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Abstract

In recent years genome-wide association studies (GWAS) have uncovered numerous chromosomal loci associated with
various electrocardiographic traits and cardiac arrhythmia predisposition. A considerable fraction of these loci lie within
inter-genic regions. The underlying trait-associated variants likely reside in regulatory regions and exert their effect by
modulating gene expression. Hence, the key to unraveling the molecular mechanisms underlying these cardiac traits is to
interrogate variants for association with differential transcript abundance by expression quantitative trait locus (eQTL)
analysis. In this study we conducted an eQTL analysis of human heart. For a total of 129 left ventricular samples that were
collected from non-diseased human donor hearts, genome-wide transcript abundance and genotyping was determined
using microarrays. Each of the 18,402 transcripts and 897,683 SNP genotypes that remained after pre-processing and
stringent quality control were tested for eQTL effects. We identified 771 eQTLs, regulating 429 unique transcripts.
Overlaying these eQTLs with cardiac GWAS loci identified novel candidates for studies aimed at elucidating the functional
and transcriptional impact of these loci. Thus, this work provides for the first time a comprehensive eQTL map of human
heart: a powerful and unique resource that enables systems genetics approaches for the study of cardiac traits.
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Introduction non-coding regions of the genome [17] and are hypothesized to
modulate the respective trait through effects on gene expression
[18]. Such SNPs are particularly challenging to understand
because they may exert effects on the trait either by affecting the
expression of a neighbouring gene (cis-effect) or the expression of a

It is well established that many cardiac traits and susceptibility
to heart disease are heritable [1,2,3,4,5,6,7]. Several genome-wide
association studies (GWAS) have uncovered common genetic

variation, in the form of single nucleotide polymorphisms (SNPs), gene located elsewhere in the genome (frans-effects). One way of

impacting on  cardiac traits  such as susceptibility to atrial understanding GWAS  signals thus entails interrogating trait-

fibrillation [8], ventricular fibrillation [9], heart rate [10] and
electrocardiographic (ECG) indices of cardiac conduction
[11,12,13,14] and repolarization [15,16]. There is widespread
consensus that functional studies of GWAS-defined loci will
advance our understanding of the molecular underpinnings of the
associated traits.

SNPs identified by GWAS are considered to impact the
respective clinical phenotype, either directly or indirectly by virtue

associated variants for association with differential transcript
abundance by expression quantitative trait locus (eQTL) analysis.
Studying gene expression level effects of disease-associated
haplotypes has successfully uncovered the molecular mechanisms
underlying loci associated with increased risk of myocardial
infarction [19], coronary artery disease [20] and colorectal cancer
[21]. In recent years, multiple genome-wide eQTL resources have
become available for various tissues including brain, liver and
of linkage disequilibrium (LD) with the causal variant(s) in the adipose tissue [22,23,24,25,26,27,28,29]. Because ¢QTLs may be
context of a haplotype. Many trait-associated haplotypes occur in
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Figure 1. Overview plots for top cis eQTLs. An overview of the 4 most significant cis eQTLs: rs11150882 with C170rf97 (panel A), rs11158569 with
CHURCT (panel B), rs2779212 with ZSWIM?7 (panel C) and rs2549794 with ERAP2 (panel D). On the left of each panel, box-and-whisker plots of mRNA
levels for all genotypes. On the right, mean and standard-error plots of mRNA levels for all genotypes are illustrated. Right upper corner gives the

association p-value and the gene name.
doi:10.1371/journal.pone.0097380.g001

tissue-specific, a similar resource for human heart is anticipated to
have great value [23,29,30,31].

To this end, we have generated a human heart eQTL resource
by genome-wide genotyping and determination of transcript
abundance in 129 human donor heart samples. We subsequently
overlaid previously identified cardiac trait GWAS signals with the
identified eQTLs to identify candidate causal genes for the effects
at these GWAS loci. This work provides an eQQTL map of human
heart, a resource that is likely to play an important role in
furthering our understanding of the mechanisms associated with
loci identified in GWAS on cardiac traits.

