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Abstract: Biospeciation of essential and toxic metal ions, metal complexes with biological or 

medicinal activity are discussed in the paper in order to emphasize the importance of the 

distribution of metal ions in biological milieu. The exact knowledge of the chemical species 

present in the different organs/compartments/fluids/cells may provide essential information 

about the pharmacokinetic properties and the biological effect of the metal ion or the drug 

candidate metal complex. The transport of essential and toxic metal ions in the blood serum is 

discussed first, which is followed by the description of biodistribution of several important 

metal complexes with medicinal interest such as (i) anticancer, (ii) insulin-enhancing and (iii) 

MRI contrast agents in biological fluids. 
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1. INTRODUCTION 

The experimental conditions of preparation of metal complexes with potential 

biological activity usually differ considerably from the milieu in the living systems, where 

they exert their biological effects. The medium, the pH of the biological fluids, cells and 

tissues might be significantly different. Moreover, various endogenous molecules may also be 

present, having high affinity to the metal ion and accordingly, these compounds may partly or 

fully displace the original metal binding ligand(s) and thus the original complex may undergo 

transformations during (i) the absorption processes in the gastrointestinal (GI) tract in the case 

of complexes administered orally, (ii) their transport processes in the blood stream interacting 

with the serum/plasma components, (iii) metabolism, and (iv) in the cell via targeting its final 



2 
 

target molecule(s). Accordingly, the original carrier ligand(s) might be fully lost in these 

processes and the real biological/physiological activity is connected to an entirely different 

chemical entity. [1] 

The metal complexes often behave as pro-drugs, which means, that the active forms 

are considered to be different from the administered compounds due to the various 

biotransformation processes in biological fluids such as the GI tract and blood serum.  

Transformation processes of metallodrugs show a wider diversity compared to the case of the 

conventional organic (non-metallic) pharmaceutical drugs. In order to establish structure-

activity relationships and to understand the mechanism of action the knowledge of the 

aqueous solution behavior of the metal complexes is highly important. One crucial point is the 

mode of administration (Scheme 1). These metallodrugs are frequently administered 

intravenously: the solid state complex is dissolved in water (e.g. in physiological NaCl or 

glucose solution often with citric acid and/or lactate), then added to the infusion solution 

which reaches the systemic circulation. This route avoids the so called ‘first pass’ through the 

portal vein, and consequently the pre-systemic metabolism of the drug. By contrast orally 

administered complexes meet the fairly acidic gastric and/or the slightly basic intestinal juice 

containing numerous GI secretions before getting into the blood stream and then pass through 

the liver before they arrive to the final target [2]. In aqueous phase and in the presence of the 

blood serum components various transformation processes of a metallodrug also can take 

place.  
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Scheme 1. Schematic way of a metal complex in human body after oral or intravenous (iv.) 

administration. 

 

Dissolving in aqueous solution the metal complex may decompose depending on its 

thermodynamic stability, its concentration and the pH, additionally Cl‒/H2O ligand exchange, 

de(protonation) and formation of mixed hydroxido species are also possible. Interaction with 

low molecular mass (LMM) molecules or serum proteins (high molecular mass (HMM) 
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components) can lead to partial or complete displacement of the original ligand(s). These 

reactions change the original composition of the metal complex and have a strong impact on 

the pharmacokinetic properties as well. This is the reason why the deep knowledge of the 

kinetics and thermodynamics of these processes is needed. It is highly important to determine 

the rate of these reactions, the equilibrium constants for the various chemical equilibria, the 

stoichiometry of the formed species, and binding strength and sites on a protein. Since these 

transformation processes take place parallel in the real and multicomponent systems, the 

determination and the mathematical modeling of the speciation of a metallodrug in serum is 

very complicated. In the case of kinetically inert complexes the traditional equilibrium studies 

usually cannot be applied due to the slow ligand-exchange processes. This can also be the 

reason why available speciation data e.g. for anticancer metal complexes are generally very 

limited. 

Accordingly, studying distribution of metal ions and biologically active metal ion 

containing compounds in biological systems (e.g. fluids and tissues) is essentially important 

in order to monitor their fate in living organisms. 

 

2. THE ROLE OF THE HUMAN BLOOD SERUM IN TRANSPORT AND 

DISTRIBUTION PROCESSES 

Human blood plasma is the formed element (red and white blood cells and platelets) 

free portion of blood, accordingly it contains all plasma proteins such as albumin (HSA), 

transferrin (Tf), globulins, fibrinogen and other specific proteins and small molecules. The 

fibrinogen and clotting factor free blood plasma (i.e. the fluid part of blood after coagulation) 

is called blood serum. After practical considerations this latter is used for in vitro studies 

instead of whole plasma.  

From the point of view of speciation the serum constituents can be classified into two 

distinct groups: LMM and HMM serum components, the latter are mostly peptides and 

proteins. Interaction of metal complexes with serum proteins such as HSA and Tf has a 

profound effect on the ADME (absorption, distribution, metabolism, and excretion) properties 

and the toxicity. Notably fairly diversified scenarios are possible regarding to the serum 

protein binding modes and reaction rates in case of metallodrugs. Binding through non-

covalent bonds (such as hydrogen and salt-bridge bonding, - stacking interactions, Van der 

Waals force) does not change generally the structure of the metal complexes; consequently 

the complex retains its original entity. Non-covalent and weakly-to-moderately strong 
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reversible binding to HSA might be advantageous for the targeted delivery due to the 

enhanced permeation and retention effect of solid tumors [3]. Furthermore binding to Tf can 

be profitable for the cellular uptake of antitumor drugs via the overexpressed Tf-receptors due 

to the higher iron demand of cancer cells. On the contrary, irreversible and strong binding 

generally takes place via coordinative bonds being accompanied by partial or complete 

displacement of the original ligand(s) by the donor atoms of the protein and ultimately may 

lead to the inactivation of the metal complexes, especially in the case of slow ligand-exchange 

processes. In this way the original complex cannot reach the desired site of action and even 

the metal ion cannot be released there effectively. The formation of covalent metallodrug-

protein adducts might be responsible for e.g. side effects of the chemotherapy.  

HSA is the most abundant protein in human blood plasma; it constitutes about half of 

the serum protein content, its concentration is typically 530 - 750 mM [4]. It maintains oncotic 

pressure, buffers pH, and transports among others thyroid- and other mostly fat-soluble 

hormones, fatty acids (FAs), unconjugated bilirubin and many drugs [4,6]. Serum albumin 

levels can affect the half-life of drugs [5]. On the other hand HSA is mainly an extravascular 

protein, 67% of its total amount is found interstitially. Its exchange rate across the capillary 

wall is relatively slow: 5% leaves the intravascular space per hour [6]. At the same time the 

microenvironment of solid tumors often shows more pronounced accumulation of albumin 

due to the enhanced permeability and retention effect and the recently discovered active 

transport mechanisms across blood vessels including gp60 (albondin) transport protein [3]. 

