints of type i (i 5 1,2,3) use the iteration-level end-

point checking scheme:

Algorithm SF-IL-k-i
Input: picture (Z2,8,4,X)
Output: picture (Z2,8,4,Y)

// endpoints of type i are preserved
Y 5 X
repeat

// one iteration step

E 5 {p | p is a border point but not an endpoint of type i
in Y}

for j 5 0 to k-1 do

// subfield SFk(j) is activated
D(j)5 {p | p is SF-IL-deletable in E \ SFk (j)}
Y 5 Y \ D(j)

until D(0)|. . .|D (k 2 1)5 Ø

Definition 5. A black point is SF-IL-deletable if it is simple.

It can readily be seen that all the presented 12 subfield-based

thinning algorithms are topology preserving, since Theorem 4 holds

for their deletable points.

Figure 4. Partitions of Z2 into 2 (a) and 4 (b) subfields. For the

k-subfield case, all points marked j are in the subfield SFk(j) (k 5 2,4;
j5 0,1,. . .,k21).
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Note that each subfield-based algorithm is sensitive to the order

of the subfields. If we choose another order in subfield-activation,

we may get another algorithm. We can use a randomly selected

order of subfields in each iteration step.

C. Fully Parallel Thinning Algorithms. The third type of paral-

lel thinning algorithms use the fully parallel approach (Rutovitz,

1966; Guo and Hall, 1992; Wu and Tsai, 1992; Manzanera et al,

2002). In this case, the same parallel reduction operator is applied

at every phase of the thinning process. To preserve topology, the

support of that operator is larger than 3 3 3; some additional points

are needed that are in the 5 3 5 neighborhood. Note that some

existing fully parallel thinning algorithms use asymmetric supports

(Hall, 1996).

In this subsection we present three fully parallel thinning algo-

rithms that use the three considered types of endpoints. Note that

we have published these algorithms in (Németh and Palágyi, 2009).

Algorithm FP-i using endpoints of type i (i 5 1,2,3) is outlined

as follows:

Algorithm FP-i

Input: picture (Z2,8,4,X)
Output: picture (Z2,8,4,Y)
// endpoints of type i are preserved

Y 5 X
repeat

// one iteration step

D5{p | p is FP-i-deletable in Y}

Y 5 Y \ D
until D5 Ø

According to Theorem 3, we can define SF-i-deletable points as
follows:

Definition 6. A black point p is FP-1-deletable if all of the fol-

lowing conditions hold:

1. Point p is simple but not an endpoint of type 1 (see Condition

1 of Theorem 3).

2. For any point q [ N4
* (p) being simple but not an endpoint of

type 1, p is simple after q is deleted, or q is simple after the

deletion of p (see Condition 2 of Theorem 3).

3. Point p does not coincide with the points marked ‘‘x’’ in the

five ‘‘small’’ black components depicted in Figures 3f–3j

(see Condition 3 of Theorem 3).

Definition 7. A black point p is FP-i-deletable (i 5 2,3) if all of

the following conditions hold:

1. Point p is simple but not an endpoint of type i (i 5 2,3) (see

Condition 1 of Theorem 3).

2. For any point q [ N4
* (p) being simple but not an endpoint of

type i (i 5 2,3), p is simple after q is deleted, or q is simple

after the deletion of p (see Condition 2 of Theorem 3).

3. Point p does not coincide with the point marked ‘‘x’’ in the

‘‘small’’ black component depicted in Figure 3j (see Condi-

tion 3 of Theorem 3).

It can readily be seen that all the three fully parallel thinning

algorithms are topology preserving, since the corresponding suffi-

cient conditions for topology preservation (see Theorem 3) hold for

their deletable points.

IMPLEMENTATION

This section will present a method for implementing any parallel

reduction operator on a conventional sequential computer. A fairly

general framework is proposed, as similar schemes can be used for

the other classes of parallel algorithms (Palágyi, 2008).

Figure 5. Supports of the parallel reduction operators assigned to the presented 21 parallel thinning algorithms.
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The proposed method uses a tricolor array which stores the

actual picture to be processed: a value of ‘‘0’’ corresponds to the

white points, the value of ‘‘1’’ corresponds to (black) interior

points, and a value of ‘‘2’’ is assigned to (black) border points in

the actual picture, and a precalculated look-up-table to encode the

deletion rule of the parallel reduction in question. In addition, two

lists are used to speed up the process: one for storing the border-

points in the current picture (since reduction operators of thinning

algorithms can only delete border points, the other list is to store all

deletable points of the parallel reduction. At the parallel reduction,

the deletable points are found and deleted, and the list of border

points is updated accordingly.

The sizes of the algorithm-specific look-up-tables depend on the

supports of the parallel reduction operators assigned to the 21 thin-

ning algorithms presented in ‘‘21 variations on thinning algo-

rithms’’ section. For example, if a support contains 21 points, then

the corresponding look-up-table requires just 0.25 MB of storage

space in memory. Supports of the proposed algorithms are given in

Figure 5.

According to this efficient implementation method, the time com-

plexity of the presented algorithms depends just on the number of

object points and the compactness of the objects (i.e., volume to area

ratio); but it does not depend on the size of picture which contains

the objects to be thinned. Medial curves of large objects containing

1.000.000 points can be extracted within 1 second on a usual PC.

