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Abstract

Background: The aim of the present work was to characterize the electrophysiological effects of the non-steroidal anti-
inflammatory drug diclofenac and to study the possible proarrhythmic potency of the drug in ventricular muscle.

Methods: Ion currents were recorded using voltage clamp technique in canine single ventricular cells and action potentials
were obtained from canine ventricular preparations using microelectrodes. The proarrhythmic potency of the drug was
investigated in an anaesthetized rabbit proarrhythmia model.

Results: Action potentials were slightly lengthened in ventricular muscle but were shortened in Purkinje fibers by diclofenac
(20 mM). The maximum upstroke velocity was decreased in both preparations. Larger repolarization prolongation was
observed when repolarization reserve was impaired by previous BaCl2 application. Diclofenac (3 mg/kg) did not prolong
while dofetilide (25 mg/kg) significantly lengthened the QTc interval in anaesthetized rabbits. The addition of diclofenac
following reduction of repolarization reserve by dofetilide further prolonged QTc. Diclofenac alone did not induce Torsades
de Pointes ventricular tachycardia (TdP) while TdP incidence following dofetilide was 20%. However, the combination of
diclofenac and dofetilide significantly increased TdP incidence (62%). In single ventricular cells diclofenac (30 mM) decreased
the amplitude of rapid (IKr) and slow (IKs) delayed rectifier currents thereby attenuating repolarization reserve. L-type calcium
current (ICa) was slightly diminished, but the transient outward (Ito) and inward rectifier (IK1) potassium currents were not
influenced.

Conclusions: Diclofenac at therapeutic concentrations and even at high dose does not prolong repolarization markedly and
does not increase the risk of arrhythmia in normal heart. However, high dose diclofenac treatment may lengthen
repolarization and enhance proarrhythmic risk in hearts with reduced repolarization reserve.
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Introduction

Drug induced prolongation of cardiac repolarization that

manifests on the surface ECG as QT interval lengthening is

considered to represent enhanced risk for proarrhythmia and

sudden cardiac death. Recently, several non-cardiac drugs were

withdrawn from the market and the development of numerous

compounds were halted at the preclinical stage due to their

proarrhythmic effects, indicating that safety pharmacological

concerns and monitoring in this respect are now more vigorous

than they were in the past. Therefore, it can be speculated that

several drugs approved earlier and used widely today would not

reach clinical phase of development due to failing at current, more

rigorous safety pharmacology tests. However, the vast majority of

drugs developed earlier and successfully applied today do not

enhance proarrhythmic risk in the normal heart. On the other

hand, there are certain situations when cardiac repolarization

reserve [1–3] is attenuated due to ion channel protein encoding

gene mutations, diseases or even lifestyle when otherwise minor

subthreshold drug effects on cardiac repolarization may enhance

repolarization instability with subsequently elevated proarrhyth-

mic risk.

As a possible example for such situations, a number of sudden

deaths of young athletes were reported in the past several years.

The majority of these events were sudden cardiac deaths (SCD)

attributed to ventricular fibrillation. Fortunately, the incidence of

SCD of young athletes is quite low (around 1–2:100 000),

however, it is still 2–4 times more frequent than in the age-

matched population not participating in competitive sport [4].

There are a number of factors that can play a significant role in the
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development of SCD in young athletes [5]. Cardiac hypertrophy is

considered as one of the most important risk factors that has been

associated with a characteristic electrical remodeling [6] that

involves the downregulation of cardiac potassium channels,

including IKs, a repolarizing current that has a uniquely important

role in cardiac ventricular repolarization reserve [7,8]. Further

important factors that influence arrhythmia disposition include

various other cardiovascular diseases, hypokalemia, doping and

seemingly harmless medications.

These medications may include non-steroid anti-inflammatory

(NSAID) drugs often taken by athletes to alleviate pain related to

sports injuries. Diclofenac is such a drug that is widely used for this

purpose. Diclofenac intake has been associated with sudden death

in four professional soccer players in a television show, however,

scientifically this claim was not very well documented [9]. In this

report, the pathologist Jørgen Lange Thomsen attributed these

fatalities to coronary constriction as a possible consequence of

cyclooxygenase enzyme (COX) inhibition [9]. However, one can

speculate that different mechanisms may also be involved in-

cluding direct cardiac electrophysiological effects on potassium

channels with consequent changes in ventricular repolarization.

