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Distinct Early Signaling Events Resulting From the
Expression of the PRKAG2 R302Q Mutant of AMPK
Contribute to Increased Myocardial Glycogen
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Michael F. Allard, MD; Robert Roberts, MD; Michael H. Gollob, MD;
Peter E. Light, PhD; Jason R.B. Dyck, PhD

Background—Humans with an R302Q mutation in AMPK<y, (the PRKAG2 gene) develop a glycogen storage
cardiomyopathy characterized by a familial form of Wolff-Parkinson-White syndrome and cardiac hypertrophy. This
phenotype is recapitulated in transgenic mice with cardiomyocyte-restricted expression of AMPK~y,R302Q. Although
considerable information is known regarding the consequences of harboring the y,R302Q mutation, little is known
about the early signaling events that contribute to the development of this cardiomyopathy.

Methods and Results—To distinguish the direct effects of y,R302Q expression from later compensatory alterations in
signaling, we used transgenic mice expressing either the wild-type AMPK'y, subunit (TGy,WT) or the mutated form
(TGvy,R302Q), in combination with acute expression of these proteins in neonatal rat cardiomyocytes. Although acute
expression of y,R302Q induces AMPK activation and upregulation of glycogen synthase and AS160, with an associated
increase in glycogen content, AMPK activity, glycogen synthase activity, and AS160 expression are reduced in hearts
from TG7y,R302Q mice, likely in response to the existing 37-fold increase in glycogen. Interestingly, y, WT expression
has similar, yet less marked effects than y,R302Q expression in both cardiomyocytes and hearts.

Conclusions—Using acute and chronic models of y,R302Q expression, we have differentiated the direct effects of the
v,R302Q mutation from eventual compensatory modifications. Our data suggest that expression of y,R302Q induces
AMPK activation and the eventual increase in glycogen content, a finding that is masked in hearts from transgenic adult
mice. These findings are the first to highlight temporal differences in the effects of the PRKAG2 R302Q mutation on
cardiac metabolic signaling events. (Circ Cardiovasc Genet. 2009;2:457-466.)
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MP-activated protein kinase (AMPK) is a highly con-

served kinase that is responsible for controlling cellular
energy homeostasis (for review, see reference 1). In the cardio-
myocyte, AMPK has been implicated in stimulating myocardial
fatty acid uptake? and oxidation® as well as glucose uptake,*
glycolysis,>® and possibly glycogen storage or mobiliza-
tion®-8; all of which likely contribute to maintaining adequate
ATP supply that is necessary for normal cardiac function. In
noncardiac cells, AMPK plays important roles in the regula-
tion of many pathways including gluconeogenesis, fatty acid
synthesis, lipolysis, whole-body metabolism (reviewed in

reference 9), and appetite.'? As a result of these studies, and
given the fact that the antidiabetic drug metformin has been
shown to increase AMPK activity,!? there has been consid-
erable interest in developing therapies that modulate AMPK
activity for the treatment of obesity and diabetes.!! Moreover,
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pharmacological activation of AMPK has also been proposed
as a treatment for limiting myocardial ischemia and reperfu-
sion injury.!3-'4 However, given the existence of naturally
occurring gain- and loss-of-function mutations in AMPK and
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their association with certain cardiac abnormalities,!5-17 it is
imperative that we first gain fundamental insight into the
roles that AMPK plays in the heart before pursuing these
therapeutic strategies. Studying and understanding these natu-
rally occurring mutations will greatly assist in this endeavor.

AMPK consists of a catalytic subunit («) and 2 regulatory
subunits (B, y).'®'° The vy subunit of AMPK has been shown
to bind AMP,?° which ultimately enhances phosphorylation
and activation of the o subunit to increase AMPK activity. A
number of mutations within the AMPKvy, gene (PRKAG2)
have been shown to produce a glycogen storage cardiomy-
opathy distinguished by ventricular preexcitation, progressive
conduction system disease and in certain cases, cardiac
hypertrophy.!5-!7 It is believed that conduction system abnor-
malities present in these patients are a result of glycogen-
filled myocytes causing bypass tracts and/or disruption of the
annulus fibrosis between the atria and ventricle,!¢-!7 faster
depolarization of the ventricular myocardium and resulting
tachycardia.?! This cardiac phenotype in humans can be
caused by a missense mutation in the human PRKAG2 gene
that results in an arginine substitution with a glutamine at
amino acid 302 (R302Q) in the <y, subunit.!s

