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Abstract 

The paper deals with the so far most efficient antidiabetic transition metal compound family. 

It focuses on the species distribution of the most frequently studied vanadium(IV,V) 

compounds in biology: in the gastro-intestinal tract (being important in absorption of the 

compounds), the blood serum (very likely the main route of their transport), the whole blood 

(recently the role of the red blood cells are also assumed in their transport) and in the cells 

(where glutathione and ATP may be the most important redox and complex formation 

partners of the original vanadium-“insulinomimetics”). 

The discussed details fit into the general view, but far from a complete and clear 

understanding of the pharmacodynamics of these antidiabetics. A lot more in vitro and mostly 

in vivo studies are necessary to justify their real clinical use. 
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1. Introduction 

Progress in the bioinorganic chemistry of vanadium and the search in the therapeutic 

applications have been exponential and numerous reviews have been published in recent years 

[1-8]. Vanadium compounds have been shown to be potentially effective against diabetes, 

malign tumors including cancer, endemic tropical diseases (such as trypanosomiasis, 

leishmaniasis and amoebiasis), bacterial infections (tuberculosis and pneumonia) and HIV 

infections. Furthermore, vanadium drugs can be operative in cardio- and neuro-protection. So 

far, vanadium compounds have not yet been approved as pharmaceuticals for clinical use [1]. 

In this paper we will review the antidiabetic effects of vanadium compounds; other terms as 

insulin mimetic or insulin-enhancing are also used in the literature. However it is believed that 

in the complete lack of insulin (how can it be achieved in a living organism?) vanadium is not 

showing any insulin like effects, accordingly vanadium can only enhance the effects of insulin 

[2]. For this reason mostly we use the rather neutral antidiabetic expression for the blood 

glucose lowering effect (as one of the most important role of insulin in biology) of vanadium 

compounds. 

 

2. Insulin enhancing metal complexes in biological fluids 

Diabetes mellitus (‘diabetes’ or DM) is a group of metabolic diseases in which there is 

high blood sugar level over a prolonged, sometimes nearly a lifetime period. It is induced by a 

non-existent or insufficient insulin supply, or inadequate response to insulin. In the case of 

DM type 1 the insulin-producing cells in the body have been destroyed, while in the case of 

DM type 2 the cells of the body are not responding properly (partial resistance) to the insulin 

produced. As of 2015, an estimated 415 million people had diabetes worldwide with type 2 

DM [9], which usually appears in people over the age of 40, making up about 90% of the 

cases [10]. Type 1 diabetes can be treated only with insulin, a natural peptide (protein) 

hormone composed of 51 amino acids, also over 40% of patients with type 2 diabetes require, 

as part of their treatment, insulin injections. However, peptides currently cannot be taken 

orally because of their degradation in the GI tract, insulin is given as an injection [11]. This 

painful and expensive treatment could be replaced by an insulin ’mimicker’ which can be 

taken orally. Many metal ions such as Cr(III), Mn(II), Mo(VI), Se(V), V(IV/V), W(VI) and 

Zn(II) have insulin-like effect. 
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2.1. Insulin-enhancing vanadium compounds 

Although most foods contain low concentrations of vanadium (0.1 ng g–1), food is the 

major source of exposure to vanadium for the general population. The absorption of vanadium 

salts from the gastro-intestinal tract is poor in humans, and the excretion of Vanadium in the 

kidneys is relatively rapid with a half-life of 20–40 h in urine. Therefore, the toxicity of 

vanadium compounds is low in general. The estimated vanadium intake of the US population 

ranges from 10–60 mg V day–1. VO(IV)SO4 is a common supplement used to enhance weight 

training in athletes at doses of up to 60 mg day–1. In humans, the threshold level for vanadium 

toxicity is concluded to be approximately 10–20 mg V day–1 [4]. 

Insulin-like effects of vanadium were first demonstrated in vivo by McNeill and co-

workers [12] by simple adding of sodium orthovanadate (Na3VO4) to the drinking water of 

streptozotocin (STZ)-diabetic rats for several weeks. Later the only partly soluble vanadates 

were replaced by VO(IV)SO4 and the result was fewer negative side effects [13-15]. However 

the applied necessary dose of vanadium still was close to the levels at which adverse effects 

are observed [16]. The question became then, ‘‘is there some way to chemically improve 

potency of these drug candidate antidiabetic agents?’’. Several vanadium complexes with 

different coordination mode were synthesized and characterized in order to answer this 

question. The most frequent basic structures (‘backbones’) are depicted in Fig. 1. A key 

compound in this regard is the bis(maltolato)oxovanadiumV(IV) complex (VO(IV)(mal)2 or 

BMOV) [17,18], in Fig. 1, and its derivative the ethylmaltol complex [2] and allixin [19,20]. 