Diclofenac is a nonselective NSAID drug, which blocks COX-1

and COX-2 enzymes and is widely used as an anti-inflammatory

and analgesic drug. There is growing concern regarding increased

cardiovascular risks of NSAIDs application [10–12], however, very

little is known about the cardiac electrophysiological effect of these

drugs. Therefore, detailed characterization of the possible effects

of diclofenac, one of the most frequently applied NSAIDs, on

ventricular repolarization and transmembrane ionic currents and

further consideration of the possible proarrhythmic potency of the

drug seems reasonable since it can not be ruled out that its possible

proarrhythmic potency might contribute to the higher incidence of

SCD in young athletes. Such studies are justified by the fact that

diclofenac is very often used in large doses for the treatment of

sports injuries [13].

In the present study, the cellular electrophysiological effects of

diclofenac were characterized including its effects on the main

transmembrane ionic currents in single ventricular myocytes as

well as on the action potential characteristics in canine isolated

ventricular muscle and Purkinje fibers. The possible proarrhyth-

mic potency of the drug was also investigated in an anaesthetized

rabbit proarrhythmia model.

Methods

Ethics Statement
All experiments were carried out in compliance with the Guide

for the Care and Use of Laboratory Animals (USA NIH publication NO

85–23, revised 1996) and conformed to the Directive 2010/63/

EU of the European Parliament. The protocols have been

approved by the Ethical Committee for the Protection of Animals

in Research of the University of Szeged, Szeged, Hungary

(approval number: I-74-5-2012) and by the Department of Animal

Health and Food Control of the Ministry of Agriculture and Rural

Development (authority approval number XIII/1211/2012).

Conventional Microelectrode Technique
Adult mongrel dogs (8–14 kg) of either sex were used. Following

sedation (xylazine, 1 mg/kg, i.v.) and anaesthesia (thiopental,

30 mg/kg i.v.), the heart was rapidly removed through right lateral

thoracotomy. The hearts were immediately rinsed in oxygenated

modified Locke’s solution containing (in mM): NaCl 120, KCl 4,

CaCl2 1.0, MgCl2 1, NaHCO3 22, and glucose 11. The pH of this

solution was set between 7.35 and 7.4 when saturated with the

mixture of 95% O2 and 5% CO2 at 37uC. Isolated muscle

preparations obtained from the right ventricle and Purkinje fibers

were individually mounted in a tissue chamber with a volume of

50 ml. These preparations were stimulated through a pair of

platinum electrodes in contact with the preparation using

rectangular current pulses of 2 ms duration. These stimuli were

delivered at a constant cycle length of 1 s (500 ms for Purkinje

fibers) for at least 60 min allowing the preparation to equilibrate

before the measurements were initiated. Transmembrane poten-

tials were recorded using conventional glass microelectrodes, filled

with 3 M KCl and having tip resistances of 5–20 MV, connected
to the input of a high impedance electrometer (Experimetria, type

309, Budapest, Hungary) which was coupled to a dual beam

oscilloscope. The maximum diastolic potential, action potential

amplitude, maximum upstroke velocity (Vmax) and action potential

duration measured at 50% and 90% of repolarization (APD50 and

APD90, respectively) were off-line determined using a home-made

software running on an IBM compatible computer equipped with

an ADA 3300 analogue-to-digital data acquisition board (Real

Time Devices Inc., State Collage, PA, USA) having a maximum

sampling frequency of 40 KHz. The following types of stimulation

were applied in the course of the experiments: stimulation with

a constant cycle length of 1000 ms (ventricular muscles);

stimulation with a constant cycle length of 500 ms (Purkinje

fibres); stimulation with different constant cycle lengths ranging

from 300 to 5000 ms (or to 2000 ms in the case of Purkinje fibers

to prevent spontaneous diastolic depolarization at cycle lengths

longer than 2000 ms). Attempts were made to maintain the same

impalement throughout each experiment. In case an impalement

became dislodged, adjustment was attempted, and if the action

potential characteristics of the re-established impalement deviated

by less than 5% from the previous measurement, the experiment

continued.

Whole Cell Patch-clamp
Ventricular myocytes were enzymatically dissociated from dog

hearts using the segment perfusion technique as described earlier

in detail [7]. One drop of cell suspension was placed in

a transparent recording chamber mounted on the stage of an

inverted microscope. The myocytes were allowed to settle and

adhere to the bottom for at least 5 minutes before superfusion was

initiated. Only rod shaped cells with clear cross-striations were

used. Cells were superfused with HEPES-buffered Tyrode solution

containing (in mM): NaCl 144, NaH2PO4 0.4, KCl 4.0, CaCl2 1.8,

MgSO4 0.53, glucose 5.5, and HEPES 5.0. The pH was set to 7.4

and the temperature to 37oC.