In transgenic mice overexpressing the y,R302Q mutation,
the y,N488I mutation, or the y,R531G mutation, the result-
ing phenotypes include significant glycogen accumulation
within the cardiomyocyte and marked cardiac hypertro-
phy.?2-2* This phenotype has been attributed to alterations in
AMPK activity resulting from the mutations. However, the
v,R302Q and y,R531G mutations have been reported to
inhibit AMPK activity, whereas the y,N448I mutation results
in AMPK activation.!7-2324 To date, it is not known how
mutations causing either a decrease or an increase in AMPK
activity might result in the same phenotype. Interestingly,
evidence demonstrating changes in AMPK activity resulting
from the mutations largely come from transgenic mice.!7-2324
However, when studying adult mice from these transgenic
lines, it is difficult to separate direct effects of the mutation
alone from compensatory changes induced as a result of
altered metabolism and glycogen accumulation. In fact, it has
been shown that AMPK activity in hearts of transgenic mice
expressing the y,N488I mutation fluctuates in response to the
levels of glycogen accumulation.?> Therefore, based on these
complex interactions between AMPK and glycogen accumu-
lation in the young and the adult heart, the objective of this
investigation was to distinguish the acute, direct effects of the
v,R302Q mutation from the chronic, potentially compensa-
tory effects on AMPK activity and on pathways involved in
glycogen accumulation and hypertrophic growth. Ultimately,
the information gained from this study may provide clues as
to the importance of AMPK activity, glycogen deposition,
and cardiac hypertrophy in the development of the PRKAG?2
syndrome. In addition, this mutation may also provide further
information about the fundamental roles of AMPK in the
heart and the effects of direct alteration of AMPK activity.
This information is especially relevant given the interest in
AMPK as a drug target for the treatment of obesity and/or
diabetes and ischemia and reperfusion injury.

Methods

Animal Care

The University of Alberta adheres to the principles for biomedical
research involving animals developed by the Council for Interna-
tional Organizations of Medical Sciences and complies with National
Institutes of Health animal care guidelines.

Materials

Primary antibodies against phospho-Akt (Ser 473), Akt, phospho-
AMPKa (Thr 172), AMPK«a, AMPKYy,, AMPKf,, phospho-acetyl
CoA carboxylase (Ser 79), phospho-Ser/Thr Akt substrate, AS160,
glycogen synthase (GS), and phospho-p70S6K (Thr 389) were
purchased from Cell Signaling Technology (Danvers, Mass). The
primary antibody against phospho-GS (Ser641/5) was purchased
from Novus Biologicals (Littleton, Colo). The primary antibodies
against actin- and peroxidase-labeled streptavidin as well as second-
ary antibodies were obtained from Santa Cruz Biotechnology (Santa
Cruz, Calif). Radiolabeled substrates were purchased from Perkin-
Elmer Life Sciences, Inc (Waltham, Mass).

Transgenic Mice

Transgenic mice with cardiomyocyte-restricted expression of the
wild-type (TGy,WT) and the mutant human PRKAG2 gene
(TGy,R302Q; substitution of glutamine for arginine at residue 302)
were generated with the cardiac specific promoter a-myosin heavy
chain as we have previously described.2* Male and female mice were
weighed before euthanasia (whole body weight). Hearts were ex-
tracted from 2- to 5-month-old mice, rinsed in ice-cold PBS, and
total heart weight (HW) was determined. Hearts from 7-day-old and
2- to 5-month-old mice that were used for biochemical analysis were
frozen in liquid nitrogen immediately after extraction. In some
instances, mouse ventricular cardiomyocytes were isolated using a
modified version of an isolation protocol described previously.?®

Cardiomyocyte Infection

Newborn (1- to 3-day-old, male and female) rat hearts were isolated,
and neonatal rat cardiomyocytes were isolated and cultured, as we
have described previously.?” Neonatal rat cardiomyocytes were
infected with green fluorescent protein- (GFP), y,WT-, or y,R302Q-
expressing adenoviruses (AdGFP, Ady,WT, or Ady,R302Q, respec-
tively) at a multiplicity of infection of 20. Forty-eight hours
postinfection, cells were harvested as described.?8

Cell Surface Area Measurements
The cardiomyocyte cell surface area measurements were obtained
using ImagePro Plus software (MediaCybernetics, Bethesda, Md).

[*H]Phenylalanine Incorporation

[*H]phenylalanine (1 uCi/mL) was added to isolated neonatal rat
cardiomyocytes for 24 hours, and incorporation was determined, as
described previously.?®

Measurement of Nuclear Factor of Activated T
Cells Activity

To determine nuclear factor of activated T cells (NFAT) transcrip-
tional activity, cardiomyocytes were cultured as described earlier and
infected with adenoviruses harboring either the GFP (AdGFP) or the
NFAT-Luc-Promoter (AANFAT; Seven Hills Bioreagents) and as-
sayed for luciferase activity as we have described previously.3¢
Luciferase activity was standardized to protein content.

In Vitro AMPK Assay

AMPK activity was measured using the in vitro AMPK peptide
substrate activity assay as described previously.?!

Immunoblot Analysis
Boiled samples of heart or isolated cardiomyocytes homogenates
were subjected to SDS-PAGE in gels containing 5% to 10%
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acrylamide and transferred to nitrocellulose and immunoblotted, as
described previously.32

Histology

One-micrometer sections of human heart endomyocardial biopsy
samples fixed in 10% formalin were prepared and stained with
hematoxylin-eosin stain, as described previously.2* The left atrial
appendage samples were collected as part of a post-transplant
assessment for the PRKAG2 sample and as part of a clinical
evaluation following a clinically indicated procedure for the
“control” sample.