The related complex with the pyridinone complex VO(IV)(dhp)2 have also been prospective 

therapeutics [21]. Several other complexes have been studied, such as VO(IV)(acac)2, 

VO(IV)(pic)2, VO(IV)(hpno)2, VO(IV)(mpno)2, VO(IV)(metf)2 (the bis complex of 

metformin an antidiabetics itself) and several picolinato and dipicolinato derivatives. Most of 

them are neutral bis complexes formed with bidentate organic ligands (Table 1a and 1b), 

where the oxidation state of the vanadium is +4. One exception (Table 1c) is the 

[VO2(V)(dipic)]‒ with negative charge and +5 oxidation state of the central metal ion [22]. All 

these complexes are labile, and ready to take part in fast ligand exchange reactions. 
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Table 1a Successful insulin mimetic in vivo tests with VO(IV)L2 complexes where the 

ligands (L) have (O,O) donor set 

L Dose Duration 
Blood glucose level (mM)  

/ animal model 
   

 
mmol V / kg 

/day 
days 

STZ 

rat 

STZ 

mice 

ZDF 

rat 

KKA' 

mice 

Ref 

comp. 

Ref. 

value 
Ref. 

   oa i.p.b  oa oa  (mM/%)  

mal type:          

imal 0.6 1 17(3)     BMOV 14(2) [23] 

emal 0.6 1  6.5(1.7)    BMOV 7.1(1.6) [24] 

emal 0.1 18    ~22    [25] 

ipmal 0.1 1 ~13     BMOV ~12 [24] 

alx 0.06/0.14 30     ~10   [26] 

alx 0.1/0.06/0.02 6   ~10b   BMOV ~15b [19] 

alx 0.14 9   ~12a     [20] 

hpno type:          

hpno 0.15 20 ~10       [27] 

hpno 0.05 8  ~8      [27] 

hopy type:          

mhopy 0.02-0.1 14 ~12       [28] 

dmhopy 0.1/0.08 14  ~11      [29] 

acac type:          

cur 0.1 2 
no 

eff. 

l.r.c 

(~14%) 
   BMOV 47% [30] 

a Oral gavage 

b Intraperitoneal injection 

c Low response (% decrease) 
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Table 1b Successful insulin mimetic in vivo tests with VO(IV)L2 complexes where the 

ligands (L) have (O,N) or (O,S) or (N,N) donor set 

 Dose Duration Glucose level (mM) / animal model    

L mmol V / kg /day days STZ rat KKA' mice 
Ref 

comp. 

Ref. 

value 
Ref. 

   oa i.p.b oa i.p.b  (mM)  

pic type (O,N donors):         

pic 0.48 42 14(2)      [31] 

pic 0.06   16(1)     [31] 

pic 0.2/0.1 14 8.5/8.1 
8.1(1.3)/ 

12 
    [32]  

6mpic 0.06/0.02 14  ~10     [33] 

6mpic 0.2/0.1 100 ~10      [33] 

6mpic 0.05 12    ~14 VOSO4 ~22 [34] 

6mpic 0.2 14   ~17    [34] 

6mpic 0.06/0.04/0.02 14  12(3)     [35] 

6etpic 0.05/0.04 13    ~10   [36] 

5ipic 0.1/0.05/0.02 28 /14 8(3) 10.7(6)     [37] 

3mpic 0.1/0.05/0.02 14  6.1(2)     [35] 

3hpic 0.1/0.05/0.02 14  6.1(1.5)     [35] 

mpno type (O,S donors):         

mpno 0.2 20 ~8      [27] 

mpno 0.05 8  ~9     [27] 

biguad type (N,N donors):         

metf 0.6 3 < 10    BMOV ~11 [38] 

metf 0.12 3  ~18   BMOV ~10 [38] 
a Oral gavage 

b Intraperitoneal injection 
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Table 1c Successful insulin mimetic in vivo tests with complexes having other than VO(IV)L2 

composition (L = ligand) 

 

a Oral gavage 

b Intraperitoneal injection 

Compounds 

compositions 
L 

Dose Duration 

Glucose level 

(mM) / animal 

model Ref comp. 
Ref. 