Patch-clamp micropipettes were fabricated from borosilicate

glass capillaries (Harvard Apparatus Ltd, Edenbridge, Kent, UK)

using a micropipette puller (Flaming/Brown, type P-97, Sutter Co,

Novato, CA, USA). These electrodes had resistances between 1.5

and 2.5 MV when filled with pipette solution containing (in mM):

K-aspartate 100, KCl 40, ATP 5, MgCl2 5, EGTA 4, CaCl2 1.5

and HEPES 10. The pH of this solution was adjusted to 7.2 by

KOH. When measuring potassium currents, 1 mM nisoldipine

(gift from Bayer AG, Leverkusen, Germany) was added to the

external solution to eliminate L-type Ca2+ current (ICa). The slow

component of the delayed rectifier potassium current (IKs) was

inhibited by using the selective IKs blocker HMR 1556 (0.5 mM).

In some experiments, the rapid component of the delayed rectifier

potassium current (IKr) was blocked by 0.1 mM dofetilide. The L-

type calcium current was recorded in HEPES buffered Tyrode’s

solution containing 3 mM 4-aminopyridine in order to block the

transient outward potassium current (Ito) and a special K+ free

pipette solution was used (composition in mM: CsOH 100, CsCl
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20, TEACl 20, MgATP 5, HEPES 10, EGTA 4, CaCl2 1.5, GTP

0.1, the pH was adjusted to 7.2 with aspartic acid). Membrane

currents were recorded with Axopatch 200B patch-clamp

amplifiers (Molecular Devices Inc., Sunnyvale, CA, USA) using

the whole-cell configuration of the patch-clamp technique. After

establishing a high resistance (1–10 GV) seal by gentle suction, the
cell membrane beneath the tip of the electrode was disrupted by

suction or application of short electrical pulses. The series

resistance typically ranged from 4 to 8 MV before compensation

(50%–80%). Experiments were discarded, when the series re-

sistance was high or substantially increased during the measure-

ment. Membrane currents were digitized after low-pass filtering at

1 kHz using analog-to-digital converters (Digidata 1322A and

1440A, Molecular Devices Inc., Sunnyvale, CA, USA) under

software control (pClamp 8 and 10, Molecular Devices Inc.,

Sunnyvale, CA, USA). The same software was used for off-line

analysis.

ECG Measurements in Anaesthetized Rabbits
Male New Zealand white rabbits (2–3 kg) were used for the

experiments. The animals were anaesthetized with thiopental

(50 mg/kg, i.v.) given into the marginal vein of the right ear. A

plastic catheter filled with isotonic saline containing 500 IU/mL

heparin was inserted into the left carotid artery for the

measurement of arterial blood pressure. The right jugular vein

was cannulated for i.v. drug administration. The animals were

allowed to stabilize for 20 min before baseline measurements were

taken.

The blood pressure and the electrocardiogram (limb leads I, II

and III) were continuously recorded (at 2 kHz), digitized and

stored on a computer for off-line analysis using National

Instruments data acquisition hardware (National Instruments,

Austin, TX, USA) and SPEL Advanced Haemosys software (v3.2,

Experimetria Ltd., Budapest, Hungary). The RR and QT

intervals were measured as the average of 10 beats. During the

measurement of the QT interval in anaesthetized rabbits, the

guidelines described by Farkas et al. [14] were followed. The

frequency corrected QT interval (QTc) was calculated by

a formula specifically worked out for anaesthetized rabbits by

Batey and Coker [15] for more accurate monitoring of heart rate

dependent changes in the QT interval, as follows: QTc=QT –

(0.704 * (RR-250)).

All intravenous infusions were administered using a program-

mable infusion pump (Terufusion TE-3, Terumo Europe, Leuven,

Belgium). The first group of rabbits received 3 mg/kg diclofenac

(Sigma-Aldrich, Hungary) in a 10 min infusion in a volume of

Figure 1. Effect of diclofenac on action potentials in canine right ventricular muscle preparations and in Purkinje fibers.
Representative superimposed records (top) demonstrating the effect of 20 mM diclofenac on action potential configuration at 1 s stimulation cycle
length (A, right ventricular muscle; B, Purkinje fiber). Cycle length dependent changes in action potential duration (APD90) measured under control
conditions and in the presence of 20 mM diclofenac (bottom) in canine right ventricular muscle preparations (A) and in Purkinje fibers (B). Data are
expressed as mean 6 SEM, n = number of measurements/number of animals.
doi:10.1371/journal.pone.0053255.g001
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2 ml/kg followed by 25 mg/kg dofetilide (Gedeon Richter Ltd.,

Budapest, Hungary) with 15 min equilibrium between infusions.

The second group was administered the same dose of compounds

in the reverse order.

Statistics
The incidence of TdP was compared using the x2–test, with

Yates’ correction. All other data are expressed as arithmetic mean

6 S.E.M. values. Statistical differences were evaluated with one-

way analysis of variance (ANOVA). Differences were considered

significant when p,0.05.