HSA greatly augments the transport capacity of serum due to its high concentration and 

extraordinary binding capacity [6]. There are seven distinct binding sites on HSA for long-

chain FAs (FA1–FA7) [5]. On the other hand HSA has nonspecific binding pockets where 

chemically diverse endogenous and exogenous compounds can bind and the principal regions 

of these sites are located in subdomains IIA, IIIA, IB often called as Sudlow’s site I and II and 

site III, respectively [7]. Each site forms a hydrophobic pocket: site I binds preferentially 

bulky heterocyclic anions, the prototypical ligand being warfarin; site II is preferred by 

aromatic carboxylates with an extended conformation; while site III seems to bind diverse 

assortment of acidic, neutral and basic molecules (Fig. 1) [5,6,8]. These sites are allosterically 

coupled with each other and with FA binding sites as well, thus binding of an agent at one site 

may enhance or hinder the binding of another molecule(s) on the other site(s) [6,8].  

Four types of metal ion binding sites of HSA have been described [7]: the N-terminal 

binding site (NTS) is specific primarily for Cu(II) and Ni(II) (often called as ATCUN motif as 

well) [4,9], the multi-metal binding site (MBS) which primarily binds Zn(II) and other 
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bivalent metal ions [10]; site B at which Cd(II) can be bound but Zn(II) as well [9,11], and the 

thiol group of Cys34 can bind gold and platinum containing compounds [9]. Furthermore 

HSA contains 16 His imidazoles (Fig. 1) and 6 Met thioether groups from which the surface 

exposed donor atoms can serve as monodentate coordinating sites for various type of 

complexes: e.g. organoruthenium or platinum compounds [12,13]. 
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Fig. (1). (A) Organization of the subdomains in HSA. Subdomains IIA, IIIA, IB, containing the 

hydrophobic binding pockets site I, II and III respectively are marked with dark colors. (B) The 

positions of the histidine residues (numbered black fragments) and the single free cysteine (Cys34) 

within the protein.  

 

Transferrins are iron-binding blood plasma glycoproteins that control the level of free 

Fe(III) in biological fluids [14]. Tf consists of a polypeptide chain containing 679 amino acids 

and two carbohydrate chains, and this protein is composed of α-helices and β-sheets that form 

two domains. The N- and C-terminal sequences are represented by globular lobes [15]. Tf 

contains two specific remarkably similar high-affinity Fe(III) binding sites. Each lobe of Tf 

contains a distorted octahedral Fe(III) binding site consisting of two Tyr, one His, one Asp, 

and one bidentate carbonate anion (the so-called ’synergistic anion’) [16]. Tf saturated by 

metal ions undergoes a conformational change, the C- and N-terminal parts move closer to 

each other and takes up a closed conformation [17]. The concentration of Tf in the serum is 

ca. 37 µM and its Fe(III) saturation falls between 15–50% [18], therefore it binds efficiently 

other metal ions such as Ga(III), Zn(II), V(IV)O, Al(III), Ru(III) and Bi(III) [19]. 

Immunoglobulins are glycoproteins can react in an immune response to neutralize 

pathogens introduced or inoculated into the body. Immunoglobulins are divided into the 
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classes IgA, IgD, IgE, IgG, and IgM, these classes differ in their biological properties, ability 

to deal with different antigens and functional locations. The most important class is IgG since 

it represents 75% of the total immunoglobulin content in the blood. The IgG concentration in 

human blood serum is approximately 73 mM [20]. 

α2-macroglobulin is one of the largest plasma proteins. It mostly occurs in a tetrameric 

form and its main function is the inhibition of proteases. A CysGlu fragment of the protein 

seems to play an active role in the enzyme inhibition. Its concentration in human serum, 

however, is rather low and thus its ability in metal binding remains subordinate. With the 

exception of Zn(II) it has no reported role in metal ion transport in blood serum [21]. 

The role of LMM serum compounds is far not negligible as they can be responsible for 

the (partial) displacement of the original ligand(s), or for formation of ternary complexes. The 

LMM fraction of the serum consists of carboxylic acids such as oxalic acid (9.2 µM), 

hydroxycarboxylic acids, such as lactic acid (1.5 µM), citric acid (99 mM) and malic acid and 

numerous amino acids, His (77 µM), Cys (33 µM), cystine (Cis; 10.9 µM), Gln (80 µM), Asn 

being the most important as potential metal ion binders [22]. Besides the above mentioned 

organic acids, LMM fraction contains anions of inorganic acids as well, such as phosphate 

(1.10 mM), hydrogencarbonate (24.9 µM), sulphate (330 µM), and chloride (102 mM) ions 

(listed in decreasing strengths of their metal ion binding ability) [22,23]. It is noteworthy that 

chloride ions are often considered as coordinating ligands (in the case of e.g. Pt(II), Ru(III), 

Rh(III)) thus can influence the aquation and hydrolysis of the metal complexes. Besides, 

serum reductants such as ascorbate (55 mM) may reduce the metal center, consequently may 

initiate ligand exchange processes around the metal ion.  

Concerning the metal ions, serum transports numerous endogenous essential metal 

ions: iron, copper, zinc, cobalt, calcium, magnesium, sodium, potassium. Besides these, 

depending on the circumstances various other essential (e.g as components of medicines, such 

as V(IV,V)) or toxic (Pu(IV) or Al(III) etc.) metal ions can occur and are transported in the 

serum. 

 

3. SERUM SPECIATION OF SELECTED ESSENTIAL AND TOXIC METAL IONS 

The serum speciation of Fe(III), as one of the most important serum transported 

essential transition metal ions, is simple since it binds exclusively to Tf [21]. Concerning the 

LMM components under healthy conditions they have negligible importance. Citrate might be 

the only binder of Fe(III) which may have a role [24]. The importance of Fe(III)-citrate 
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interaction in the serum may increase in case of iron overload. As it is very toxic it must be 

removed by suitable chelator molecules [25]. 

The serum speciation of the important transition metal ion the copper is much more 

complex as it is distributed in different forms in serum both in the HMM and the LMM 

fractions. The largest part of the copper is bound in the oxidation state of two in 

ceruloplasmin. Its serum level is 1.5-2.7 µM and 40-70% of the copper is bound to this 

protein [26,27]. 6-7 Cu/protein are tightly bound and buried in the ceruloplasmin in different 

environments mostly in non-exchangeable copper pool [27-28]. 20% of serum Cu(II) is bound 

to HSA almost exclusively at the specific ATCUN binding site [26,27,29]. The albumin 

bound copper means the exchangeable pool, which can deliver the metal ion to most of the 

cells. α2-macroglobulin and transcuprein also bind some copper in serum. They have high 

affinity binding sites for copper, higher than in HSA [27]. They guarantee fast exchangeable 

copper pool for the tissues [27,29].  

The remaining part of copper is bound to the LMM fraction mostly in His containing 

binary and ternary complexes formed with Thr, Asn and Gln. Different modeling calculations 

were carried out for the Cu(II) bound in this fraction, one of them (probably the most 

accepted) is listed in Table 1. 

 

Table 1. Calculated distribution of Cu(II) bound to LMM constituents of human blood serum 

(based on data in Ref. [30]). 