value 

(mM) 

Ref. 

mmol V / kg 

/day 
days 

STZ rat 

oa i.pb   

VO(IV)L dipic type, (O,N,O donors)        

 dipic not given 28 ~21  VO(IV)SO4 ~15 [39] 

V(III)L2 dipic type, (O,N,O donors)       

 dipic not given 28 ~18  VO(IV)SO4 ~15 [39] 

V(III)L3 mal type, (O,O donors)       

 imal 0.1 1  17(3) BMOV 11(4) [23] 

 amal 0.1 1  16(3) BMOV 14(4) [23] 

 mal 0.6a / 0.1b 1 15(3) 12(4) BMOV 
16(2)a / 

8(3)b 
[40] 

 emal 0.6a / 0.1b 1 19(3) 11(2) BMOV 
16(2)a / 

8(3)b 
[40] 

 koj 0.1 1  20(1) BMOV 8(3) [40] 

 dhp type, (O,O donors)       

 dhp 0.1 1  20(1) BMOV 8(3) [40] 

VO2(V)L- dipic type, (O,N,O donors)       

 dipic not given 28 ~12.5  VO(IV)SO4 ~15 [39] 
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Fig. 1. Basic structure of insulin mimetic vanadium complexes studied in detail. (The water molecules 

in the coordination sphere are omitted.) 

 

One comparative study of some of these drug candidate vanadium complexes has been 

made, and it was pointed out that these complexes have 30–70% of the activity of insulin in 

insulin-depleted mice fibroblast cell culture tests [41]. Based on that publication it would be 

impossible to differentiate between the effectiveness of the vanadium compounds studied. 

Similar result, the small efficacy difference between the vanadium compounds can be 

concluded from Table 1. The decreased polarity can increase the insulin mimetic activity, but 

just until a certain limit [19]. 

Only one of these compounds were tested in humans: the Phase I clinical trial [16] of 

bis(ethylmaltolato)oxovanadium(IV) (BEOV, the ethyl- derivative of VO(IV)(maltolato)2) 

was completed in 2000, and the results of the Phase IIa clinical trial were first published in 

2009 [2]. The clinical Phase I trials proved that an orally administered 10-90 mg BEOV single 

dose is safe and tolerable by healthy people, overall bioavailability of vanadium from BEOV 

was three times higher than that of vanadium from VO(IV)SO4 and fasted subjects absorbed 

vanadium thirteen times better than fed subjects [16]. 

In Phase IIa tests over the course of a 28-day treatment period (daily dose 20 mg 

complex: 5.8 mol or 3 mg vanadium), BEOV was consistently well-tolerated. A positive 

treatment effect was observed in most of the treated subjects, such that reductions in fasting 

blood glucose were observed when compared to the two placebo subjects [2]. The tests have, 

however, been abandoned due to renal problems with some of the probands [42]. 
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The orally administered vanadium complex should go first through the GI tract and after 

the blood serum before arriving to the targeted cell. Biotransformation is possible in the entire 

route, and the absorption efficacy from the GI tract can be improved by formulation of the 

drug including various encapsulation techniques [43]. In spite the fact of the promising animal 

results these did not lead to any clinical tests with humans. However, the original carrier 

ligand is very likely to be replaced by serum/plasma components or endogenous binding 

molecules, before the cells would be able to take up the complex. 

The active species is vanadate (H2VO4
-) most likely, one possible final product of the 

biotransformation of any kind of vanadium compound. The possible mode of action is the 

inhibition of protein tyrosine phosphatases at the cytosolic site of the cellular insulin receptor 

and/or the activation of a tyrosine kinase in the signaling pathway [44]. It has also been 

proposed that cellular redox processes, increases production of ROS is also involved in the 

antidiabetic effects of the vanadium compounds [45,46]. 

 

2.2. Speciation of vanadium complexes in the gastrointestinal (GI) tract 

Based on speciation studies [6,8] it is clear that in consequence of the parallel processes 

of protonation of the metal-binding sites of the coordinating ligands, the neutral bis 

complexes (VO(IV)(mal)2 [47]. VO(IV)(dhp)2 [48], VO(IV)(pic)2 [49], VO(IV)(mpno)2 [50], 

VO(IV)(acac)2 [51] and their derivatives) will certainly partly decompose in the acidic pH 

range, e.g. at the pH (ca. 2) of the gastric juice. The species formed in this way will be 

charged, and will possess entirely different membrane transport properties. The 

[VO2(V)(dipic)]– complex is stable at pH 2 [22] but it has already a ‒1 charge. 