Results

Effects of Diclofenac on Action Potential
The effects of diclofenac on action potential configuration were

studied in canine right ventricular muscle preparations and

Purkinje fibers. The result obtained is shown in Figure 1A top

panel. Small, but statistically significant action potential lengthen-

ing was induced by diclofenac (20 mM) at a basic stimulation

frequency of 1 Hz in right ventricular muscle preparations (APD90

from 222.364.1 ms to 232.263.4 ms; APD50 from 185.365.7 ms

to 198.364.1 ms; n= 13/13 animals, p,0.05). The maximum

upstroke velocity was also decreased by the drug (control:

168.8615.7 V/s, 20 mM diclofenac: 136.6613.2 V/s, n= 13/13

animals, p,0.05) at cycle length of 1000 ms. To study the rate-

dependent effect of the drug on APD90, the preparations were

stimulated at cycle lengths ranging from 300 to 5000 ms. Under

these circumstances diclofenac produced a slight rate-independent

APD prolongation (Figure 1A bottom panel). In canine Purkinje

fibers, however, the drug significantly shortened the action

potential duration (APD90 from 248.1610.9 ms to

230.869.7 ms; APD50 from 177.8612.8 ms to 152.0612.5 ms;

n = 6 preparations/6 animals, p,0.05) and decreased Vmax (from

673.968.5 V/s, to 562.4627.0 V/s, n = 6 preparations/6 ani-

mals, p,0.05) at basic cycle length of 500 ms indicating a sodium

channel blocking property of the drug [16]. The shortening of

APD90 was rate-independent (Figure 1B).

The influence of diclofenac on action potential repolarization in

preparations with impaired repolarization reserve was also in-

vestigated. Repolarization reserve was greatly attenuated by the

application of 30 mM BaCl2, which partially blocks the inward

rectifier potassium current (IK1) in dog right ventricle [17]. BaCl2
lengthened APD in a reverse frequency dependent manner

(Figure 2). In the presence of BaCl2, 20 mM diclofenac was added

to these preparations. The drug induced a marked further

lengthening relative to the APD90 values measured after the

administration of BaCl2 (APD90: diclofenac: 309.8615.2 ms vs.

BaCl2: 283.5615.3 ms; APD50: 241.0610.3 ms vs.

225.2612.6 ms; n= 11 preparations/9 animals, p,0.05, at cycle

length of 1000 ms), i.e. APD lengthening effect of diclofenac was

significantly augmented in preparations where the ‘‘repolarization

reserve’’ was attenuated by previous application of BaCl2
(Figure 2). Under these circumstances the drug produced reverse

rate-dependent APD prolongation (Figure 2B).

Rationale for the Use of Anaesthetized Rabbit
Proarrhythmia Model
Since the introduction of the Carlsson’s rabbit proarrhythmia

model [18], the anaesthetized rabbit has been extensively used in

different in vivo proarrhythmia studies for the assessement of

arrhythmia risk associated with a compound of interest (for

a comprehensive review see [19]). Therefore, two sets of

experiments were also carried out in anaesthetized rabbits

investigating the effects of diclofenac alone and in combination

with the IKr blocker dofetilide (impairing repolarization reserve) on

cardiac repolarization and the development of Torsades de Pointes

ventricular tachycardia (TdP).

Figure 2. Effect of diclofenac on action potential repolarization in canine right ventricular preparations with impaired
repolarization reserve. (A) Representative superimposed action potentials recorded from canine right ventricular muscle preparation at cycle
length of 1 s. In these experiments 30 mM BaCl2 was applied to attenuate the repolarization reserve prior to 20 mM diclofenac superfusion. (B) Cycle
length dependent changes in APD90 measured under the specified experimental conditions in canine right ventricular muscle preparation. Data are
expressed as mean 6 SEM, n = number of measurements/number of animals.
doi:10.1371/journal.pone.0053255.g002
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Effect of Diclofenac, Dofetilide and their Combinations
on QTc, RR Intervals and Incidence of TdP in
Anaesthetized Rabbits
The QT and RR intervals were not different in baseline

conditions between the two groups of anaesthetized rabbits, and

were 147.664.95 vs. 144.967.18 ms and 242.864.28 vs.

229.466.02 ms, n= 15 and 13 animals, respectively, all p.0.05.

Diclofenac (3 mg/kg) did not increase the RR interval either when

given first (230.266.98 vs. 229.466.02 ms in control, p.0.05) or

when it was administered following dofetilide infusion

(252.167.73 ms vs 250.465.97 ms, p.0.05). Dofetilide, on the

other hand, increased the RR interval both when given first

(250.465.97 ms vs. 242.864.28 ms, p,0.05) and when it was

administered following diclofenac infusion (240.368.21 ms vs.