Results

General design of study

We collected left ventricular samples from 180 non-diseased
human hearts of unrelated organ donors whose hearts were
explanted to obtain pulmonary and aortic valves for transplant
surgery or explanted for heart transplantation but not used due to
logistical reasons (e.g. no tissue-matched recipient was available).
The subjects were assumed to be mainly of Western European
descent. mRNA and DNA were isolated according to standard
procedures. Transcript abundance was measured using the
HumanHT-12 v4.0 whole genome array (Illumina) and genotyp-
ing was carried out using the HumanOmniExpress genome-wide

SNP arrays (Illumina).

Data preprocessing and normalization

Gene transcript abundance: Of the 47,231 transcripts whose
expression levels were measured on the array, only those that were
expressed above background level and for which the probe
sequence mapped unambiguously to the genome and did not
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contain common SNPs, were used in further analyses. This
procedure left 18,402 transcripts for eQTL analysis. Model-based
background correction and normalization across arrays and
transcripts was performed to correct for technical variance present
in gene expression levels. A total of 162 arrays passed the
standardized microarray gene expression quality control.

Genotyping: Manhattan distance clustering and principal
component analysis of the genotype data of 154 samples that
were successfully genotyped, revealed 13 genetic outliers (Figure
S1). To ensure a genetically homogenous group for further
analysis, samples pertaining to these clusters were removed. An
additional 12 samples were removed due to low call rate (<95%),
high proportion of alleles identical-by-state (>95%), or extreme
heterozygosity (FDR 1%). Only SNPs with a minor allele
frequency (MAF) higher than 0.15 were considered in eQTL
analysis. This cutoff was chosen to ensure sufficient power to
detect eQTLs within a broad range of effect sizes (Figure S2).
Imputation was performed using the HAPMAP Phase I1I data (see
Materials & Methods for details). This left 129 samples (74 male,
55 female; age 41+ 14), 18,402 transcripts and 897,683 SNPs for
eQTL analysis.

Genome-wide eQTL mapping

Each of the measured transcripts was tested for association with
all SNPs using linear modeling, taking age, sex and clinical/
university center as covariates. We thus identified 6402 significant
eQTLs (FDR =0.05). To remove redundant signals and identify
independent expression-controlling loci, we performed linkage-
disequilibrium (LD)-pruning. For this we grouped SNPs exhibiting
LD (:*>0.6) into clusters, revealing 771 independent loci
regulating 429 unique transcripts. These results are comparable
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to eQTL studies in other non-diseased tissues of similar sample
size [22,23,24,28,29].

Of these 771 eQTLs, 770 were cs-eQTLs for 428 unique
transcripts (p<<2.82x107%; FDR =0.05), where the associated
SNPs lie within 1 Mb of the transcriptional start site (T'SS) of the
cognate transcript. For the four most significant cis-eQT'Ls, box-
and-whisker plots and mean-standard-error plots for the individual
genotypes are given in Figure 1. An overview of the most
significant ¢zs-eQTLs is given in Table 1 and the complete results
are given in supplemental Table S1.

Of the independent significant eQTLs, one was found to be in
trans (p<2.12x107'"; FDR =0.05), with the expression of
LOC644936 located on chromosome 5 being seemingly modulated
by an eQTL (rs852423) on chromosome 7. However, as
LOC644936 is a known pseudogene of ACTB and rs852423 is
located within ACTB, we cannot rule out the possibility that
1rs852423 is in fact a ¢is eQTL for ACTB rather than a trans eQTL
for LOC644936. Using BLAST to align the microarray probe
sequence of LOC644936 to the human transcriptome uncovered a
partial match with ACTB in addition to a 100% match with
LOC644936.