Recently a useful speciation method, assessment of the chemical states of V, in 

biological environments was published [52]. Classification can be done on the basis of a 

three-dimensional diagrams of pre-edge and edge parameters in X-ray absorption near edge 

structure (XANES) spectra, developed on the basis of a library of model V(V/IV/III) 

complexes. Based on this method XANES results reported the speciation of four vanadium 

compounds mimicking oral administration by artificial digestion [53], although the applied 

vanadium concentration was fairly high, namely 1.0 mM. (Artificial gastric/intestinal juice 

has been prepared; incubations and commercial liquid semi-synthetic meals were used.) 
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Fig. 2. Proposed biotransformation of the initial vanadium compounds in GI environment based on 

XANES data taken after artificial digestion. (cV = 1.0 mM) Taken from Ref. [53]. 

 

Typical antidiabetic V(V) and V(IV) complexes undergo profound chemical changes in 

GI media. The main observation is that in the absence of food V(IV) is oxidized to V(V) only 

in the intestine and only the dipic dissociates (intestinal), while mal does not. While in the 

presence of food reduction of V(V) to V(IV) and even to V(III) takes place already in gastric 

environment together with the total dissociation of the original carrier ligands (Fig. 2.). The 

observed significant difference between the presence and absence of food is in a complete 

coincide with the absorption difference of BEOV between the fasted/fed subjects reported in 

Phase I trial [16]. 

As the overall bioavailability of BEOV was three times higher than that of vanadium 

from VO(IV)SO4 (Phase I[16]) it seems that passive diffusion of neutral species is the most 

effective absorption process, while the other possibilities e.g. vanadate like phosphate or 

VO(IV)2+ species via M2+ uptake mechanisms or V(III)/Fe(III) pathways are less important. 

All exogenous and endogenous biomolecules being present in the stomach or intestines, 

where the complexes are absorbed, may play a role in VO(IV) binding. Interactions with these 

molecules could change the net charge of the complex unfavorably, which will decrease their 

absorption efficacy. This certainly has to be taken into account during the formulation of the 

drug (e.g. by encapsulation techniques, whereby these problems may well be overcome), 

results of H. Sakurai et al. [43] support this prediction. In their study VO(IV)SO4 was 

administered orally in various formulations: in solution, in gelatin capsules and in enteric-

coated capsules. It was found that administration of the VO(IV) salt in encapsulated forms 

improved the metal ion absorption as compared with that associated with the simple solution 
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form. As far as we know, up to now, no such experiment has been made with vanadium 

complexes. 

These results, together with direct pharmacokinetic measurements [24] reveal that these 

antidiabetic vanadium compounds dissociate soon after oral administration and absorption 

and the vanadium part is the active metabolite responsible for the antidiabetic effects. Then 

what is the role of the carrier ligands? The most obvious answer is to enhance the absorption 

of the active component and thus to decrease the dose of vanadium. 

 

2.3. Speciation of vanadium with low molecular mass (LMM) constituents of blood serum 

After absorption during their transport in the bloodstream, (ternary) complex formation 

with the serum components, as active vanadium binders has to be considered. From among 

the LMM constituents the most potent binders e.g. lactate (1,51 mM), phosphate (1,10 mM), 

citrate (99 µM), and oxalate (9 µM) have been studied. The binding strength of other serum 

components to vanadium such as amino acids and sulfate are negligible besides these LMM 

binders. As an illustration the species distribution of the three most studied antidiabetic 

VO(IV) complex is listed in Table 2 to show the importance of these LMM serum 

constituents in VO(IV) binding. 

Table 2 Species distribution of three insulin-mimetic VO(IV) compounds (10 M) in the low 

molecular mass fraction of blood serum at pH 7.4 (Adapted from Ref. [47]) 

It is seen from the data in Table 2 that of the LMM bioligands, citrate might have a 

pronounced effect on the serum solution state of vanadium. Lactic acid and phosphate have 

minor roles and oxalate a negligible role in VO(IV) binding [47]. 