Glycogen Assay

Glycogen was extracted from frozen powdered mouse heart ventricular
tissue or isolated cardiomyocytes, converted to glucose, and quantified
using a range of glucose standards as described previously.* Glycogen
was measured as micromole glucosyl units per gram wet weight of
tissue or cells.

Measurement of Glycogen Synthase
and Phosphorylase Activity

Activity was measured in cardiomyocyte homogenates essentially as
described previously.34-35

Measurement of Glycolytic Rates in

Isolated Cardiomyocytes

Rates of glycolysis were measured using 5-[°H] D-glucose as
described by Folmes et al.’¢

Statistical Analysis

All data are presented as mean*SEM. For comparison of 3 groups,
ANOVA followed by the Bonferroni multiple comparisons test was
used for the determination of statistical analysis. For comparison
with AdGFP (set at an arbitrary value of 1), a 1-sample 7 test to a
hypothetical mean was used. For comparison of 2 groups, a 2-tailed
t test was used. A value of P<<0.05 was considered significant.

Results

AMPK Activity and Subunit Expression

To confirm that hearts from TGy,R302Q mice demonstrated
reduced AMPK activity as published previously,>* whole
heart homogenates were assayed for AMPK activity. Al-
though hearts from both vy, wild-type overexpressing trans-
genic mice (TGy,WT) and vy, mutant overexpressing trans-
genic mice (TGy,R302Q) displayed decreases in AMPK
activity compared with nontransgenic (NTG) hearts, AMPK
activity in TGy,R302Q hearts was also significantly de-
creased compared with TGy, WT hearts (Figure 1A). Consis-
tent with the reductions in total AMPK activity, «;, and «,
activities were both reduced to ~50% of NTG levels in
TGy,WT hearts, whereas the activities of both isoforms in
TGvy,R302Q hearts were decreased to ~35% (data not
shown). These data indicate that there are no specific effects
of the mutation on either of the 2 catalytic isoforms of
AMPK. In agreement with an overall decrease in AMPK
activity, AMPKa phosphorylation at Thr172, a surrogate
marker of the in vivo activation status of AMPK, was
significantly reduced in hearts from TGvy,R302Q mice com-
pared with NTG and TGy,WT (Figure 1B). Interestingly, the
¥, subunit was more highly expressed in the TGy, WT mouse
hearts as compared with the TG7y,R302Q mouse hearts,
whereas y, was not detected in NTG hearts at this exposure
(Figure 1C). Although the expression of all other subunits
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was unchanged (data not shown), expression of 3, was also
increased in both TGy,WT and TGy,R302Q mouse hearts as
compared with NTG hearts (Figure 1D).

In contrast to the findings in hearts from transgenic mice,
acute adenoviral-mediated expression of the vy, mutant
(Ady,R302Q) in isolated cardiomyocytes resulted in signifi-
cantly higher AMPK activity (Figure 1E), with a trend to
increase phosphorylation of the AMPKa subunit (Figure 1F)
compared with control GFP-expressing cardiomyocytes
(AdGFP). This increase in AMPK activity was also observed
in hearts from 7-day-old TGy,R302Q mice (Figure 1G).
Consistent with activation of AMPK, phosphorylation of
acetyl CoA carboxylase, a downstream target of AMPK, was
also significantly increased in y,R302Q expressing cardio-
myocytes compared with control (1.63%+0.15-fold increase,
P<0.05 versus control). Together, these data suggest that the
reduction in AMPK activity observed in hearts from adult
transgenic mice is likely a secondary effect rather than a
direct result of the mutation per se. Interestingly, as observed
in adult transgenic mice, the y,WT subunit was present at
higher levels than the y,R302Q subunit in adenovirally
transduced cardiomyocytes (Figure 1H), whereas expression
of the 3, subunit was increased in both groups compared with
GFP control (Figure 1I), suggesting that increased vy, levels
may have a specific effect on 3, expression and/or stability.