230.266.98 ms, p,0.01). As shown on Figure 3A, diclofenac

(3 mg/kg) did not change the QTc interval, while as expected,

dofetilide (25 mg/kg) significantly lengthened QTc in anaesthe-

tized rabbits. The combination of diclofenac and dofetilide

significantly prolonged QTc, irrespective of the order of admin-

istration (Fig. 3A). Figure 3B and C illustrate the incidence of

Torsades de Pointes arrhythmias in anaesthetized rabbits following

the administration of diclofenac, dofetilide and their combination.

Importantly, diclofenac alone did not induce TdP in any of the 13

animals examined, while TdP incidence following dofetilide was

20%, which corresponds well with our previous observations in

this model [20]. However, the animals were not devoid of

arrhythmias after diclofenac administration: 8 out of 13 exhibited

frequent ventricular extra beats, and 7 out of 13 developed

bigeminy. On the other hand, the combination of diclofenac and

dofetilide led to a significant increase in the incidence of TdP and

the increase was highest (62%) when diclofenac was administered

first, indicating that further potassium channel inhibition following

prior impairment of repolarization reserve can lead to increased

frequency of serious arrhythmia development (Fig. 3B).

Effects of Diclofenac on Transmembrane Ionic Currents
The effects of the drug on the 4-aminopyridine sensitive Ito, as

well as on IK1, IKr, IKs and ICa were investigated in canine

ventricular myocytes. As shown in Figure 4A and 4B, diclofenac

(even at 50 mM concentration) did not influence Ito or IK1

currents. Ito current was activated by 300 ms long depolarizing

voltage pulses from the holding potential of 290 mV to test

potentials ranging from 220 to +60 mV with a pulse frequency of

0.33 Hz. The amplitude of Ito was measured as the difference

between the peak and the sustained current at the end of the

voltage pulse. IK1 current was measured as the steady-state current

level at the end of the 300 ms long voltage pulse in the voltage

range of 2100 to 0 mV with a pulse frequency of 0.33 Hz. The

holding potential was 290 mV.

IKr and IKs were measured using 1000 ms (IKr) or 5000 ms-long

(IKs) test pulses between 230 mV and +50 mV (IKr) or 220 to

+50 mV (IKs). The holding potential was 280 mV and during IKr

measurements 500 ms long prepulse to 240 mV was applied in

order to ensure the baseline region. The pulse frequency was

0.05 Hz (IKr) or 0.1 Hz (IKs). The decaying tail current at

240 mV after the test pulse was assessed as IKr or IKs. The

amplitudes of the IKr and IKs tail currents were determined as the

difference between the peak tail current and the steady-state

current level at 240 mV (baseline). When measuring IKr, HMR-

1556 (500 nM) was used to completely block IKs, while dofetilide

(0.1 mM) was added to the bath solution when studying IKs. The

top panels of Figure 5A and 5B show original IKr and IKs current

traces in the absence and presence of 30 mM diclofenac, and

indicate a significant blockade of IKr (at 20 mV test potential; from

57.765.5 pA to 36.262.3 pA, n= 5 cells/4 animals, p,0.05) and

of IKs (at 20 mV test potential; from 229.6615.0 pA to

126.5610.5 pA, n = 6 cells/4 animals, p,0.05) by diclofenac.

The corresponding bottom panels show the current-voltage

relationships of IKr (Fig. 5A) and IKs (Fig. 5B) before and following

superfusion with 30 mM diclofenac.

ICa was recorded in the presence 3 mM 4-aminopyridine in

order to block Ito. The current was evoked by 400 ms-long

Figure 3. Effect of diclofenac on repolarization and TdP
incidence in anesthetized rabbits. (A) Frequency corrected QT
intervals (QTc) and (B) incidence of Torsades de Pointes ventricular
tachycardia (TdP) in anaesthetized rabbits before and following
dofetilide (25 mg/kg), dofetilide+diclofenac (3 mg/kg) and diclofenac,
diclofenac+dofetilide administration. *p,0.05 vs. control, +p,0.05 vs.
diclofenac, 1p,0.05 vs. dofetilide, n = 15 and 13 animals/group,
respectively. (C) Representative ECG recordings illustrate TdP de-
velopment only after dofetilide or diclofenac+dofetilide combination,
but not following diclofenac administration. #p,0.05 vs. baseline,
n = 13 and 15 animals/group, respectively.
doi:10.1371/journal.pone.0053255.g003
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depolarizing test pulses to voltages between 235 to +55 mV. The

holding potential was 280 mV and a 75 ms-long prepulse to

240 mV was applied in order to inactivate the sodium current.