Integration of eQTL data with cardiac GWAS loci

In order to provide candidate genes for the reported heart-
related GWAS loci, we listed the 102 SNPs previously associated
with a cardiac trait at genome-wide statistical significance (Pgyas =
5x10%), representing 74 independent loci (LD-pruned with r?>
0.6, see Materials & Methods). These corresponded to loci
associated with ventricular fibrillation/sudden cardiac death, atrial
fibrillation, heart rate, PR interval, QRS duration and QTc
interval. Of these, the 64 SNPs that displayed a MAF of 15% or
higher in the eQTL sample were overlaid with the eQTL data to
identify transcripts under genetic regulation by these loci. All
GWAS SNPs were tested for association with transcript levels of all
18,402 transcripts in this study. We identified a ¢ association
between rs9912468, a modulator of QRS duration [12] with the
level of expression of the PRACA transcript at genome-wide
statistical significance (p=2.90x10"Y, scc Figure 2A). Besides
PRECA, no other GWAS SNP displayed an eQQTL association p-
value that passed the stringent Bonferroni-corrected p-value
threshold (p<<0.05/64 SNPs x18,402 transcripts ~ 4x107%). A
total of 34 SNPs were associated with the transcript level of a gene
at a p=0.05 (Table 2). Among these, rs8049607, a modulator of
QTc-interval [16] was found to be associated in cis with the
transcript level of LITAF (p<5x10~*, Figure 2C), and rs7612445
and 1s6882776, both associated with heart rate [10] were
associated in ¢is with the transcript levels of GNB4 (p<2x10~*,
Figure 2B) and NEX2-5 (p<6x107%, Figure 2D), respectively.
The number of nominal associations for the 64 cardiac trait-
associated SNPs tested represents a more than 7-fold enrichment
(p<<0.05, see Materials & Methods) compared to a random
selection of 64 variants from the entire set of SNPs used in eQTL
analysis.

Discussion

We conducted a genome-wide eQTL analysis in 129 samples of
normal human myocardium, identifying genetic variation regu-
lating gene expression in human heart and uncovering 771
genome-wide significant independent eQTLs. This resource,
heretofore unavailable in human heart will contribute to
advancing our understanding of the genetic mechanisms under-
lying loci associated with cardiac traits. All but one of the eQT'Ls
identified were ¢is eQTLs. Other eQTL studies have identified
only few trans eQTLs [22,24,28,29], illustrating the general
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of mMRNA levels for all genotypes. On the right, mean and standard-error plots of mRNA levels for all genotypes are illustrated. Right upper corner

gives the association p-value and the gene name.
doi:10.1371/journal.pone.0097380.9002

difficulty of detecting frans-regulatory variants in eQTL studies
[31,32]. Based on larger eQTL studies in other tissues
[22,24,25,26,29] as many as 4000 independent cardiac czs eQTLs
are expected to be present, hence the results presented here are a
subset of this theoretical complete set of cardiac eQTLs.

In recent years, many novel loci associated with a number of
cardiac traits, including cardiac arrhythmia and ECG indices,
have been discovered. However, the identification of (novel) genes
at these loci has lagged behind. The availability of a cardiac eQTL
resource is likely to aid in the dissection of these loci by providing a
means of prioritizing candidate genes for follow-up functional
studies. Indeed, our current findings already provide candidate
genes for a number of these loci (Table 2). One such example is
the PRKCA gene for the effect observed on QRS duration for the
1s9912468-tagged haplotype on chromosome 9. PRKCA encodes
protein kinase C alpha, a fundamental regulator of cardiac
contractility and Ca®* handling in cardiomyocytes [33]. The
mechanism by which it regulates QRS duration is unknown.
Other candidates include the LITAF gene (encoding lipopolysac-
charide-induced TNF factor) for the rs8049607-tagged haplotype
associated with QTc-interval and the GNB4 gene (encoding
guanine nucleotide binding protein) for the rs7612445-tagged
haplotype associated with heart rate. None of these eQTLs (for
PRRCA, LITAF and GNB4) have been previously identified in non-
cardiac tissues.

The utility of this approach is further evidenced by the fact that
the 64 GWAS SNPs were enriched in nominally significant eSNPs
as compared to a random selection of 64 variants from the entire
set of SNPs used in eQTL analysis. Such an enrichment was
reported before for GWAS loci in general based on eQTLs
identified in lymphoblastoid cell lines from HAPMAP samples
[18].