The Development of Cardiac Hypertrophy

TGy,R302Q mice exhibited significant cardiac hypertrophy
as indicated by the increase in heart weight (HW) (Figure 2A)
compared with NTG and TGy, WT mice without a significant
change in body weight (34.2+2.7 g, 27.6+1.0 g,352%x30 g
for NTG, TGy,WT, and TGy,R302Q, respectively, P=NS).
Although many different myocardial cell types may contrib-
ute to increased HW/body weight, we show a direct increase
in cardiomyocyte size in TGy,R302Q mice as compared with
both NTG and TGy,WT controls (Figure 2B). Interestingly,
TGy,WT mice also developed a significant increase in HW
and an increase in cardiomyocyte cell surface area compared
with NTG controls (Figure 2A and 2B, respectively), sug-
gesting that expression of the nonmutated form of the v,
subunit also has a modest effect on cardiomyocyte growth. As
we have previously shown that AMPK is a negative regulator
of hypertrophy?® and that inhibition of AMPK signaling may
lead to a permissive environment for development of hyper-
trophy,3” the inhibition of AMPK activity observed in both
transgenic mouse models may contribute to the hypertrophic
phenotype in these mice. However, phosphorylation of both
Akt and p70S6K at their activating sites® was significantly
decreased in the TG7y,R302Q hypertrophic hearts compared
with NTG hearts (Figure 2C and 2D, respectively), suggest-
ing that protein synthesis is not increased in adult TGy, WT or
TGvy,R302Q mouse hearts. In addition, acute expression of
either the y,WT or the y,R302Q subunit in isolated cardio-
myocytes did not result in increased cardiomyocyte size
(Figure 2E), accelerated protein synthesis (basal or phenyl-
ephrine stimulated; Figure 2F), or stimulation of prohyper-
trophic growth pathways (Figure 2G), suggesting that alter-
ations in AMPK activity by these mutations do not promote



6T0Z ‘6T AInc uo Ag Bio'seulnofeye//:dny wouy papeojumoq

460 Circ Cardiovasc Genet October 2009

A B NTG TORWT  TGyR3020 C NTG  TG,WT TGyR302Q
P-AMPKa s AMPKy, ——
(Thr172) - - “
AMPKa  w e SIS e ann G Actin . cmn e o oo
= 700- £ 1 5-
S 6004 = 510{ T n
E'.é 2 1.0 £ 24
2 o 5004 ~ £ 0.8 T E
S 2 400 L <33
<E Rxk £ 2 0.6 s
X £ 300+ *k%k = g X 8, o
[ g # g 7 0.44 *kk o 2
5 % . < # 5 2 14
£ 100- E < 0.29 S
Q v
£ . d 00 T 0-
NTG  TGy,WT TGy,R302Q NTG  TGy,WT TGy,R302Q NTG  TGy,WT TGy,R302Q
D NTG  TGuWT TGyR302Q E F AdGFP  AdyWT  Ady,R302Q
P77 T —— ZI::.',’;“ e e o -
Actin —— — | — — AMPKa L e e — — —
2.01 * * = 3001 - g 1.50-
N g S
£ =154 29 gz
g 5 ,g 2 2004 ﬁ £ 1.00+
& 21.04 £ = g*
b 254 4
X8 —_ X E Eg§ors
- - —— = il
< < 0.25-
0.0 5 0 5 0.00
T NTG  TGypWT TGy,R302Q " AdGFP  Ady,WT Ady,R302Q & ~ AdGFP  Ady,WT Ady,R302Q
G H AdGFP  AdyWT  AdpR302a | AdGFP  AdyWT  Ady;R302Q
AMPKy, -—-— AMPKB, \*_ ! - - - -
—~1200- Actin TR S — Actin R - —
[
2 1000 1.001 *k
2.5-
€ g 8004 L n T
3o £ £ 0751 £ B 2.0
E 600 E 5 g =
X E = #H# < O 454
o E 400- ;' g’ 0.504 a2
23 — a = ¥ £ 101
E Z £ o5 £
= o r < < 0.5
NTG  TGy,WT TGy,R302Q -
7-day 7-day 7-day AdGFP  Ady,WT Ady,R302Q " AGFP  Ady,WT Ady,R302Q

Figure 1. AMPK activity is differentially affected by acute and chronic expression of y,R302Q. Whole heart homogenates (n=6, 7) from
adult TGy,WT and TGvy,R302Q mice display decreased AMPK activity (pmol/min/mg protein) compared with NTG mice (A) whereas
AMPK activity is increased in cell lysates (n=4) from adenovirally transduced cardiomyocytes expressing y,R302Q (Ady,R302Q) (E) and
in heart homogenates from 7-day-old TGy,R302Q mice (G). Phosphorylation of AMPKa (Thr172) is reduced in TGy,R302Q heart ho-
mogenates (B) and unchanged in cell lysates from cardiomyocytes expressing y,R302Q (F), as measured by immunoblot analysis using
antiphospho-AMPKa (Thr 172) and antitotal-AMPK« antibodies. Expression of v, is increased in whole heart homogenates (C) and in
cell lysates from cardiomyocytes expressing y,WT (H), whereas f3, is increased in heart homogenates (D) and cell lysates from cardio-
myocytes expressing either y,R302Q or y,WT (I), as measured using anti-AMPK'y,, anti-AMPKp,, and antiactin antibodies. ***P<0.001
versus NTG or AAGFP; **P<0.01 versus NTG or AAGFP; ##P<0.01 versus TGy,WT or Ady,WT; *P<0.05 versus NTG or AdGFP; and

#P<0.05 versus TGy,WT or Ady,WT.

cardiomyocyte cell growth by means of conventional
mechanisms.