 

VO(IV) binder molecule 

(from serum) 

VO(IV)% bound 

VO(IV)(mal)2 VO(IV)(pic)2 VO(IV)(6-Me-pic)2 

In ternary complexes with     

citrate 14 42 30 

In binary complexes with    

citrate 73 50 59 

lactate 5 3 8 

phosphate 8 5 2 
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2.4. Speciation of vanadium with high molecular mass (HMM) constituents of blood serum 

From among the serum proteins transferrin, albumin, immunoglobulins are the most 

important vanadium binders. In principle the metal ion can bind to these proteins in the 

oxidation states of +3, +4 and +5. Large numbers of works have been made in this field to 

clarify the interactions both qualitatively and quantitatively and the results published in 

numerous review papers [1,3,4,6,8] Binding can occur in metal-protein binary interactions, 

and in forms of ternary complexes when the carrier ligands also participate in binding. 

Stability constants of the most likely complexes formed with the HMM components of blood 

serum are listed in Table 3. 

Table 3 Stability constants (log ) for the species formed by V(III), VO(IV)2+ and V(V) ions with 

blood proteins.  

Human Serum Transferrin (apoTf)  Human Serum Albumin (HSA)  Immunoglobulin G (IgG) 

or Hemoglobin (Hb) 

Species log  Ref.  Species log  Ref.  Species log  Ref. 

V(III)apoTf 20.01.5 [54]         

VO(IV)apoTf 
13.40.2 [6]  

VO(IV)HSA 
9.10.4 [58]  VO(IV)IgG 10.31.0 [60] 

13.00.5 [55]  9.11.0. [55]  VO(IV)Hb 10.41.0 [60] 

VO(IV)(mal)apoTf 17.70.2 [6]         

    VO(IV)(mal)2HSA 17.20.1 a     

(VO(IV))2apoTf 
25.20.4 [6]  

(VO(IV))2HSA 
20.60.4 [58]     

25.50.5 [55]  20.91.0 [55]     

V(V)apoTf 6.00.1 [56]   V(V)HSA 1.80.3 [56]     

 7.50.2 [57]   3.0 [59]     

V(V)2apoTf 11.50.3 [56]         

 14.10.5 [57]         

a Calculated using data from Ref. [48,61] 

The order of affinity of the three vanadium oxidation states towards human apoTF is 

therefore: V(III)°>°VO(IV) > V(V), in the presence of carbonate and V(III) ∼ VO(IV) > 

V(V) in its absence [3]. In one type of complexes vanadium is assumed to bind at the Fe(III) 

binding site [61] and in the bis- metal complex a closed conformation is assumed for strong 

vanadium binding. Carbonate or hydrogen-carbonate is needed as synergistic anion in the 

oxidation state of +3 and +4 for strong binding [3]. Other anions as lactate can also behave as 
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synergistic in some cases [55]. A much weaker binding of the metal ion is assumed primarily 

in oxidation state of +4 through the surface His imidazole-N donor. This binding mode is 

assumed mostly in the case of the ternary VO(IV)-apoTf-carrier ligand complexes [55] (Fig. 

3). The actual donor atoms of the Fe-binding site coordinated to VO(IV) may be two of the 

four residues Asp63, Tyr95, Tyr188 and His249 of the N-terminal lobe of human apoTF, 

and/or two of residues His585, Asp392, Tyr426 and Tyr517 of the C-terminal lobe 2. In the 

case of Type 2 binding, histidine residue may be His14, His289, His349, His350, His473, 

His606 and His642. 

 

Fig. 3. Binding mode for VO(IV)-complexes to transferrins; example of BMOV. In the case of Type 1 

binding, the VO(IV) : carrier : apoTf stoichiometry is 1 : 1 : 1 or 2 : 2 : 1. Adapted from Ref. [3] and 

partly modified. 

 

HSA, a globular protein is the other important metal binding serum protein. It contains 

two strong binding sites, one at the N-terminus (NTS/ATCUN), which is specific among 

others for Cu(II) and Ni(II), and the other is the multi-metal binding site (MBS) which is 

specific among others for Zn(II), Cd(II) and Co(II). Detailed studies in the binary VO(IV)-

HSA system revealed two different metal ion binding a strong one, later assigned to the MBS 

site and a weak one, later assigned binding to side chain carboxylate of Asp/Glu or imidazole-

N of His [58]. 

Immunoglobulins are various glycoproteins (divided into different classes); among them 

only IgG occurs in high enough concentration (an average of 84 µM) to be a potential metal 

ion binder. EPR studies in the VO(IV)-IgG system revealed that the binding mode resemble to 

that of the weak binding of VO(IV)-HSA [3]. 
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Many authors revealed ternary complex formation in VO(IV)-serum protein-carrier 

ligand systems by detailed EPR and CD studies. One example of the most likely binding 

modes of these complexes is depicted in Fig. 4. 