PLOS ONE | www.plosone.org

The eQTLs we identified represent an enriched set of highly
relevant candidates to test in future studies for association with
cardiac traits and disease. Among the highly significant eQQTLs
listed in Table 1, at least two SNPs could also be interesting from
a pharmacogenetic point of view. One is rs1222809 which was
found to be strongly associated with the expression level of the
DHFR gene encoding dihydrofolate reductase, a putative target of
the drug methotrexate. Of note previous studies have provided
evidence that rs1650697, which is in complete LD with rs1222809,
may be associated with adverse events to methotrexate in patients
with rheumatoid arthritis [34,35]. The other potentially interesting
eQTL from a pharmacogenetic point of view is rs4822466 which
was found to be highly associated with the expression of GST71, a
gene encoding the liver detoxifying enzyme Glutathione S-
transferase T1.

The eQTLs we identified are expected to be enriched in the
regulatory regions of the genome such as promoter regions,
enhancers and transcription factor binding sites [36]. Recent work
has begun to uncover these relationships for adult human heart
[37]. However, formal testing for enrichment of eQTLs in the
known regulatory regions [37] did not provide statistically
significant enrichment (data not shown). At least in part, this
may be due to the limited number of eQTLs we have identified.

A limitation of the presented study concerns the fact that not all
transcripts have been tested for eQTL effects. Transcripts that
were expressed below the (array-based) detection level or for which
probe design was not optimal could not be tested. Conversely, not
all haplotypes in the genome were tested as for instance we only
tested SNPs with a MAF higher than 0.15. Furthermore, our
sample size and therefore statistical power was limited, preventing
the identification of eQ)TLs of smaller effect and trans eQ)'T'Ls. The
interpretation of the data concerning SNPs from GWAS presented

May 2014 | Volume 9 | Issue 5 | 97380
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in Table 2 must take these considerations into account.
Additionally, the single trans eQTL we identified is likely a false
discovery and will require further investigation.

Our study was conducted in left ventricular myocardium.
However, it is well known that different cardiac compartments
such as the atria or the specialized conduction system display
different gene expression patterns [38,39,40,41] and eQTL effects
might thus differ across cardiac compartments. Furthermore, we
have no information relating to cardiac traits such as ECG indices
in the 129 individuals from whom the left ventricular samples were
obtained; we were therefore unable to correlate gene expression
with cardiac traits in these individuals [23,42].

In summary, we here provide the first eQTL map of human left
ventricular myocardium that will enable systems genetics ap-
proaches in the study of cardiac traits.

Materials and Methods

Ethics statement

Investigations using the human ventricular samples conformed
to the principles outlined in the Helsinki Declaration of the World
Medical Association. The ethical review boards of University of
Szeged (Ethical Review Board of the University of Szeged Medical
Center; Szeged, Hungary), Vanderbilt University (Institutional
Review Board of Vanderbilt University School of Medicine;
Nashville, USA), University of Miami (Institutional Review Board
of the University of Miami School of Medicine; Miami, USA), and
the University of Sydney (Human Research Ethics Committee
(HREC); Sydney, Australia) approved procurement and handling
of the human cardiac material. Written informed consent from the
donor or the next of kin was obtained for use of this sample in
research. All data was analyzed anonymously.

Sample collection

Left ventricular samples were obtained from 180 non-diseased
human hearts of unrelated organ donors whose hearts were
explanted to obtain pulmonary and aortic valves for transplant or
valve replacement surgery or explanted for transplantation but not
used due to logistical reasons. The tissues were ascertained at the
University of Szeged (Hungary; n=79), Vanderbilt University
(Nashville, USA; n = 46), University of Miami (USA; n = 30), and
the University of Sydney (Australia; n = 25) and assumed to consist
mainly of subjects of Western European descent based on self-
reported ethnicity. The Vanderbilt samples were procured with
the assistance of the National Disease Research Interchange
(Philadelphia, PA).