Cu(II) % Cu(II) % 

Cu(His)(Gln) 19 Cu(His)(LysH)+ 4 

Cu(His)2 16 Cu(His)(Gly) 4 

Cu(His)(Thr) 15 Cu(His)(Asn) 4 

Cu(His)(Ser) 8 Cu(His)(Val) 4 

Cu(His)(Ala) 5 Cu(His)(Leu) 4 

 

Zn(II) is bound almost exclusively to HMM components [29]. Tf can bind zinc at the 

iron binding sites [31], however, due to its relatively low concentration biologically it is not a 

relevant binder [19,32]. Albumin is its primary binder at the MBS site, or site A, 60-70% of 

Zn(II) is transported by HSA [7,33]. Despite its low serum concentration α2-macroglobulin 

binds ca. 30% of Zn(II); this Zn(II) is more tightly bound than in HSA. Elevated serum levels 

of α2-macroglobulin and concomitant low levels of serum Zn(II) seem to correlate with some 

medical conditions (e.g. cancer, inflammation) and aging [33-36]. The remaining 2-3% of 
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Zn(II) binds to the LMM fraction mostly to His and Cys containing binary and ternary 

complexes [29,32,37]. 

Extracellular Ca(II) concentration is relatively high (2.1-2.6 mM), and about half of it 

is bound in the HMM fraction, namely it binds to HSA and to seven other proteins [3637]. 

Among the LMM ligands hydrogencarbonate, citrate and lactate are the important Ca(II) 

binders. However, substantial fraction of the metal ion remains free. Practically a similar 

distribution is valid for Mg(II) too, although its concentration in the serum is significantly 

lower (0.6-0.95 mM). 

Alkaline metal ions occur almost exclusively in free form in the serum; accordingly, 

they are very mobile. 

According to present knowledge Ni(II) is a non-essential element for humans and 

binds preferably to HSA at the ATCUN binding site. Besides, small amount of Ni(II) binds to 

some other proteins of the serum, however due to their low concentration their biological 

relevance in Ni(II) transport is negligible. LMM fraction bound nickel is also significant 

(Table 2). 

 

Table 2. Calculated distribution of Cd(II), Ni(II), Pb(II) and Pu(IV) in human blood serum 

(based on data in Ref. [30]). 

Cd(II) % Ni(II) % Pb(II) % Pu(IV) % 

Cd(Cys) 46 Ni(His)2 51 Pb(Cys) 80 Pu(citrate)(OH)2
− 71 

Cd(Cis) 28 Ni(Cys)(His)– 18 Pb(Cys)(citrate)3– 7 Pu(citrate)(OH) 29 

Cd(Cys)(OH)– 14 Ni(Cys)2
2– 11 Pb(Cis)+ 5   

Cd(Cys)2
2– 8 Ni(His)+ 4     

 

Among the toxic metal ions Al(III) is fairly well studied, due to its potential 

involvement in neurological disorders [38] Absorbed Al(III) is transported by the blood 

stream but its speciation in blood serum is still not exactly known. It is sure that most of the 

Al(III) is bound by the HMM iron transport protein Tf. HSA and other serum proteins bind 

weakly the metal ion and are not able to compete for a significant amount of Al(III) [39]. 

From among the LMM binders of serum citrate and phosphate are the only efficient binders. 

However, the literature data are rather contradictory, which of them is the more potent binder. 

The reason for the contradictory speciation models is the lack of reliable solution stability 

data for the Al(III) complexes involved in the models and the differences in the experimental 

conditions of the speciation and modeling. 
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W.R. Harris et al. [40] using difference UV spectrophotometry, pH-potentiometry and 

electrospray ionization mass spectrometry (ESI-MS) measurements reported a model at 

~10 µM Al(III) concentration, which is closer to the normal biologically relevant serum level 

(~0.1-0.3 µM) [41]. Their speciation model given in Table 3 (based on data in Refs. [40,42]) 

suggests that 93% of the total Al(III) is bound to Tf. Of the pool of LMM aluminium, 88% of 

Al(III) would be bound to citrate, 8% to hydroxide and ~2% to phosphate. 

 

Table 3. Speciation of Al(III) at pH ~7.4 and 298 K (based on data in Refs. [40,42]). 

 % of Al(III) bound 

cAl(III) = 10 mM  cAl(III) = 1 mM  

HMM components   

Albumin ‒ ‒ 

Transferrin 93 77 

LMM components   

Phosphate 0.1 14 

Citrate 6 5 

Citrate-Phosphate 0.8 4 

 

At the same time at 1 mM total Al(III) concentration, that corresponds better to 

conditions with aluminium overload and when the thermodynamic equilibrium was surely 

attained (monitored by multinuclear NMR) the amount of phosphate bound Al(III) increased 

significantly and ternary Al(III)-citrate-phosphate complexes could also be detected (Table 3) 

[43]. 

Cd(II) binds preferably to proteins: HSA and α2-macroglobulin, but besides them 

immunoglobulins and transthyretin (also referred to as prealbumin) also have some, but 

significantly smaller cadmium binding capacity. In the LMM fraction Cys and Cis are the 

main Cd(II) binders (Table 2). 

Concerning the exogenous metal ions Tf binds and transfers Ti(III), V(IV,V), Cr(III), 

Ga(III), which may have biological application (see later the cases of antidiabetic vanadium 

complexes and anticancer Ga(III) complexes). Although Ru(III) also can be bound to Tf at the 

iron binding sites with considerable strength, HSA is the primary transporter of Ru(III) 

anticancer compounds in serum as will be discussed in the subsequent section. Trivalent 

actinide ions such as Am(III) and Cm(III) are reported to bind relatively weakly to Tf, and 

HSA may play a more decisive role in their transport in vivo. On the contrary tetravalent 

actinide ions (e.g. Pu(IV)) and the UO2
2+ cation are bound to Tf much tighter than to HSA ; 

consequently, complexes of these ions formed with Tf may be the major actinide-containing 
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species in the human blood. However, the Tf complexes of these actinide ions bind weakly to 

the Tf receptors indicating that this serum protein does not play a major role in incorporation 

of these metal ions into cells. The potential use of Tf in technologies to selectively remove 

metal ions from waste water streams is considered to be limited [19].  

In the subsequent sections the distribution of several biologically active compounds 

with (potential) medicinal i.e. therapeutic and diagnostic applications in the presence of the 

serum components will be given in order to shed light on their transport processes. 

 

4. BIOSPECIATION OF ANTICANCER METAL COMPLEXES 

In the field of metals in chemotherapy three Pt(II) complexes, namely cisplatin, 

carboplatin and oxaliplatin (Chart 1) dominate and are used in almost 50% of the treatment 

regimes for patients suffering from cancer in mono or combination therapy [44]. The 

resistance and deleterious, highly debilitating side effects of anticancer drugs used in 

treatment have motivated the design and development of novel metal-based compounds that 

combine good efficacy, selectivity and low systemic toxicity. Among the potential candidates 

a diversity of metallodrugs is seen in the clinical trials or at advanced stage of preclinical 

developments such as various Pt(II/IV) and non-Pt e.g. Ru(III/II), Ga(III), Cu(II), Au(I/III) 

anticancer compounds [45-49]. Ru-based compounds have been recognized as promising 

alternatives to anticancer Pt complexes as they are less toxic in general and show less and 

more tolerable side effects. Among the antitumor non-Pt compounds sodium [trans-

tetrachloridobis(1H-indazole)ruthenate(III)] (NKP-1339, IT-139) [50] and tris(8-

quinolinolato)gallium(III) (KP46) [51] are being in clinical trials with promising results 

(Chart 1). According to the early hypothesis of the action of NKP-1339 its uptake is mediated 

via the overexpressed Tf receptors and Ru(III) is reduced to the active +2 oxidation state in 

the reducing environment of the cancer cells. Recently adduct formation with HSA is reported 

to be preferred to Tf, however the ‘activation-by-reduction’ hypothesis is still widely accepted 

[50,52]. Based on this theory, organometallic Ru(II) compounds attracted interest and 

numerous arene/arenyl half-sandwich compounds with remarkable antitumor properties were 

developed in addition to analogous isoelectronic Os(II), Rh(III), Ir(III) complexes (Chart 1). 