 

Fig. 4. Mixed species VO(IV)(mal)2(Protein) formed in aqueous solution at pH 7.4, Protein indicates 

human serum albumin (HSA), immunoglobulin G (IgG) and hemoglobin(Hb). Adapted from 

Ref. [3,55]. 

 

2.5 Speciation of vanadium(IV) and vanadium(V) in blood serum 

The maximum daily oral dose in the Phase I clinical trial was 95 mg BMOV, equivalent 

to 15 mg or 0.22 mg/kg vanadium for a 70 kg person [16]. For an absorption efficacy of 30% 

[62] and an overall blood content of 5 L, if all of this vanadium enters the blood at the same 

time, the maximum concentration attainable would be ∼20 M. However, this is only a rough 

estimation, but it clearly shows a well-defined limit. In animal studies involving much higher 

doses up to 12 mg/kg vanadium, two independent research groups determined the maximum 

vanadium concentration in the blood to be 2–3 g/mL, i.e. ca. 40–60 M. The maximum 

value of the vanadium concentration in the human blood during treatment (Phase I-IIa) was 

not published [2,16]. Modeling calculations were performed in order to explore the potential 

biotransformation processes in serum [6,8]. 

The speciation [63,64] of the metal ion among the LMM and HMM components of 

blood serum, and the original carrier ligands, including mixed ligand species was calculated 

based on stability constants and concentration data at three concentration levels of antidiabetic 

compounds (1, 10 and 100 M), the results are summarized in Fig. 5. 
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Fig. 5. Speciation of various potentially antidiabetic VO(IV) compounds (A: 1 M, B: 10 M, C: 100 

M) in serum at pH 7.4. A carrier ligands, pic, mal, dhp; B and C: LMM components of the serum: 

citric acid, lactic acid, phosphate. “B” taken from Ref. [63] “A” and “C” calculated similarly based on 

the published data in Ref. [63]. 

 

In Fig. 5. the sum of the concentration of the similar type of species are depicted: VO(IV)A2: 

VO(IV) bound in the binary bis complex, (VO(IV))xBy: binary species formed with the LMM 

components of the serum, (VO(IV))xByCz: ternary species of the LMM components of the serum, 

(VO(IV))xAyBz: ternary species of an antidiabetic complex with LMM components of the serum, 

(VO(IV))xapoTf: binary species of VO(IV) with apoTf, (VO(IV))xAyapoTf: ternary species of an 

antidiabetic complex with apoTf, (VO(IV))xHSA: binary species of VO(IV) formed with HSA, 

(VO(IV))xAyHSA: ternary species of an antidiabetic complex with HSA. 

The following conclusions could be drawn: (i) It is clear that apoTf, one of the two 

important HMM binders, is much more efficient than HSA and will displace 90-95% (1 M 

and 10 M VO(IV) compound concentration levels) of the original carrier from the complex 

or will form ternary complexes with them. (ii) Only the hydroxypyridinone derivative dhp is a 

strong enough carrier to preserve a significant proportion of the VO(IV) in the original 

complex or still bound to VO(IV) in a ternary complex with apoTf. In the other two cases 

(pic, mal), the carrier ligands are completely displaced. Similar behavior can be expected 

from the VO(IV)(acac)2, as the acac ligand is much weaker metal ion binder than dhp, mal 

and pic. (iii) Among the LMM binders, citrate is the main ’active’ component, able to 

influence the solution state of these antidiabetics but only at 100 M vanadium compound 

(VO(IV)(pic)2,VO(IV)(mal)2) level, when there is no Tf enough to bind all the metal ions. 

Among the LMM components the ternary complex(es) with the original carrier ligands 

dominate(s). (iv) The HSA containing fraction is negligible at 1 M and 10 M VO(IV) 

compound concentration level, similarly to citrate, it is able to bind the metal ion (or complex) 

only when the apoTf is already saturated with VO(IV). The total vanadium containing HSA 

fraction is lower than 20% in all three cases even at 100 M vanadium compound level. (v) 

The speciation is strongly concentration dependent in the 10-100 M VO(IV) concentration 

range. 

The dominance of apoTf in VO(IV) binding was confirmed with the use of native blood 

serum measurements by ultrafiltration, separation through a 10 kDa membrane, the LMM and 

the HMM fraction bound VO(IV) was measured by atomic absorption spectroscopy method 

[8,65]. Similarly, the protein bound VO(IV) was separated by anion exchange 
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chromatography and determined by ICP-MS. Only Tf was able to bind VO(IV), the binding 

ability of the other important serum protein HSA was negligible [6]. 