The pulse frequency was 0.2 Hz. The amplitude of ICa was

defined as the difference between the peak inward current at the

beginning and the current at the end of the pulse. Diclofenac

(30 mM) slightly but statistically significantly decreased the

amplitude of the current (at 0 mV test potential; from

730.5679.8 pA to 623.2682.4 pA, n= 6 cells/4 animals,

p,0.05) as indicated on Figure 6.

Discussion

The main results of the present study show that in the normal

heart, diclofenac does not exert marked cardiac electrophysiolog-

ical effects and does not enhance proarrhythmic risk, however, in

hearts where repolarization reserve is attenuated, its moderate

inhibition of IKs and IKr may lead to prolongation of ventricular

repolarization and may also enhance proarrhythmic risk.

Our results indicate that diclofenac influences transmembrane

ionic currents in canine ventricular myocytes, inhibiting IKr, IKs

and ICa currents but leaving Ito and IK1 unchanged. Only a slight

action potential lengthening was induced in ventricular muscle

preparations and in Purkinje fibers the drug shortened the action

potential duration. The maximum upstroke velocity was decreased

in both preparations by diclofenac. However, larger repolarization

prolongation was observed when repolarization reserve was

impaired by previous application of BaCl2. In anaesthetized

rabbits, diclofenac did not prolong the QTc interval and did not

induce TdP when administered alone. In contrast, when

diclofenac was administered after the IKr blocker dofetilide it

further increased the QTc interval and the incidence of TdP. In

addition, dofetilide induced TdP in 20% of animals, however,

when dofetilide was administered after diclofenac, the incidence of

TdP was 62%.

For more than a decade, concerns about increased cardiovas-

cular risks associated with NSAID drugs have been increasing,

especially in patients with a history of cardiovascular disease

[21,22,23]. The latest network meta-analysis of the cardiovascular

safety of NSAID compounds involving more than 116 000 patients

clearly suggested that NSAID drug administration was associated

with elevated cardiovascular risk, and diclofenac was one of the

drugs associated with the highest risk of cardiovascular death [12].

It is not clear from this meta-analysis, however, how the risk of

serious ventricular arrhythmia induced sudden cardiac death was

influenced by NSAIDs.

The present study focused on the effects of diclofenac on cardiac

repolarization, action potential characteristics and on the main

transmembrane ionic currents in ventricular muscle, since little is

known about the direct cardiac electrophysiological effects and the

possible proarrhythmic potency of this drug. Most of the

information about the action of diclofenac on ionic currents arises

Figure 4. Lack of effect of diclofenac on the transient outward potassium (Ito) and on the inward rectifier potassium (IK1) currents in
canine ventricular myocytes. A, top: Representative Ito current traces under control conditions and after application of 50 mM diclofenac. A,
bottom: Current – voltage relationships of Ito under control conditions and in the presence of 50 mM diclofenac. Panel B shows steady-state current –
voltage relationships of IK1 before and after application of 50 mM diclofenac. Insets depict the voltage protocol applied during measurements. Data
are expressed as mean 6 SEM, n =number of measurements/number of animals.
doi:10.1371/journal.pone.0053255.g004
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from measurements in non-cardiac cells, activating the transient

outward K+ current [24] and inhibiting sodium current [25,26]. It

was also observed that diclofenac enhanced KCNQ2/Q3 currents

[27], others reported that the drug served as an activator of

KCNQ4 and a blocker of KCNQ5 channels [28]. The only ionic

current data obtained in ventricular cells were measured by

Yarishkin et al. [29], who described inhibition of L-type Ca2+

current by the drug in neonatal rat ventricular myocytes.

Our results showed that diclofenac did not influence Ito and IK1

currents even at high concentration but decreased the amplitude

of IKr and IKs currents in canine ventricular myocytes. In spite of

the significant IKr blockade by the drug just a small but statistically

significant action potential lengthening was detected following

diclofenac administration in canine ventricular muscle. Some of

our other observations may explain these seemingly conflicting

results. Diclofenac significantly decreased the maximum upstroke

velocity in canine ventricular muscle and also in Purkinje fibers

indicating the Na+ channel blocking property of the drug. It is well

established that the late or persistent component of the Na+

current contributes to the action potential plateau, which is most

significant in Purkinje fiber [16]. In Purkinje fiber, diclofenac

shortened the action potential duration most probably due to

inhibition of the late Na+ current. Therefore, blockade of this

current tends to limit the action potential prolongation resulting

from the IKr inhibition by diclofenac. Indeed, a similar reduction

of the action potential duration prolonging effect by additional ICa
inhibition was demonstrated earlier in the case of the neuroleptic

risperidone that blocks IKr [30]. Therefore, the slight decrease of

L-type Ca2+ current by high concentration of diclofenac found in

this study may also help to counteract the action potential

lengthening effect of IKr blockade. The key role of IKs in

ventricular repolarization was discussed in earlier works [7,8,31].