The biological activity of the metal-based chemotherapeutics is often governed by the 

metal ion, while the coordinated ligand has a decisive role in the protection of the metal ion 

against hydrolysis; and the type of the ligand markedly affects various fundamental physico-

chemical properties of the complex such as size, charge, stability, lipophilicity, water-

solubility, rate of (co)ligand-exchange and hydrolytic processes and ultimately the biological 
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activity. On the contrary in particular cases such as the hypoxia-activated Co(III) complexes 

the metal ion is considered as a specific carrier of the ligand with antitumor activity. The 

ligand is released selectively from the kinetically inert Co(III) complex by reduction in the 

hypoxic tumor microenvironment resulting in the much more labile and usually less stable 

Co(II) complex [53,54]. On the other hand cytotoxic/cytostatic complexes are accessible by 

incorporating a bioactive ligand into the structure that can operate in a synergistic way with 

the antitumor metal ion. 

Pt
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N

P N
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[Ru(II)(6-arene)(XY)Cl]
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Chart 1. Chemical structures of some anticancer metal complexes, and general structures of the 

organoruthenium and organorhodium complexes bearing (XY) chelating bidentate ligand. 

 

This chapter gives a brief overview about the solution equilibrium and blood serum 

speciation studies of some representative groups of anticancer metal complexes such as Pt(II), 

Ru(III), organometallic half-sandwich and Ga(III) complexes.  

 

4.1. Antitumor platinum(II) complexes 

Solution stability constants are rarely published for Pt(II) complexes due to their slow 

formation kinetics, which makes the description of such systems from the equilibrium point of 

view very difficult [55]. For this reason, complexation processes of the analogous Pd(II) 

complexes possessing several orders of magnitude higher ligand exchange rates are also 

studied as model systems [56-58]. In aqueous solution the Pt(II) complexes may suffer from 

various transformation processes such as aquation (cisplatin: Cl‒/H2O exchange), 

deprotonation of the coordinated aqua ligand (formation of mixed hydroxido species) and 

loosing e.g. oxalate ligand (oxaliplatin). In the presence of the LMM components reactions 

with small peptides (e.g. glutathione (GSH)) and amino acids (Cys, Met) are probable [59]. 
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All these processes are relatively slow and the extent of the reactions also depends on the 

concentration of the reaction partners such as chloride, hydroxide ions (thus pH) and LMM 

compounds. Aquation of the Pt‒Cl bond is frequently studied as it is an important step of 

activation and has a key role in the DNA interaction. The major products of the Cl‒/H2O 

exchange of cisplatin are the mono- and bis-aqua species cis-[Pt(NH3)2(H2O)Cl]+ and cis-

[Pt(NH3)2(H2O)2]
2+, respectively [60,61]. Kinetics of the aquation and hydrolysis processes of 

cisplatin were studied in details under various conditions by Davis et al. and equilibrium 

constants (pK1 = 2.07 and pK2 = 3.49) obtained after 40 h at 298 K were also reported [61]. 

These transformation processes are unambiguously important, however, the analysis of 

samples from in vivo treated animals or patients showed the decisive role of the serum 

proteins in the distribution in the case of numerous antitumor Pt(II) drugs. 

The protein binding profile is different for the three FDA approved Pt(II) drugs, 

namely the level of protein binding of carboplatin is the lowest, while oxaliplatin preserves its 

original form most weakly in the unbound/LMM fraction in real-world samples [59,62]. 

Cisplatin was found to bind predominantly to HSA, although the concentration of the free 

drug strongly depends on the time (up to 90% of Pt(II) bound to proteins after 3 h infusion) 

[59]. However, it is important to note that the increasing protein bound fraction of the 

platinum compound in time is more likely due to the fast renal excretion and short half life of 

the free drug and not to its extensive serum protein binding [62,63]. Most of Pt(II) ions were 

found to be covalently bound, and the coordination of the protein donor atoms, thus the 

exchange of the original ligand(s), is slow due to the kinetically more inert feature of this 

metal ion. Unfortunately comparative binding data are not available for the HSA adducts of 

the three Pt(II) complexes, even in the case of the ‘gold standard’ drug cisplatin large 

variations are reported in the literature regarding the number of binding sites (up to 5-12), and 

binding constants [13,59,64,65]. The major binding site of cisplatin on HSA involves a 

(S(Met298),N) macrochelate most probably [13], and conditional stability constants 

logK’HSA = 3.88 and 4.17 for cisplatin and oxaliplatin were reported, respectively by A.V. 

Rudnev et al. [65]. 

 

4.2. Anticancer ruthenium(III) complexes 

Among the non-platinum tumor-inhibiting agents only one Ru(III) complex is 

presently being clinically tested, namely NKP-1339 (Chart 1) [4950]. NKP-1339 and its 

indazolium salt analogue (= KP1019) have already completed phase-I studies [66,67]. 

However, KP1019 suffered from low water-solubility which limited the maximum dosage 
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[66], which is the reason why NKP-1339 was introduced and then furher used in the clinical 

trials. Imidazolium [trans-tetrachlorido(DMSO)(imidazole)ruthenate(III)] (NAMI-A) (DMSO 

= dimethyl sulfoxide ) was the other promising Ru-based agent which was directed against the 

process of metastasis with a focus on lung cancer and reached phase I in monotherapy, and 

phase I/II in combination therapy with Gemcitabine [68], but the clinical trials were 

terminated.  