Figure 6. Medial curves of a bug produced by the presented 21

parallel thinning algorithms. The original 40 3 33 image contains 474

object points.

Figure 7. Medial curves of a hand produced by the presented 21

parallel thinning algorithms. The original 191 3 162 image contains

16,964 object points.
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DISCUSSION AND RESULTS

In experiments the 21 parallel thinning algorithm presented in ‘‘21

variations on thinning algorithms’’ section were tested on objects of

different shapes. Here we present some illustrative examples below

(Figs. 6–8). The produced medial curves are superimposed on the

original objects, and pair of numbers ‘‘(mc,ps)’’ mean the number of

points in the medial curves (mc) and the parallel speed (ps). The paral-
lel speed characterizes an algorithm by the number of parallel reduc-

tion operators required by the entire thinning process (Hall, 1996).

If we would like to summarize the properties of the presented

algorithms, we can state the followings:

� All the 21 algorithms are different from each other (see Fig. 6).

� The 2-subiteration algorithms (SI-2-i; i 5 1,2,3) are faster

than the 4-subiteration ones (SI-4-i; i 5 1,2,3), but they may

produce asymmetric medial curves for symmetric objects (see

Figs. 6a–6f).

� The 2-subfield algorithms (SF-2-i and SF-IL-2-i; i 5 1,2,3)

are faster than the 4-subfield ones (SF-4-i and SF-IL-4-i; i 5
1,2,3).

� Subfield-based algorithms SF-IL-k-i (k 5 2,4; i 5 1,2,3) with

iteration-level endpoint checking produce much less

unwanted side branches than algorithms SF-k-i that use the

conventional thinning scheme (see Figs. 6–8g–r). Note that

unwanted side branches in medial curves can be removed by

a pruning process (Shaked and Bruckstein, 1998).

� The 4-subfield algorithms with iteration-level endpoint check-

ing (SF-IL-4-i; i 5 1,2,3) are the slowest ones.

� The fully parallel algorithms FP-i (i 5 1,2,3) are the fastest

ones, but they may produce two-point thick vertical and hori-

zontal segments due to the sufficient conditions for topology

preservation accommodated to them (see Figs. 6s–6u). That is

why their medial curves contain relatively large numbers of

object points. It is easy to overcome this problem by postpro-

cessing. It is not hard to see that just one iteration step of any

of the remaining 18 directional and subfield-based algorithms

can produce one-point thick segments from those two-point

thick ones.

CONCLUSION

We presented 21 parallel thinning algorithms that are working on

(8,4) binary pictures. Their deletion rules were derived from suffi-

cient conditions for topology preservation accommodated to them,

hence their topological correctness is guaranteed. The proposed

algorithms use all the three parallel thinning approaches (i.e.,

Figure 8. Medial curves of three characters produced by the presented 21 parallel thinning algorithms. The original 248 3 85 image contains

10,561 object points.
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directional, subfield-based, and fully parallel) and the three conven-

tional characterizations of an endpoint. In addition, we proposed a

novel iteration-level endpoint checking for subfield-based thinning

algorithms.

REFERENCES

C. Arcelli, G. Sanniti Di Baja, and G. Kwok, ‘‘Parallel pattern compression

by octagonal propagation,’’ In Thinning methodologies for pattern recogni-

tion, C.Y. Suen and P.S.P. Wang (Editors), series in Machine Perception and

Artificial Intelligence 8, World Scientific, Singapore; New Jersey; London;

Hong Kong, 1994, pp. 113–137.

H. Blum, A transformation for extracting new descriptors of shape, models for

the perception of speech and visual form, MIT Press, Boston, 1967, 362–380.

Y.S. Chen and W.H. Hsu, A systematic approach for designing 2-subcycle

and pseudo 1-subcycle parallel thinning algorithm, Pattern Recognition 22

(1989), 267–282.

E.R. Davies and A.P.N. Plummer, Thinning algorithms: A critique and a

new methodology, Pattern Recognit 14 (1981), 53–63.

M. Gökmen and R.W. Hall, Parallel shrinking algorithms using 2-subfields

approaches, Comput Vis Graph Image Process 52 (1990), 191–209.

Z. Guo and R.W. Hall, Parallel thinning with two subiteration algorithms,

Commun ACM 32 (1989), 359–373.

Z. Guo and R.W. Hall, Fast fully parallel thinning algorithms, CVGIP:

Image Understanding 55 (1992), 317–328.

R.W. Hall, ‘‘Parallel connectivity-preserving thinning algorithms,’’ In Top-

ological algorithms for digital image processing, T.Y. Kong and A. Rose-

nfeld, (Editors), Elsevier Science, Amsterdam, 1996, pp. 145–179.

T.Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey,

Comput Vis Graph Image Process 48 (1989), 357–393.

T.Y. Kong, On topology preservation in 2-d and 3-d thinning, Intern J Pat-

tern Recognit Artif Intell 9 (1995), 813–844.

L. Lam, S.-W. Lee, and C.Y. Suen, Thinning methodologies—A compre-

hensive survey, IEEE Trans Pattern Analysis Machine Intell 14 (1992), 869–

885.
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