Glycogen Deposition

Humans with the y,R302Q mutation develop PRKAG2
syndrome, a characteristic of which is excessive glycogen
accumulation within the cardiomyocytes. Previous studies
have shown that large vacuoles detected with hematoxylin-
eosin staining of cardiomyocytes are representative of areas
of glycogen deposition.?? Consistent with this study and
positive PAS staining in TGy,R302Q mouse hearts,?* large

vacuoles and distended cardiomyocytes, indicative of glyco-
gen accumulation, were evident in the atria of a patient with
the y,R302Q mutation (Figure 3A) but were absent in the
atria of a patient without this mutation (Figure 3B). In agreement
with these data and previous results,>* TGvy,R302Q mouse
hearts displayed a significant 37-fold increase in glycogen
compared with NTG hearts (Figure 3C). In addition, TGy, WT
hearts had a 10-fold increase in glycogen compared with NTG
hearts but still had significantly lower glycogen levels than
TGvy,R302Q hearts (Figure 3C). In agreement with these
findings, acute expression of either the y, WT or the y,R302Q
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Figure 2. Cardiac hypertrophy is induced in transgenic mice with chronic expression of y,WT and y,R302Q but is absent in isolated
cardiomyocytes acutely expressing y,WT and y,R302Q. HW (A) and ventricular myocyte cell surface area (99 to 125 cells/group iso-
lated from 3 hearts in each group; B) were increased in adult TGy,WT and TGy,R302Q mice compared with NTG mice. Isolated neo-
natal rat cardiomyocytes transduced with adenoviruses expressing GFP, y,WT, or y,R302Q (AdGFP, Ady,WT, or Ady,R302Q, respec-
tively) (238 to 255 cells/group; n=20) displayed no changes in cell surface area (E). Representative photographs of cardiomyocytes in
each group are shown, where the white bar is 20 um (B and E-inset). Phosphorylation of Akt and p70S6K were decreased in whole
heart homogenates from TGvy,R302Q mice, as measured by antiphospho-Akt (Ser473), antiphospho-p70S6K (Thr389) and antiactin
antibodies (C and D). Basal or phenylephrine-induced protein synthesis was not affected by increased y,WT or y,R302Q expression in
neonatal rat cardiomyocytes, as measured by [°H]Phenylalanine incorporation (F). Coinfection of neonatal rat cardiomyocytes with the
NFAT-luciferase reporter gene (AdNFAT) and AJGFP, Ady,WT, or Ady,R302Q resulted in impaired NFAT transcriptional activity in car-
diomyocytes expressing v, WT or y,R302Q (G). **P<<0.001 versus NTG or AdGFP; ###P<0.001 versus TGy,WT or Ady,WT; **P<0.01
versus NTG or AAGFP; and *P<0.05 versus NTG.

mutation in isolated cardiomyocytes also significantly in- Glycogen Turnover

creased glycogen content (70% and 270% versus control, To determine the mechanism by which glycogen accumula-
respectively; Figure 3D), suggesting that cellular alterations tion occurs, we examined the enzymes involved in glycogen
induced by the expression of either the WT or the mutant synthesis and degradation. In TGy,R302Q hearts, activity of
form of the v, subunit can both promote glycogen glycogen synthase, the rate-limiting enzyme in glycogen
accumulation. synthesis, was significantly decreased compared with NTG

Figure 3. Glycogen levels are increased with acute
and chronic expression of y,WT and y,R302Q.
Hematoxylin-eosin staining of a human heart en-
domyocardial biopsy sample from a patient with
the y,R302Q mutation (A) shows evidence of gly-
cogen accumulation (arrow points to a vacuolated
myocyte indicative of glycogen deposition) com-
pared with a control patient with no y,R302Q
mutation (B). Glycogen was measured from frozen
powdered mouse heart ventricles from adult NTG,
TGvy,WT, and TGvy,R302Q mice and from AdGFP,
Advy,WT, and Ady,R302Q infected cardiomyo-
cytes. Myocardial glycogen was increased in
TGy,WT and TGvy,R302Q hearts (uwmol glucosyl

; 125 - 5 *,f units/gram wet weight of tissue, n=3, 4) and in
‘g Bl § 7 301 Ady,WT and Advy,R302Q infected cardiomyocytes
£2 EE 25 (standardized to AdGFP, n=7,8) (C and D).
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Figure 4. GS and GP are differentially regulated by acute and chronic expression of y,R302Q. GS and GP activities, measured as per-
cent of total activity using 15 mmol/L glucose-6-phosphate or 200 mmol/L glycogen, respectively, were decreased in TGy,R302Q
hearts (A and E). GS protein expression was decreased (B, middle panel), whereas inhibitory phosphorylation was increased (B, upper
panel) in TGy,R302Q hearts, as measured using antiphospho GS (Ser641/645), anti-GS and antiactin antibodies. Densitometry of phos-
pho-GS/GS and GS/actin ratios are shown (C and D, respectively). GS (F) and GP (J) activities were unchanged in cell lysates from
neonatal rat cardiomyocytes expressing GFP, v,WT, or y,R302Q. GS protein expression was increased in cell lysates from neonatal rat
cardiomyocyte expressing v,R302Q (G, middle panel), whereas GS phosphorylation was unchanged, (G, upper panel) as measured
using antiphospho GS (Ser641/645), anti-GS, and antiactin antibodies. Densitometry of phospho-GS/GS and GS/actin ratios are shown
(H and |, respectively). ###P<0.001 versus TGy,WT or Ady,WT; *P<0.05 versus NTG or AdGFP; and #P<0.05 versus TGy, WT or