NKP-1339 is administered intravenously and applied against solid tumors showing 

minor side effects [50]. After entering the bloodstream NKP-1339 may suffer from various 

chemical changes. Notably Ru(III) complexes are generally characterized by relatively high 

kinetic inertness and that is the reason for the lack of the traditional speciation studies in 

aqueous phase. The rate of aquation (Cl‒/H2O exchange) of NKP-1339 and KP1019 is 

strongly affected by the pH, temperature and the concentration of chloride and HCO3
‒ ions 

[6869,70]; on the other hand their redox potentials are in the rage of physiological reductants 

[50]. Thus aquation and the reduction by e.g. ascorbate would be possible under the serum 

conditions. However, the binding to serum proteins can hinder the possible aquation and 

reduction processes. In addition, interaction with serum proteins is of great relevance due their 

influence on the biodistribution, the half-life in the circulation and clearance, ultimately on the 

pharmacokinetic profile. HSA and Tf can act as drug carriers justifying the intensive studies 

on the interaction of NKP-1339 with these proteins. Fast binding of NKP-1339 and KP1019 

to both Tf and HSA was reported by various authors [70-73]. Reaction rates of KP1019 with 

HSA and apotransferrin (apoTf) were determined by the capillary zone electrophoresis ‒ 

inductively coupled plasma mass spectrometry (CZE)‒ICP(MS) method (k(HSA) = 10.6×10-4 

s-1, k(apoTf) = 28.7×10-4 s-1) showing the kinetically more favorable binding toward apoTf 

[74]. On the contrary the much slower binding of KP1019 to apoTf via covalent bonds was 

found by Walsby et al. using electron paramagnetic resonance (EPR) spectroscopy [75]. The 

majority of KP1019 and NKP-1339 is uniformly described by the different authors as being 

bound to HSA both in in vitro human serum and in vivo samples obtained from treated 

patients [66,74,75]. Firstly, the complex NKP-1339 (and KP1019) binds to HSA in a non-

covalent manner due to the axial indazole ligand’s interaction into the hydrophobic pockets 

proved by EPR measurements [7475]. Binding at sites IIA and IIIA was found by some of us 

with moderate binding strength (logK’(HSA)= 5.3‒5.8), regardless of the counter ions (Na+ or 

indazolium) using ultrafiltration-UV, CZE and fluorescence spectroscopy [71]. However, at 

longer incubation times NKP-1339 and KP1019 are converted to a covalently bound species. 

The slow binding of these complexes to side chain donor atoms of HSA via ligand exchange 



14 
 

(such as Cl‒/nitrogen donors of His) is suggested [75]. Therefore, the delivery of NKP-1339 

by HSA to the cancer cells is assumed followed by the enzymatic degradation of HSA and the 

reduction of the Ru(III) complex in the hypoxic environment [50]. The reduction leads to the 

formation of the kinetically more labile Ru(II) complex (Section 4.3.), which is more prompt 

to react with the diverse targets (proteins, DNA) 

 

4.3. Organometallic anticancer complexes 

The activation-by-reduction mechanism of action suggested for the Ru(III) compounds 

such as NKP-1339 attracted the current interest in organometallic Ru(II) complexes with 

anticancer activity. The coordination of the -bonded arene or arenyl ring can stabilize the +2 

oxidation state of the metal ion and has a dramatic influence on the chemical and biological 

properties of these pseudo-octahedral half-sandwich (‘piano-stool’) complexes [76]. 

Numerous organometallic half-sandwich complexes (Ru, Rh) are effective catalysts for 

various organic reactions, e.g. [Rh(5-Cp*)(bpy)H2O]2+ complex (Cp*: 

pentamethylcyclopentadienyl, bpy: 2,2ʹ-bipyridine) is a widely used homogenous transfer 

hydrogenation catalyst for regeneration of the enzymatic cofactor nicotinamide adenine 

dinucleotide (NADH) [77,78]. This catalytic activity may have importance in the mechanism 

of cancer cell death [79]. The Ru(II)(6-arene) complexes are the best known among the 

anticancer half-sandwich organometallic compounds such as the [Ru(II)(6-arene)(L)Cl] (L: 

bidentate ligand) complexes developed by Sadler and coworkers [12,80,81], or by the group 

of Keppler [82,83]. RAPTA compounds developed by Dyson and coworkers are Ru(II)-arene 

complexes bearing the 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane (PTA) ligand [84]. 

Reduction of the growth of primary tumors by [Ru(η6-p-cymene)Cl2(PTA)] in preclinical 

models for ovarian and colorectal carcinomas was reported and this complex was considered 

as a promising drug for translation to clinical evaluation [85].  

The available information about the blood serum speciation of this type of 

organometallic half-sandwich complexes using ‘real-world’ samples is fairly limited in the 

literature, although numerous data were reported about their aqueous solution behavior, 

kinetic aspects of their (co)ligand-exchange processes and interaction with endogenous LMM 

and HMM biomolecules. This chapter describes mainly the behavior of [Ru(II)(6-

arene)(L)Z] (Z: leaving group) complexes regarding their solution equilibrium (stability, 

stoichiometry) and kinetic properties, their interaction with LMM components of serum, 
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proteins and protein models. In addition the analogous Os(II), Rh(III) and Ir(III) complexes 

are also considered briefly.  
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Chart 2. Possible ligand exchange processes of the half-sandwich 6/5-organometallic Ru(II), 

Rh(III), Os(II) or Ir(III) complexes via the example of a Ru(II) complex with the general formula of 

[Ru(II)(6-arene)(XY)H2O]. 

  

One of the best known antitumor organoruthenium compound is [Ru(6-

biphenyl)(en)Cl][PF6] (en: ethylenediamine) possessing an IC50 value of 7.6 mM measured in 

human ovarian cancer cells [81]. In the case of this type of complexes various equilibrium 

processes can take place in aqueous solution as Chart (2) shows. It is assumed that the aqua 

complex [Ru(II)(6-arene)(L)H2O] embodies the bioactive species, accordingly the exchange 

of the chlorido ligand to water should proceed with adequate rate and extent [12]. 

Deprotonation of the coordinated aqua ligand leads to the formation of the less active mixed 

hydroxido [Ru(II)(6-arene)(L)OH] complex, thus a pKa value higher than the physiological 

pH is advantageous [11]. The Cl‒/H2O exchange rate in the compound [Ru(6-

biphenyl)(en)Cl][PF6] (k(H2O) = 1.23 × 10‒3 s‒1) is one order of magnitude higher than that of 

the cisplatin, and the displacement of the neutral en ligand by e.g. the negatively charged 

acetylacetonate (acac) increases the rate constant. On the other hand the type of the co-ligand 

(Z) has also a strong impact on the exchange process, namely the substitution of the chloride 

by bromide, iodide ions or by pyridine decreases the rate constant in this order and most 

probably the too slow pyridine/H2O exchange process results in the inactivity of the pyridine 

complex [12]. The ratio of the aqua, chlorido and hydroxido species was calculated for 

[Ru(6-biphenyl)(en)Cl][PF6] at equilibrium state at various chloride ion concentrations 

corresponding to the blood serum, cytosol and cell nucleus, respectively (Fig. 2) [80]. The 
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predominant presence of the chlorido complex was found in the serum which may be 

beneficial for the protection of the original compound against undesirable reactions already in 

the serum.  
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Fig. (2). Speciation of [Ru(6-biphenyl)(en)Cl]+ (5 mM) in blood plasma, cytosol and cell nucleus 

{based on the chloride ion concentrations and pH in these environments and the pKa and Cl‒/H2O 

exchange constant of the complex}. Adapted from Ref. [80]. 