Accordingly, the most important role of the carrier ligand seems to facilitate the 

absorption of VO(IV) from the GI tract, but the complexes fall apart at last in the serum. 

Pharmacokinetic investigations proved this prediction by using labeled VO(IV)(mal)2 

complexes [24]. 

It should be mentioned, that even at higher concentrations of the VO(IV) complexes, 

such as mM level, which exceed the serum level of the strongest VO(IV) binder protein Tf, 

HSA also becomes an important binder of the VO(IV) species in serum, due to its 

significantly higher concentration [63]. However, there is no real clinical importance of this 

observation, as for example in the whole blood the LC50 value of vanadate is in the 2-5 mM 

range (estimated based on [66]). 

Among several drug candidate ligands (hpno/mpno/pic/dhp), the hpno (2-

hydroxypyridine-N-oxide, the O derivate of mpno) forms the highest stability complex with 

acidic solution [56]. Based on modeling calculation it is clear that at biologically relevant 

concentrations, c(V(V)) < 10 M, the Tf is the only V(V) binder in the blood serum. Under 

such conditions, neither the carrier ligands, nor HSA nor the LMM biomolecules present in 

the serum (lactate, citrate, phosphate, Gly or His) form sufficiently strong complexes to 

compete with apoTf, even though ca. 5% of the V(V) exists as free H2VO4
– ion in solution 

[56]. As an illustration species distribution of VO2(V)-mal is depicted in Figure 6. 

 

Fig. 6. Calculated speciation of [VO2(V)mal)2]– in blood serum. The textured area represent the 

concentration range relevant to oral administration of V(V) (≤ 10 mM).Taken from Ref. [56]. 

 

2.6. Interactions of vanadium in the whole blood 
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The interaction of VO(IV) ion with hemoglobin (Hb) was studied with spectroscopic 

(EPR and UV−vis) techniques. Binding of Hb to VO(IV) in vitro was proved, and three 

unspecific sites were characterized, with the probable coordination of His−N, Asp−O−, and 

Glu−O− donors. The value of log β for VO(IV)Hb is 10.4, significantly lower than for human 

serum apoTf. In the systems with potential antidiabetic VO(IV) compounds, mixed species 

cis-VO(IV)L2(Hb) (L =mal or dhp are observed with equatorial binding of an accessible His 

residue, whereas no ternary complexes are observed with acac. The experiments of uptake of 

[VO(IV)(mal)2], [VO(IV)(dhp)2] by red blood cells indicate that the neutral compounds 

penetrate the erythrocyte membrane through passive diffusion, and percent amounts higher 

than 50% are found in the intracellular medium. The biotransformation of [VO(IV)(mal)2], 

[VO(IV)(dhp)2] inside the red blood cells was proved [60]. 

These results suggest that interactions with the red blood cells cannot be neglected in 

the transport process or the pharmacological action of the antidiabetic vanadium compounds. 

The vanadium entered the red blood cells can either be stored there and considered as a pool, 

or be deactivated by biotransformation reactions in the cytosol. This will depend on the nature 

and the extent of these biotransformation reactions [60]. 

XANES speciation studies of antidiabetic vanadium complexes in the whole blood [67] 

were carried out using the same classification method on 3D diagrams of pre-edge and edge 

parameters similarly to GI speciation (Section 2.1). The outcome in agreement with the above 

results suggests an important role of the red blood cells in the biospeciation of vanadium. 

Although it should be noted, that the applied concentration of vanadium was 1 mM, which is 

therapeutically usually not relevant, we cannot ignore the main conclusion of these two papers 

that “the role of RBCs in the metabolism of metal-containing drugs in the blood is no less 

important than that of serum proteins, such as albumin, immunoglobulins, or transferrin [67] 

 

2.7. Speciation of vanadium in the cells 

Vanadium, either in oxidation state IV or V, mainly binds to Tf in human serum 

(Section 2.4.). Accordingly, vanadium may be assumed to enter the cell through the Tf 

receptor following the iron pathway. Neutral antidiabetic complexes bound to certain proteins 

may cross membranes by passive diffusion too [60]. 