Full inhibition of IKs caused only a slight lengthening of

repolarization in ventricular preparations, thus in normal canine

ventricular muscle IKs plays a minor role in control of APD. This

current, however, could provide an important means of limiting

excessive APD lengthening when action potential duration is

prolonged beyond normal by other mechanisms, thus contributing

significantly to repolarization reserve [8]. Therefore, IKs blockade

caused by diclofenac might only marginally influence action

potential duration but attenuates repolarization reserve.

We characterized in vitro and in vivo electrophysiological effects

of diclofenac: (i) the drug at high concentration inhibits both

inward – depolarizing – and outward – repolarizing – trans-

membrane ionic currents in canine ventricular myocytes, (ii)

resulting in only slight repolarization lengthening of ventricular

muscle and shortening of the action potential in Purkinje fibers

with normal repolarization reserve; (iii) diclofenac did not prolong

the QTc interval in anaesthetized rabbits. This implies that

diclofenac may not augment spatial repolarization heterogeneity.

However, in preparations with impaired repolarization reserve,

much larger lengthening of the action potential duration was

observed after application of the drug. Moreover, in our in vivo

anaesthetized rabbit model when repolarization reserve was

Figure 5. Effect of diclofenac on the rapid (IKr) and slow (IKs) component of the delayed rectifier potassium currents in canine
ventricular myocytes. Top panels show representative current traces (A, IKr; B, IKs), bottom panels represent current – voltage relationships under
control conditions and in the presence of 30 mM diclofenac. Insets indicate the voltage protocol applied during measurements. Data are expressed as
mean 6 SEM, n =number of measurements/number of animals.
doi:10.1371/journal.pone.0053255.g005
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impaired, diclofenac further increased QTc interval and the

incidence of TdP while administered alone it did not induce any

TdP.

According to the concept of repolarization reserve [1,2,32],

normal repolarization is accomplished by multiple potassium

channels providing a strong safety reserve for repolarization. Since

inhibition or dysfunction of structural origin of one potassium

channel does not necessarily lead to clinically manifest pro-

longation of repolarization, other potassium channels can take

over the loss of function. However, a heart with impaired

repolarization reserve is more vulnerable to arrhythmia de-

velopment, since inhibition of another potassium channel by

drugs may lead to significant inhomogenous repolarization

prolongation and to serious cardiac dysrhythmias [3]. In the

present study, the influence of diclofenac on action potential

repolarization was also investigated after impairment of the

repolarization reserve by adding 30 mM BaCl2, which partially

blocks IK1 current. The drug induced a marked action potential

lengthening, i.e. the APD lengthening effect of diclofenac was

significantly larger in these conditions than in ventricular

preparations with normal repolarization reserve.

Repolarization reserve can be reduced by several congenital or

acquired pathophysiological conditions [3], as well as reversible

cardiac hyperthrophy (athlete’s heart). Downregulation or dys-

function of the IKs current plays a critical role in the development

of cardiac repolarization reserve impairment [33,8]. In compet-

itive athletes, slight impairment of repolarization reserve [34] does

not result in a significant risk of arrhythmia but together with

additional factors (increased sympathetic tone, seemingly harmless

medications, doping agents, dietary constituents, hypokalemia,

early and undiagnosed cardiomyopathy or other pathological

anomalies), these hits on repolarization may add up and can cause

repolarization abnormalities occasionally leading to sudden

cardiac death (for a recent review see [5]). In this regard, we

found higher beat-to-beat variability of the QT interval, a novel

ECG parameter characterizing temporal instability of cardiac

repolarization [35], in professional soccer players compared to

their age-matched controls with no significant sports activities

[36].

The applied concentration of diclofenac in the present study

was somewhat higher than the reported therapeutic blood level,

which is approximately 2–7 mM/L based on the data after 50 mg

oral administration of diclofenac [37,38]. Diclofenac strongly

binds to plasma albumin [39], complicating the comparison of

in vitro and in vivo data. In addition, substantial interpatient

variabilities in unbound NSAID plasma concentrations and a poor

correlation between concentration and therapeutic response to

NSAIDs have been found [39]. It is well known that top athletes

widely use NSAIDs, to treat their sports injuries frequently

diclofenac, in larger doses [13] that can result in significantly

higher plasma and tissue levels. In an in vivo animal study,

application of diclofenac in therapeutic doses resulted in higher

plasma concentration: a single 50 mg oral dose of diclofenac led to

6 mg/mL (approximately 20 mM/L) peak plasma concentration in

Beagle dogs [40]. In clinical settings, diclofenac plasma levels can

be increased by dietary constituents (e.g. grapefruit, pineapple

juices) and co-administered medications interfering with its

metabolism [41,42,43,44,45] or plasma protein binding [46].