Ady,WT.

hearts (Figure 4A). Consistent with this, inhibitory phosphor-
ylation of GS was significantly increased compared with both
NTG and TGy,WT hearts (Figure 4B and 4C), and GS
protein levels were significantly reduced compared with
TGy, WT hearts (Figure 4B and 4D). This inhibition of GS is
likely a compensatory mechanism resulting from the pro-
found glycogen accumulation in these hearts. As observed
with other parameters, GS activity and phosphorylation in
TGy,WT hearts were intermediate between NTG and
TGvy,R302Q hearts (Figure 4A and 4C, respectively). In
addition to changes in GS activity and phosphorylation,
glycogen phosphorylase (GP) activity was slightly but signif-
icantly reduced in TGy,R302Q hearts compared with NTG
and TGy,WT hearts, indicating a potential impairment in
glycogen mobilization (Figure 4E). Paradoxically, cardio-
myocytes acutely expressing y,R302Q exhibited no change
in GS activity (Figure 4F) or phosphorylation (Figure 4G and
4H); however, GS expression was significantly increased
compared with controls (Figure 4G and 4I). In addition, GP
activity was unchanged in cardiomyocytes expressing either
¥,R302Q or y,WT compared with control (Figure 41J).
Although we do not provide evidence explaining why activ-
ities of GS and GP were unchanged in cardiomyocytes
expressing either y,R302Q or y,WT, it is possible that the
assay in cardiomyocytes is not sensitive enough to detect

subtle changes in GS and GP activities that may be occurring
in these cells.

Glucose Handling

Because the majority of glucose provided for glycogen
synthesis comes from an increase in glucose uptake or a
shunting of glucose away from glycolysis, we investigated
glycolysis and glucose uptake in our models. Glycolytic
metabolism of exogenous glucose was not altered in either
the transgenic mice (G. Lopaschuk, personal communication)
or in the isolated cardiomyocytes expressing the y,R302Q
mutation (Figure 5A). Given the increase in glycogen levels
and unchanged rates of glycolysis in the cardiomyocytes
expressing the y,R302Q mutation, the calculated glucose
uptake in cells expressing y,R302Q was 1.76-fold higher
than controls (Figure 5B). In addition, although activation of
Akt was not changed (data not shown), phosphorylation of
the Akt substrate of 160 kDa (AS160) was significantly
increased in cardiomyocytes expressing y,R302Q compared
with control (Figure 5C). Interestingly, total protein levels of
AS160 were also increased in cardiomyocytes expressing
v,R302Q compared with controls (Figure 5D). Although this
increase in total protein levels of AS160 prevented a signif-
icant increase in the P-AS160/AS160 ratio (data not shown),
the upregulation of both P-AS160 and total AS160 may be
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Figure 5. Mechanisms involved in the regulation of glucose uptake and metabolism are differentially regulated by acute and chronic
expression of y,R302Q. Glycolysis was unchanged in isolated neonatal rat cardiomyocytes expressing GFP, y,WT, or y,R302Q (A).
Glucose uptake (calculated based on numbers from glycolysis and glycogen) was increased in y,R302Q-expressing cells (B). AS160
phosphorylation (C) and expression (D) were increased in cell lysates from y,R302Q-expressing cardiomyocytes, as measured by
antiphospho ser/thr Akt substrate, anti-AS160, and antiactin antibodies. AS160 phosphorylation (E) and expression (F) were decreased
in TGy,R302Q heart homogenates, as measured by antiphospho ser/thr Akt substrate, anti-AS160, and antiactin antibodies. *P<0.05

versus NTG or AAGFP or ** P<0.01 versus NTG or AdGFP.

sufficient to promote glucose uptake especially since AS160
plays an important role in GLUT4 translocation to the
membrane and increased glucose transport.®® Despite this
rationale, there did not seem to be an increase in GLUT4 in
the plasma membrane in y,R302Q-expressing cardiomyo-
cytes as compared with controls (data not shown). In contrast
to these findings in cardiomyocytes acutely expressing
v,R302Q, Akt phosphorylation was decreased (Figure 2C)
and both P-AS160 and total AS160 expression were signifi-
cantly reduced in the TGvy,R302Q hearts compared with
NTG hearts (Figure S5E and SF, respectively), potentially as a
chronic compensatory mechanism to prevent further glucose
uptake and consequent glycogen accumulation.