 

The pKa value of the complex determines the ratio of the aqua and the mixed 

hydroxido species at a given pH, and pKa of 8.2 ‒ 7.7 values were reported for the [Ru(II)(6-

arene)(en)H2O] complexes depending on the type of the arene ring. The coordination of (O,O) 

donor ligands such as maltol or acac increases the pKa values [81]. However, these 

compounds were not so cytotoxic most probably due to the decomposition of the complexes 

in solution under physiologically relevant conditions. Detailed solution equilibrium studies 

were performed on the [Ru(η6-p-cymene)(L)Cl] (L: maltol, acac) complexes by P. Buglyó et 

al. and their results revealed that these complexes are predominant at pH 7.4 in the mM 

concentration range (acac: 59%, maltol: 84%), however they suffer from significant 

decomposition at e.g. 1 mM concentration (acac: 6%, maltol: 28%) which leads to the 

appearance of the free ligand and the trihydroxido-bridged dimeric species [Ru2(η
6-p-

cymene)2(m-OH)3]
+. They also studied the solution stability of the Ru(η6-p-cymene) 

complexes formed with other (O,O) donor ligands: deferiprone (dhp, 1,2-dimethyl-3-hydroxy-

pyrid-4(1H)-one), and with the serum components lactate and oxalate [86]. As the basicity of 

these ligands differs, pM values can be calculated for comparison of the complex stabilities 

under identical conditions. pM is the negative logarithm of the summed equilibrium 

concentrations of the non-bound metal ion in its aqua and μ-hydroxido bridged dinuclear 
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forms. A higher pM value means the stronger metal ion binding ability of the ligand. On the 

basis of literature data pM values were computed for various Ru(η6-p-cymene) complexes 

(Fig. 3) [86-90]. Among the chosen bidentate compounds (such as the (O,O) donor containing 

ligands: dhp, maltol; the (O,N) donor ligand: 8-quinolinol. 8-quinolinol forms complex with 

the highest stability among these ligands. The metal binding ability of oxalate, acac, lactate 

and Ala is significantly lower. It can be concluded that even a large excess of lactate can not 

replace considerably the ligand dhp in the [Ru(η6-p-cymene)(L)Cl] complex on the basis of 

the stability constants at pH 7.4 [866,87].  
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Fig. (3). pM values calculated for the Ru(6-p-cymene) complexes formed with various bi- or 

tridentate ligands at pH = 7.40; pM = – log[M], where [M] is the equilibrium concentration of the 

ligand-free, unbound organometallic fragment {cRu = cL = 1 mM, I = 0.20 M KCl or KNO3 in case of 

8-quinolinol (*)}. Calculations are based on data from Refs. [86-90]. 

  

Sadler et al. investigated the interaction of complex [Ru(6-biphenyl)(en)Cl][PF6] 

with numerous bioligands such as His, Met and Cys as the side chain donor atoms of these 

amino acids are involved most probably in the interaction with proteins [12]. Interaction with 

His and Met resulted in the formation of 22% and 23% mixed ligand complexes, after 24 h 

and 48 h incubation period, respectively. While Cys was found to replace the ligand en and a 

sulfur-bridged dimeric complex was formed with 50% abundance [12].  

The interaction of [Ru(η6-p-cymene)(H2O)3]2+ with Met and S-methyl cysteine (Me-

Cys) was reported to be fairly fast by Buglyó et al. and the coordination via (N,COO–,S) 

donor set was proved [90]. The stability of these complexes is much higher compared to that 
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of the analogous species formed with Ser that binds via (N,COO–,O–) donor set, due to the 

stronger preference for the sulfur donor atoms (see Fig. 3) [87]. While the thiolato donor 

containing thiolactate and thiomalate ligands form exclusively dimeric sulfur-bridged 

complexes with this organometallic cation in a wide pH range [91]. Based on these findings 

the relatively low affinity of the [Ru(6-biphenyl)(en)Cl]+ complex towards Cys and Met 

(vide supra) is originated from its kinetic inertness [12]. Studies on complexation of [Ru(η6-p-

cymene)(H2O)3]
2+ with the protein His side chain model N-methylimidazole revealed slow 

interaction, although the stability of the mono, bis and tris complexes formed is significantly 

high [92]. The coordination of the rather accessible surface imidazole nitrogen donors (His) of 

lysozyme and HSA to the Ru(II) centre was reported by Sadler in the case of [Ru(6-

biphenyl)(en)Cl]+ complex [80,81].  

It is noteworthy that varying the central Ru(II) ion to other isoelectronic metal ions 

(e.g. Os(II), Rh(III), Ir(III)) all kinds of thermodynamic and kinetic parameters of the 

organometallic complex are changed. E.g. the rate of the Cl‒/H2O exchange is 40-fold lower 

in the [Os(6-biphenyl)(en)Cl]+ complex compared to the analogous Ru(II) species and the 

pKa of the analogous Os(II) aqua complex is also lower by 1.4 order of magnitude [12,77]. 

The hydrolytic processes of the various organometallic cations such as [Ru(II)(η6-p-

cymene)(H2O)3]
2+, [Os(II)(η6-p-cymene)(H2O)3]

2+, [Rh(III)(η5-Cp*)(H2O)3]
2+ and [Ir(III)(η5-

Cp*)(H2O)3]
2+ also differ in aqueous solution as Fig. (4) shows in the absence and presence of 

chloride ions [93,94]. (In terms of metal ions or metal complexes hydrolysis means that 

coordinated water molecules are subject to deprotonation.) The tendency of these tris-aqua 

cations to hydrolyze is the following: Os(II) > Ir(III) > Ru(II) > Rh(III) in the absence of 

chloride ions, on the other hand the presence of chloride ions results in a shift of the 

appearance of the hydrolyzed species to the higher pH values.  
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Fig. (4). Hydrolytic processes of the organometallic cations [Ru(II)(6-p-cymene)(H2O)3]
2+, 

[Os(II)(6-p-cymene)(H2O)3]
2+, [Rh(III)(5-Cp*)(H2O)3]

2+ and [Ir(III)(5-Cp*)(H2O)3]
2+ (black 
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curves) as a function of pH at I = 0.20 M KNO3 (A) or KCl (B). Grey curves show the sum of m-

hydroxido dimeric species [M2(μ-OH)i]
(4-i)+, i= 2, 3, M = organometallic fragment {cM = 1.0 mM}. 

Calculations are based on data from Refs. [93,94] 

 

Besides the characterization of the hydrolysis of the cation [Rh(III)(η5-Cp*)(H2O)3]
2+, 

its complex formation processes with various bidentate ligands were also studied in details via 

combined approaches using pH-potentiometry, 1H NMR spectroscopy and UV-Vis 

spectrophotometry in the absence and presence of chloride ions [94-96]. On the basis of the 

determined stability constants concentration distribution curves were calculated for the 

[Rh(III)(η5-Cp*)(H2O)3]2+ ‒ maltol equimolar system and similar calculations were performed 

for the analogous Ru(II)(η6-p-cymene) complexes (Fig. 5). It can be concluded that the 

decomposition of the complexes leading to the formation of the dimeric [Rh2(η
5-Cp*)2(m-

OH)3]
+ and [Ru2(η

6-p-cymene)2(m-OH)3]
+ species occurs at higher pH values in the case of 

the organorhodium complexes despite the higher stability constants of the organoruthenium 

complexes. This phenomenon is originated from the stronger affinity of the Ru(II)(η6-p-

cymene) fragment to the hydroxide ions [93,94].  
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Fig. (5). (A) Concentration distribution curves for the [Ru(II)(6-p-cymene)(H2O)3]
2+ or (B) 

[Rh(III)(5-Cp*)(H2O)3]
2+ − maltol systems; M = organometallic fragment {cM = cmaltol = 1.0 mM, I = 

0.20 M KCl }. Calculations are based on data from Refs. [86,94] 

 

Interaction of [Rh(III)(η5-Cp*)(H2O)3]
2+ and Rh(III)(η5-Cp*) complexes of bpy, en, 2-

picolinic acid (pic) and dhp with HSA was studied by 1H NMR spectroscopy, 

ultrafiltration/UV-Vis and spectrofluorometry at 102 mM chloride ion concentrations [95]. It 

was pointed out that the Rh(III)(η5-Cp*) fragment is able to bind at least 8 sites involving 

binding events at sites I and II. The complexes can be bound to HSA in various modes and 
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extent depending on the nature of the coordinating ligand, thus the stability of the complexes. 