In the intracellular medium, reducing agents can redox-interact with vanadate(V). A 

frequently discussed candidate for the reduction is GSH [60,68-69]. A high intracellular 

excess of GSH increases the possibility of formation of VO(IV) and its complexation with 
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either GSH or GSSG. Both have been shown to be reasonably potent binders for VO(IV) 

[68,70-71]. Other effective reducing agents, such as NADH or ascorbate, may cause the 

formation of even V(III) species [72-73]. Hydrolytic degradation of VO(IV) may be 

responsible for the reoxidation to vanadate(V). 

Among the LMM binders, the widely distributed ATP may also be of importance [60, 

69], as it efficiently binds VO(IV) and is also present in mM concentration in cells. 

Comparing the VO(IV) complex-forming properties of ATP and GSH, it can be concluded 

that in the whole pH range ATP is a more efficient VO(IV) binder. When ATP and GSH are 

simultaneously considered as potential VO(IV) binders, GSH is not expected to be able to 

compete with ATP for binding to VO(IV). Since ATP is a strong VO(IV) binder, ATP will 

chelate the metal ion, forming binary and/or ternary complexes, and thus might somehow be 

involved in the antidiabetic action of the VO(IV) compounds. 

XANES spectroscopic studies [74] on vanadium uptake and speciation in mammalian 

cells and cell culture media were carried out also by P. Lay and coworkers, similarly to the 

other two XANES studies (GI tract/blood). In this work they experimentally proved the 

earlier criticism of some of the authors of this paper: (Section 2.1.) namely the 1.0 mM 

vanadium concentration is therapeutically irrelevant. Such conditions were toxic for the cells 

at >8 h treatments, but the authors cannot use lower vanadium concentration because of the 

X-ray fluorescence detection limit [75]. However, the conclusions of this study are that the 

easy interconversions of V(IV) and V(V) species in the cells, i.e. the antidiabetic V(V) and 

V(IV) complexes undergo profound transformations in cell culture media, and the resultant 

products are further metabolized by cultured mammalian cells. 

After vanadium enters the body and undergoes several biotransformations finally it may 

be excreted or accumulated by different tissues. Direct comparison studies between 48V-

BMOV and 48VO(IV)SO4 demonstrated a similar pattern of biodistribution to that of 

inorganic vanadium salts observed earlier: the order of relative accumulation is bone > kidney 

> liver. The absorption level is low, the bones retaining only the ca. 0.1% of an oral dose/g 

tissue 24 h after an oral dose of VO(IV)SO4, however half-life of elimination is quite long 

(>10 d for 48V in bone after a single dose 10 M by oral gavage in rats) [16]. 

 

3. Conclusions 

There has been significant progress concerning speciation of antidiabetic vanadium 

compounds in biology (in GI tract, in blood serum, in the whole blood and in the cells), 
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although there are still unknown details concerning the translocation of the complexes from 

one place to another. A recent review about the speciation of these antidiabetic vanadium 

compounds in cell culture media gives a somewhat more realistic picture the possible solution 

state of these prodrugs in biological fluids [76], however the applied concentration of 

vanadium in the most referred experimental studies (XANES: 1 mM, EPR/NMR: 0,5 mM-

1mM) is significantly higher than the therapeutically relevant concentration. 

Further questions to clarify in order to overcome the difficulties in the clinical use of 

vanadium complexes in diabetes: 

(i) In vivo studies for a deeper understanding of the mechanistic details of 

transport, targeting and mode of action of the vanadium compounds at 

therapeutically relevant concentration range. 

(ii) Further studies on the kinetics on these processes may give important 

information on the better understanding of their biological action. 

(iii) Detailed, long term toxicity measurements are necessary in order to clarify the 

accumulation, excretion process of vanadium in the body. 

As a summary we can say that vanadium compounds, if the toxic side effects can be 

overcome, and the stable, well absorbable vanadium compounds can be targeted to the 

specific tissues, when they can exert their biological actions without significant negative side 

effects, they may have a clinical application in the future. Although, we must admit that a 

rigorous analysis of the question by medical experts has led to an opposite conclusion [77]. 

Complexation of vanadium is useful only to enhance the absorption of the (pro-)drug. 

The active metabolite is the vanadium itself, probable in the oxidation state of +5, as the 

compounds dissociate before exert their antidiabetic effect(s), which is not necessarily 

sufficient or specific enough in the target cell. Our opinion is that to make a vanadium 

compound to a more applicable drug new chemical ideas are necessary to be found to increase 

the main biological effect (or the specificity) which seems to be a hard challenge. 
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