Discussion
In this study, we focused on the acute effects of expression of
both y,WT and y,R302Q in the control of AMPK phosphor-
ylation and activity and compared these effects to the long-
term, potentially compensatory effects of transgenic overex-
pression of these same proteins. In contrast to hearts from
transgenic mice expressing the y,N488I mutation, hearts
from TGvy,R302Q mice display reduced AMPK activity as
compared with hearts from wild-type mice, which was
attributed to decreases in both AMPK «; and «, subunit
activity. However, consistent with our hypothesis that acute

expression of the 7y, mutant may have differential effects
compared with chronic expression, acute expression of the
v,R302Q mutation in hearts from 7-day-old transgenic mice
and in isolated cardiomyocytes resulted in a significant
activation of AMPK. This initial increase in AMPK activity is
consistent with that of mice with a y,N488I mutation, where
AMPK activity was increased in hearts from 7-day-old
transgenic mice but not in hearts from older transgenic
mice.?> As our isolated cardiomyocyte data show that the
v,R302Q mutation is an activating mutation, the data ob-
tained from the mouse models suggest that there is likely an
inhibitory feedback mechanism that is responsible for de-
creased AMPK activity in the adult mouse heart expressing
the y,R302Q mutation. Although we do not provide evidence
for this, we propose that the profound glycogen deposition in
hearts from TGvy,R302Q mice may be responsible for de-
creased myocardial AMPK activity in these mice as sug-
gested previously.?s

Although the y,R302Q mouse model used in this study
differs from other mouse models expressing y, mutations in
terms of AMPK activity,?? there are still consistencies be-
tween the models. For example, the TGy,R302Q mice also
developed significant myocardial hypertrophy, which is in
agreement with another transgenic mouse model expressing a
mutated form of the v, protein.?? However, given that
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isolated cardiomyocytes acutely expressing the y,R302Q
mutation did not display evidence of growth, NFAT activa-
tion, or increased protein synthesis, our data suggest that the
hypertrophy observed in the transgenic mice likely occurs by
means of nonconventional mechanisms. In support of this, the
phosphorylation status of Akt and p70S6K, which are nor-
mally increased in conventional hypertrophy, were reduced in
the hearts of TGy,R302Q mice. However, consistent with
glycogen accumulation inducing myocardial growth through
nonconventional means,'” hearts from TGvy,R302Q mice
displayed a significant 37-fold increase in glycogen com-
pared with NTG hearts. Because humans possessing the
¥,R302Q mutation also have profound glycogen accumula-
tion, our study supports the notion that glycogen deposition
and associated water accumulation may be the underlying
cause of the cardiac hypertrophy also observed in a subgroup
of this patient population.'>

An interesting finding in this study was that expression of
the y,WT protein also induced a cardiac phenotype in
transgenic mice that was less severe than that observed in
TG~y,R302Q mice. Indeed, hearts from TGy,WT displayed a
50% reduction in AMPK activity, an 84% increase in HW,
and a 10-fold increase in glycogen compared with NTG mice,
indicating that a component of the cardiac phenotype ob-
served in the TGy,R302Q mice may be related to simple
overexpression of the vy, subunit. Although we cannot explain
why expression of the y,WT subunit results in similar, albeit
less marked changes compared with expression of the
v,R302Q mutant, the intermediate phenotype may be because
of the much higher expression level of the -y, subunit in
TGy, WT hearts. While it would be reasonable to assume that
the elevated level of y,WT protein in the mouse heart is due
to variations in genomic incorporation of the y,WT transgene
compared with y,R302Q, this is likely not the case given that
the same expression profile is observed with epichromosomal
expression of the 7y, subunits using adenoviral delivery.
Although these data suggest that the stability of the vy, protein
may be influenced by the R302Q mutation, we still cannot
explain how expression of the y,WT protein also produces
profound glycogen deposition. However, while the expres-
sion levels of the majority of the other subunits of AMPK
were unaltered, protein expression of the AMPKf, subunit
was also significantly increased in hearts and in cardiomyo-
cytes expressing either the WT or the R302Q mutant forms of
¥,. As previous work using AMPK «,—/— mice demonstrate
a correlation between [, expression (which possesses a
glycogen binding domain) and glycogen levels,*® increased
expression of the 82 subunit in this study may contribute to
the glycogen accumulation in hearts and in isolated
cardiomyocytes.

To better characterize the mechanisms involved in glyco-
gen accumulation in isolated cardiomyocytes and transgenic
mice expressing y,WT and the y,R302Q mutation, we first
examined the glycogen synthesis pathway. Although GS
protein levels were increased in isolated cardiomyocytes
acutely expressing y,R302Q, GS protein content and activity
were significantly reduced in TGy,R302Q hearts, likely in
response to massive glycogen accumulation. Surprisingly,
despite the 10-fold increase in glycogen content, GS expres-