Namely, the binding is mainly dissociative in the case of the lower stability dhp complex and 

the ligand is cleaved off, while the bpy and en complexes possessing much higher stability 

represent complex-protein adduct formation (Fig. 6). The binding is most probable at the His 

nitrogen donor atoms of HSA [95].  
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Fig. (6). HSA binding ability of the organometallic cation [Rh(III)(5-Cp*)(H2O)3]
2+ (a) and its 

complexes [Rh(III)(5-Cp*)(L)Z] formed with L = dhp (b), bpy (c) or en (d); Z = Cl− or H2O {cHSA = 

ccomplex = 50 mM, pH = 7.4 cCl−
 = 0.10 M}. Black and grey bars show when the complex binds as 

Rh(III)(5-Cp*) fragment and as the whole complex retaining the ligand coordinated, respectively. 

Data are taken from Ref. [95]. 

 

4.4. Anticancer gallium(III) complexes 

Numerous Ga(III) complexes are able to inhibit the proliferation of tumor cells and 

Ga(III) was the second metal ion after Pt(II), to be administered to cancer patients [97]. KP46 

and tris(maltolato)gallium(III) (GaM) are the most promising orally active agents currently 

undergoing clinical trials [51,98]. In these octahedral Ga(III) complexes the coordination of 

the negatively charged bidentate ligands provides higher hydrolytic stability, lipophilicity and 

thus bioavailability compared to those of the simple inorganic salts such as Ga(NO3)3. The 

relatively good water-solubility of GaM allowed the determination of the stability constants of 

the [GaL]2+, [GaL2]
+ and [GaL3] complexes (where L is the completely deprotonated form of 

the ligand) formed in aqueous solution in the Ga(III) ‒ maltol system by the traditional 

approach (combined use of pH-potentiometry and 1H NMR spectroscopy in the mM 

concentration range). At the same time stability constants of the 8-quinolinolato Ga(III) 

complexes owing poor water-solubility were determined in highly diluted aqueous solutions 
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by UV-Vis spectrophotometry and spectrofluorometry, and were also determined from 

extrapolation of values obtained in 30% and 60% (w/w) DMSO/H2O mixtures by pH-

potentiometry [99]. The actual chemical forms of KP46 and GaM in aqueous phase can be 

estimated using these stability constants and can be compared to each other at various pH 

values. For this reason concentration distribution curves of the tris-ligand Ga complexes of 

maltol and 8-quinolinol were computed at a biologically relevant low concentration (Fig. 7). 

In both cases, the [GaL3] species are the predominant complexes at pH 7.4, although partial 

decomposition resulting in free ligand and [Ga(OH)4]
− is more pronounced in the case of 

maltol due to the considerably lower stability of its complexes.  
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Fig. (7). (A) Concentration distribution curves of Ga(III) − maltol system and (B) Ga(III) − 8-

quinolinol system at 1:3 metal-to-ligand ratio. {cGa(III) = 20 mM, cligand = 60 mM, I = 0.20 M (KCl)}. 

Data are taken from Ref. [99]. 

 

As it is described here, despite the structural similarities of these Ga(III) complexes, 

KP46 possesses much higher solution stability and lipophilicity than GaM. These features 

have a profound effect on their binding processes with serum proteins [100]. GaM was 

reported not to be bound to HSA, while a moderate binding of KP46 to HSA via non-covalent 

bond retaining the coordination environment around the metal ion was proved (logK′ = 4.04, 

KD = 91 μM) by the combined use of fluorometric and saturation transfer difference NMR 

measurements. The binding of KP46 on HSA takes place at IB binding site based on 

modeling calculations. Tf is ready to compete for Ga(III) with maltol or 8-quinolinol, though 

the substitution of maltol occurs to a much higher extent in comparison with that of 8-

quinolinol. Based on these findings equilibrium modeling calculations on the speciation of 

GaM and KP46 in the presence of HSA and Tf were performed; and an unequivocally 

different speciation was obtained (Fig. 8). Tf plays significant role in the case of GaM, 

namely this protein is able to replace maltol completely at concentrations lower than 30 μM. 
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In contrast, KP46 was estimated to bind primarily to HSA under physiologically relevant 

conditions. The interaction of KP46 with HSA is reversible and does not change the original 

coordination mode of the complex, which might be beneficial with respect to increased half 

life and solubility. This finding also suggests a Tf-independent gallium uptake mechanism of 

KP46 [100]. 
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Fig. (8). Concentration distribution diagrams for the GaM − HSA – Tf and KP46 − HSA – Tf systems. 

{ccomplex = 20 mM, cHSA = 630 μM, cTf = 37 μM considering that 30% of the binding sites on Tf are 

saturated with Fe(III), pH = 7.4}. Data are taken from Ref. [100]. 

 

5. BIOSPECIATION OF INSULIN-ENHANCING METAL COMPLEXES IN 

BIOLOGICAL FLUIDS 

In the past years we have published several reviews in this field [1, 43, 101-105], and 

thus there may be significant similarity of this section with some of them. When a larger part 

of the text is very similar to one of these former reviews  a reference number will be given. 

However, in most cases the original paper is cited. 

Diabetes mellitus (‘diabetes’ or DM) is a group of metabolic diseases in which there is 

high blood glucose level over a prolonged, sometimes nearly a lifetime period. In the case of 

DM type 1 the insulin-producing cells in the body have been destroyed, while in the case of 

DM type 2 they are not producing enough insulin or the cells of the body are not responding 

properly (partial resistance) to the insulin produced. As of 2015, an estimated 415 million 

patients had type 2 DM worldwide [106], which usually appears in people over the age of 40, 

making up about 90% of the cases [107]. Type 1 diabetes can be only treated with insulin, a 

natural peptide (protein) hormone composed of 51 amino acids, also over 40% of patients 

with type 2 diabetes require, as part of their treatment, insulin injections. Since peptides 

currently cannot be taken orally because of their degradation in the GI tract, insulin is given as 

an injection [108]. This painful and expensive treatment should be replaced by an insulin 

’mimicker’ which can be taken orally. Many metal ions such as Cr(III), Mn(II), Mo(VI), 

Se(V), V(IV/V), W(VI) and Zn(II) have insulin-like effect.  
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5.1. Insulin-enhancing vanadium compounds 

Insulin-like effects of vanadium were first demonstrated in vivo by McNeill and co-

workers [109] by simple adding of sodium orthovanadate (Na3VO4) to the drinking water of 

streptozotocin (STZ)-diabetic rats for several weeks. Later the only partly soluble vanadates 

were replaced by VOSO4 resulting in decreased side effects [110-112]. However, the applied 

necessary dose of vanadium still was close to the levels at which adverse effects are observed 

[113]. The question became then, ‘‘is there some way to chemically improve potency of these 

drug candidate anti-diabetic agents?’’. Several vanadium complexes with different 

coordination modes were synthesized and characterized in order to answer this question. The 

most frequent basic structures (‘backbones’) are depicted in Chart (3). Most of them are 

neutral bis complexes formed with bidentate organic ligands, where the oxidation state of the 

vanadium is +4 [101]. The only exception is the [VO2(dipic)]‒ with negative charge and +5 

oxidation state of the central metal ion [114]. All these complexes are labile, and ready to take 

part in fast ligand exchange reactions. 
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Chart 3. Basic structure of insulin mimetic vanadium complexes studied in detail. (The water 

molecules in the coordination sphere are omitted.) 