Study Limitations
BaCl2 was used as a tool to impair repolarization reserve in

ventricular muscle preparations only, since in Purkinje fibers it was

reasonable to expect that BaCl2 would have affected the slope of

diastolic depolarization and would have influenced action

potential measurements.

The actual plasma levels of diclofenac in anesthetized rabbits

were not measured under the present experimental conditions, we

relied on firm data from the literature to determine the dose and

concentrations of diclofenac used in the experiments.

Conclusions
In the normal heart, diclofenac at therapeutic and even at higher

concentrations does not markedly influence ventricular repolari-

zation and arrhythmia risk. However, high-dose treatment with

the drug may enhance proarrhythmic risk in situations that lead to

reduced repolarization reserve. Therefore, individuals taking diclofenac

under proper medical control should not be concerned about

proarrhythmic side effects, however, its administration may add to

increased risk for serious arrhythmia development in persons

associated with subsidiary risk factors including certain diseases or

genetic defects that impair repolarization, as well as in individuals

taking part in top competitive sports activities. Additional clinical

studies are needed to elucidate whether diclofenac increases

proarrhythmic risk in patients with congenital and/or acquired

diseases and conditions associated with impaired repolarization

reserve.

Figure 6. Effect of diclofenac on the L-type calcium current in
canine ventricular myocytes. Top panel shows representative
current traces, bottom panel represents current – voltage relationships
under control conditions and in the presence of 30 mM diclofenac. Inset
indicates the voltage protocol applied during measurements. Data are
expressed as mean 6 SEM, n= number of measurements/number of
animals.
doi:10.1371/journal.pone.0053255.g006
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pharmacological block of IKr and IKs increases short-term QT interval
variability and provokes torsades de pointes. Br J Pharmacol 151: 941–951.

21. Bombardier C, Laine L, Reicin A, Shapiro D, Burgos-Vargas R, et al. (2000)
Comparison of upper gastrointestinal toxicity of rofecoxib and naproxen in

patients with rheumatoid arthritis. VIGOR Study Group. N Engl J Med

343(21): 1520–1528.
22. Huang WF, Hsiao FY, Tsai YW, Wen YW, Shih YT (2006) Cardiovascular

events associated with long-term use of celecoxib, rofecoxib and meloxicam in
Taiwan: an observational study. Drug Saf 29(3): 261–272.

23. Huang WF, Hsiao FY, Wen YW, Tsai YW (2006) Cardiovascular events

associated with the use of four nonselective NSAIDs (etodolac, nabumetone,
ibuprofen, or naproxen) versus a cyclooxygenase-2 inhibitor (celecoxib):

a population-based analysis in Taiwanese adults. Clin Ther 28(11): 1827–1836.
24. Liu LY, Fei XW, Li ZM, Zhang ZH, Mei YA (2005) Diclofenac, a nonsteroidal

anti-inflammatory drug, activates the transient outward K+ current in rat
cerebellar granule cells. Neuropharmacology 48(6): 918–926.

25. Lu Y, Kawashima A, Horii I, Zhong L (2004) Effects of BSO and L-cysteine on

drug-induced cytotoxicity in primary cell cultures: drug-, cell type-, and species-

specific difference. Drug Chem Toxicol 27: 269–280.

26. Fei XW, Liu LY, Xu JG, Zhang ZH, Mei YA (2006) The non-steroidal anti-

inflammatory drug, diclofenac, inhibits Na+ current in rat myoblasts. Biochem

Biophys Res Commun 346(4): 1275–1283.

27. Peretz A, Degani N, Nachman R, Uziyel Y, Gibor G, et al. (2005) Meclofenamic

acid and diclofenac, novel templates of KCNQ2/Q3 potassium channel

openers, depress cortical neuron activity and exhibit anticonvulsant properties.

Mol Pharmacol 67(4): 1053–1066.

28. Brueggemann LI, Mackie AR, Martin JL, Cribbs LL, Byron KL (2011)

Diclofenac distinguishes among homomeric and heteromeric potassium channels

composed of KCNQ4 and KCNQ5 subunits. Mol Pharmacol 79(1): 10–23.

29. Yarishkin OV, Hwang EM, Kim D, Yoo JC, Kang SS, et al. (2009) Diclofenac,

a non-steroidal anti-inflammatory drug, inhibits L-type Ca channels in neonatal

rat ventricular cardiomyocytes. Korean J Physiol Pharmacol 13(6): 437–442.

30. Christ T, Wettwer E, Ravens U (2005) Risperidone-induced action potential

prolongation is attenuated by increased repolarization reserve due to

concomitant block of ICa,L. Naunyn Schmiedebergs Arch Pharmacol 371(5):

393–400.
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