sion and activity were not reduced in TGy, WT hearts. In fact,
GS protein content was significantly increased compared
with NTG, suggesting that a >10-fold increase in glycogen is
required before any compensatory mechanisms are initiated.
As the glucose necessary for glycogen synthesis must come
from either increased glucose uptake or decreased glycolysis,
we also measured these parameters in isolated cardiomyo-
cytes. The rates of glycolytic metabolism of exogenous
glucose were not reduced in isolated cardiomyocytes acutely
expressing the y,R302Q mutation. Interestingly, cardiomyo-
cytes expressing the y,R302Q mutation also do not have
increased GLUT4 protein in the plasma membrane nor were
we were able to detect increased glucose uptake compared
with controls. Although we cannot explain this lack of effect,
it may be because of the sensitivity of the glucose uptake
method used in this study. Indeed, both calculated glucose
uptake as well as expression and phosphorylation of AS160,
an enzyme involved in GLUT4 translocation to the plasma
membrane,’® are increased in isolated cardiomyocytes acutely
expressing y,R302Q compared with control, suggesting that
glucose uptake is likely elevated in these cells. As a result, we
propose that acute expression of the y,R302Q mutation
results in an activation of the AMPK holoenzyme and an
upregulation of both AS160 phosphorylation/expression and
GS expression, resulting in increased glucose uptake and
glycogen synthesis. Conversely, long-term expression of this
mutation in transgenic mice results in an inactivation of
AMPK, a downregulation of Akt phosphorylation, decreased
AS160 phosphorylation/expression, and an inhibition of GS,
potentially as a compensatory mechanism to prevent further
deleterious accumulation of glycogen. Whether the observed
effects are a result of activation and/or inhibition of various
transcription factors is currently being investigated.

Finally, as our data have shown that AMPK activity is
increased to a similar extent in isolated cardiomyocytes
expressing either the y,R302Q mutation or the y,WT while
glycogen content is significantly higher in y,R302Q-
expressing cells, it is tempting to speculate that glycogen
levels and not alterations in AMPK activity per se may be
responsible for the Wolff-Parkinson-White phenotype. In
fact, although the TGy,WT mice do display a less marked
phenotype, this study highlights that inhibition of AMPK
activity, a 10-fold increase in glycogen, and modest hyper-
trophic growth are not sufficient for the development of preex-
citation. What seems to be a necessary component of Wolff-
Parkinson-White in the <y, mutation models is profound
glycogen accumulation, independent of AMPK activity, as
originally hypothesized.*! Indeed, despite variable effects of the
3 different mutations (ie, y,R302Q, y,N488I, and y,R531G) on
AMPK activity during different stages of life, what is consis-
tent in all mouse models is the extreme glycogen deposition
observed in the cardiomyocyte.!7-23 Taken together, these data
suggest that excessive glycogen accumulation is the major
contributor to the cause of Wolff-Parkinson-White syndrome
as opposed to AMPK activity per se. In addition, the phenotype
observed in the TGy,WT mice highlights the confounding
factors associated with the existing transgenic mice expressing
cardiomyocyte-restricted AMPK<y, mutations. As such, it is
becoming increasingly evident that a knock-in mouse is the ideal
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and necessary model to use to study the cardiac effects of these
mutations.

In conclusion, our results serve to highlight the complexity
of AMPK signaling in the development of glycogen storage
cardiomyopathy and help to resolve the controversy sur-
rounding the y,R302Q mutation with respect to the effect that
it has on AMPK activity.>* As such, these findings offer
valuable insights into the early and late signaling mechanisms
that underlie the excessive glycogen deposition associated
with PRKAG?2 cardiomyopathy. These findings are particu-
larly relevant given the recent advancements made in the
identification of AMPK activators,'! and the potential cardiac
side effects that may be associated with these agents.
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CLINICAL PERSPECTIVE

Mutations in the PRKAG2 gene encoding for the v, subunit of the energy-sensing kinase, AMP-activated protein kinase
(AMPK), produce a glycogen storage cardiomyopathy characterized by ventricular preexcitation, atrial arrhythmias,
progressive conduction system disease, and in certain cases, cardiac hypertrophy. This constellation of cardiac
abnormalities occurs in humans with an Arg302GIn mutation in the AMPK v, subunit (-y,R302Q) and in transgenic mice
with cardiomyocyte-restricted expression of the same mutation. Although earlier reports indicated that this mutation
inactivates AMPK, we provide evidence that the y,R302Q mutation results in the activation of AMPK in neonatal
cardiomyocytes. This activation of AMPK in the early developmental period contributes to enhanced glucose uptake and
glycogen synthesis and the eventual increase in glycogen accumulation. These data describing early signaling events
induced by the y,R302Q mutation suggest that the reduced AMPK activity observed in the hearts of adult y,R302Q
transgenic mice is a compensatory response to the significant elevation of myocardial glycogen that develops over time.
Consistent with this negative feedback inhibition of AMPK, glucose uptake and glycogen synthesis are both suppressed
in these glycogen-filled adult cardiomyocytes. Taken together, our study provides insight into the cellular mechanisms that
underlie the excessive glycogen deposition associated with PRKAG?2 cardiomyopathy. The information gleaned from this
study may be useful in considering future pharmacological intervention in the early stages of the disease that may attenuate
severe clinical progression.