Generation and processing of gene expression data

Total RNA was extracted from the human left ventricular heart
samples using the m#Vana miRNA isolation kit (Ambion) at the
AMC, Amsterdam, The Netherlands. Sample processing order
was randomized. RNA quality was assessed by Agilent Bioanalyzer
(minimum  RIN=7) and spectrophotometry (minimum
260 nm:280 nm = 1.8). The Illumina TotalPrep-96 RNA Ampli-
fication Kit was used to generate cRNA starting from 200 ng total
RNA. Genome-wide gene expression data was generated using
Ilumina HumanHT-12 v4 BeadArrays, containing 47,231 probes
representing 28,688 RefSeq annotated transcripts (ServiceXS,
Leiden, The Netherlands), following the instructions of the
manufacturer.

Raw expression data were imported into the Illumina Bead-
Studio and summarized at probe-level for each sample without
normalization or background correction. The summarized data
were subsequently imported into R (version 2.15.3) [43] using the
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beadarray package [44]. Quality control was performed using the
ArrayQualityMetrics package in R [45]. Samples displaying
transcriptional stratification using hierarchical clustering were
omitted from the analysis. The summarized data of the 162
remaining samples was background corrected and quantile
normalized using the nege algorithm [46] across all samples. The
neqe algorithm is the current standard data-preprocessing method
for Illumina gene expression BeadArrays [47], and has been
applied in eQTL studies with comparable sample size [29,30].
Probes containing common SNPs (HAPMAP Phase III release
2) [27,29] and probes whose sequence did not align or aligned
ambiguously to the human reference genome (HG19), according
to up-to-date Illumina HumanHT-12 v4.0 BeadArray annotation
available from the Bioconductor project, were left out of the
analysis. Additionally, probes with median expression levels below
a study specific threshold (the median expression levels of Y
chromosome transcripts in the female subjects of the sample
population) were not considered for subsequent analyses.

Genotyping and genotype imputation

DNA was extracted for genotyping from 162 heart samples that
passed the gene expression analysis quality control criteria (see
above) at the AMC, Amsterdam, The Netherlands. Genome-wide
SNP genotyping was carried out using Illumina HumanOmniEx-
press Beadchips interrogating 733,202 genetic markers (Genome
Analysis Center, Helmholtz Zentrum Miinchen, Germany). A
total of 8 samples had sample quality issues (and were not
hybridized) or failed hybridization, leaving genotype data for 154
samples. Quality control was performed in the GenABEL [48]
package in R using default settings. Samples with low call rate (<
95%), extreme heterozygosity (FDR 1%) or high proportion of
alleles identical-by-state (>95%) were removed. Additionally, any
remaining samples showing genetic stratification through Man-
hattan distance hierarchical clustering (using the popgen [49]
package in R), and confirmed with principal component analysis
[48], were not considered (Figure S1).

Power calculations were performed (with a fixed FDR of 0.05)
to assess the influence of MAF on power in relation to observed
gene expression fold changes. Based on these results, a MAF
threshold of 0.15 was chosen to ensure sufficient power to detect cis
eQTLs within a broad range of effect sizes (Figure S2).
Additionally, assuming Hardy-Weinberg equilibrium, a MAF of
0.15 or higher yields an expected number of three individuals
homozygous for the minor allele, which we considered the
minimum for fitting a meaningful additive genetic model.

Imputation was performed using the MACH software [50] and
the HAPMAP Phase III data. Only SNPs imputed with sufficient
confidence were considered, using the estimate of the squared
correlation between imputed and true genotypes. By setting the
cut-off at 0.30, most of the poorly imputed SNPs are filtered out,
compared to only a small number (<1%) of well imputed SNPs
[51].

eQTL statistical analysis

After pre-processing and stringent quality control of gene
expression and genotypic data as described above, a total of 129
heart samples were used in eQTL analysis. Each transcript was
tested for association with SNP genotypes genome-wide using
linear modeling (assuming an additive genetic model), taking age,
gender and tissue collection center as covariates, using the
GenABEL package [48] in R. Correction for multiple testing was
performed on the complete set of ¢is eQTL p-values in the qvalue
package in R [52]. A g-value (FDR) =0.05 was considered
significant for c¢s eQTLs, corresponding to a p-value of

PLOS ONE | www.plosone.org

Genome-Wide Identification of eQTLs in Human Heart

2.82x107°. Cis relations were defined as those within 1 Mb of a
transcription start site (T'SS), in accordance with previous reports
demonstrating that over 90% of cis SNPs are situated within
100 Kb of a TSS [26,27,29,47,53]. SNPs with an LD R? of larger
than 0.6 were considered dependent and LD-pruned into clusters
(LD clusters), in accordance with previous studies [23,29,30]. For
trans ¢QTLs, only results with a p-value <5x107° were
considered (corresponding to a target o (or p value) of 0.05 with
a Bonferroni correction for 1 million independent tests [54,55]).
Correction for multiple testing was done by using a step-up
Benjamini & Hochberg procedure on all p-values <5x10~%, and
a g-value (FDR) =0.05 was considered genome-wide significant
for trans ¢QTLs, corresponding to a p-value of 2.12x107 ",

eQTL biological interpretation and candidate gene
prioritization

To prioritize candidate genes for further studies, additional data
sources were integrated. Additional trait and disease associated
SNPs were extracted from PubMed (www.ncbi.nlm.nih.gov/
pubmed; search terms: ‘GWAS’ AND ‘cardiac’, ‘atrial fibrillation’,
‘sudden cardiac death’, ‘ECG [electrocardiographic]’, ‘PR inter-
val’, ‘QRS’, ‘QT’, ‘repolarization’), the NHGRI catalog of
published GWAS (http://www.genome.gov/gwastudies/), and
GWAS central (https://www.gwascentral.org) on January 8,
2013. Analyses were restricted to samples of European ancestry.
Results were classified into six categories: sudden cardiac death,
atrial fibrillation, heart rate, PR duration, QRS duration and QTc
duration. Next, each GWAS SNP passing genome-wide signifi-
cance in the respective study (5x10™ % a target o of 0.05 with a
Bonferroni correction for 1 million independent tests) was tested
for association with expression of all 18,402 measured transcripts.
To determine the number of independent loci, LD-pruning was
performed by merging all GWAS SNPs with LD r*>0.6
(HAPMAP R22 and HAPMAP Phase III). The p-value threshold
for significant eQTL effects was set at 4x107% a target o of 0.05
with a Bonferroni correction for 1,177,728 tests (64 independent
loci x18,402 transcripts).

To quantify the enrichment of eQTLs among the cardiac trait
GWAS SNPs, we generated 100,000 randomized independent
SNP sets of the same size as the number of independent GWAS
loci, and with corresponding MAF distribution and proximity to
genes. The number of nominally significant eQTL associations for
the original independent GWAS loci is referred to as Q. Next, for
each random set S;, we determined the number of eQTLs at
nominal significance (p=0.05), referred to as Q;. The simulations
yielded a fold-enrichment score, calculated as the average over all
random sets of the ratio between Q and Q);, and an empirical p-
value, calculated as the proportion of simulations in which the
number of eQTLs exceeds the number of nominally significant
eQTL associations in the original independent GWAS loci.

Public access to microarray data
The microarray genotyping and gene expression data of the
study have been deposited online at the Gene Expression

Omnibus (GEO), with accession number GSE55232.

Supporting Information

Figure S1 Manhattan distance hierarchical clustering
dendogram of 154 genotyped subjects. Manhattan distance
hierarchical clustering revealed several genotypic outliers. The
clustering was repeated using principal component analysis,
identifying the same groups of outliers.

(TIF)
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Figure $2 Results of eQTL power analyses in relation to
MAF and gene expression fold change. ¢QTL power
analyses were performed for different minimum minor allele
frequencies (0.05, 0.10, 0.15, 0.20, 0.30 and 0.40). The gene
expression fold change is defined as log, difference in gene
expression observed per copy of the minor allele. In each analysis,
for each log, fold change X, all eQTLs with an absolute log, fold
change larger than X were considered, and the power was
calculated as the percentage of those eQTLs for which the null
hypothesis is rejected at FDR =0.05.

(TIF)

Table S1 Table of all significant eQTLs. This table
contains the complete results for all significant non-diseased
human heart eQTLs (FDR =0.05). It contains for each SNP-
transcript pair the SNP ID, gene or transcript IDs HGNC, Entrez

Gene, RefSeq), genomic locations, minor and major allele, minor
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