 

Only one comparative study of some of these drug candidate vanadium complexes has 

been made, and it was pointed out that these complexes have 30–70% of the activity of insulin 

in insulin-depleted mice fibroblast cell culture tests [115]. Based on that publication it would 

be impossible to differentiate between the effectiveness of the vanadium compounds studied. 

Confessing the truth, only one of these compounds were tested in humans: the Phase I 

clinical trial [113] of bis(ethylmaltolato)oxovanadium(IV) (BEOV, the ethyl- derivative of 
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VO(maltolato)2) was completed in 2000, and the results of the Phase IIa clinical trial were 

first published in 2009 [116]. The clinical Phase I trials proved that an orally administered 10-

90 mg BEOV single dose is safe and tolerable by healthy people, overall bioavailability of 

vanadium from BEOV was three times higher than that of vanadium from vanadyl sulfate and 

fasted subjects absorbed vanadium thirteen times better than fed subjects [113]. 

In Phase IIa tests over the course of a 28-day treatment period (daily dose 20 mg 

complex: 5.8 mmol or 3 mg vanadium), BEOV was consistently well-tolerated. A positive 

effect was observed in most of the treated subjects, such that reductions in fasting blood 

glucose were observed when compared to the two placebo subjects [116]. The tests have, 

however, been abandoned due to renal problems with some of the probands [117]. 

The orally administered vanadium complex should go first throught the GI tract and 

after the blood serum before arriving to the targeted cell. Biotransformation is possible in the 

entire route, and the absorption efficacy from the GI tract can be improved by formulation of 

the drug including encapsulation technique [118]. However, the original carrier ligand can be 

replaced by serum/plasma components or endogenous binding molecules, before the cells 

would be able to take up the complex. 

The active species is vanadate (H2VO4
-) most likely, one possible final product of the 

biotransformation of any kind of vanadium compound. The possible mode of action is the 

inhibition of a protein tyrosine phosphatase at the cytosolic site of the cellular insulin receptor 

and/or the activation of a tyrosine kinase in the signaling pathway [119]. 

 

5.1.1. Speciation of vanadium complexes in the GI tract 

Based on speciation studies [101,102] it is clear that in consequence of the parallel 

processes of protonation of the metal-binding sites of the coordinating ligands, the neutral bis 

complexes (VO(maltolato)2 [120]. VO(dhp)2 [121], VO(pic)2 [122], VO(mpno)2 (where mpno 

= 2-mercaptopyridine-N-oxide) [123], VO(acac)2 [124] and their derivatives) will certainly 

partly decompose in the acidic pH range, e.g. at the pH (ca. 2) of the gastric juice. The species 

formed in this way will be charged, and will possess entirely different membrane transport 

properties. The [VO2(dipic)]- complex is stable at pH 2 but it has already a ‒1 charge. 

Recently a useful speciation method, assessment of the chemical states of V, in 

biological environments was published [125]. Classification can be done on the basis of a 

three-dimensional diagrams of pre-edge and edge parameters in X-ray absorption near edge 

structure (XANES) spectra, developed on the basis of a library of model V(V/IV/III) 

complexes. Based on this method XANES results reported the speciation of four vanadium 
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compounds mimicking oral administration by artificial digestion [126], although the applied 

vanadium concentration was fairly high, namely 1.0 mM. (Artificial gastric/intestinal juice 

has been prepared,; incubations and commercial liquid semi-synthetic meals were used.) 

 

Scheme 2. Proposed biotransformation of the initial vanadium compounds in GI environment based 

on XANES data taken after artificial digestion. (cV = 1.0 mM) Taken from Ref. [126]. 

 

Typical anti-diabetic V(V) and V(IV) complexes undergo profound chemical changes 

in GI media. The main observation is that in the absence of food V(IV) is oxidized to V(V) 

only in the intestine and only the dipic dissociates (intestinal), while maltol does not. While in 

the presence of food reduction of V(V) to V(IV) and even to V(III) takes place already in 

gastric environment together with the total dissociation of the original carrier ligands (Scheme 

2). The observed significant difference between the presence and absence of food is in a 

complete coincide with the absorption difference of BEOV between the fasted/fed subjects 

reported in Phase I trial [113] (Section 5.1).  

As the overall bioavailability of BEOV was three times higher than that of vanadium 

from vanadyl sulfate (Phase I, Section 5.1 [113]) it seems that passive diffusion of neutral 

species is the most effective absorption process, while the other possibilities e.g. vanadate like 

phosphate or V(IV)O2+ species via M2+ uptake mechanisms or V(III)/Fe(III) pathways are less 

important. 

All exogenous and endogenous biomolecules being present in the stomach or 

intestines, where the complexes are absorbed, may play a role in V(IV)O binding. Interactions 

with these molecules could change the net charge of the complex unfavorably, which will 

decrease their absorption efficacy. This certainly has to be taken into account during the 

formulation of the drug (e.g. by encapsulation techniques, whereby these problems may well 

be overcome). Results of Sakurai et al. [118] support this prediction. In their study VOSO4 
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was administered orally in various formulations: in solution, in gelatin capsules and in 

enteric-coated capsules. It was found that administration of the V(IV)O salt in encapsulated 

forms improved the metal ion absorption as compared with that associated with the simple 

solution form. As far as we know, up to now, no such experiment has been done with 

vanadium complexes. 

 

5.1.2. Speciation of vanadium(IV) and vanadium(V) in blood serum 

The maximum daily oral dose in the Phase I clinical trial was 95 mg BMOV, 

equivalent to 15 mg or 0.22 mg/kg vanadium for a 70 kg person) [113]. For an absorption 

efficacy of 30% [127] and an overall blood content of 5 L, if all of this vanadium enters the 

blood at the same time, the maximum concentration attainable would be ∼20 mM. However, 

this is only a rough estimation, but it clearly shows a well-defined limit. In animal studies 

involving much higher doses up to 12 mg/kg vanadium, two independent research groups 

determined the maximum vanadium concentration in the blood to be 2–3 mg/mL, i.e. ca. 40–

60 mM. The maximum value of the vanadium concentration in the human blood during 

treatment (Phase I-IIa) was not published. Modeling calculations were performed in order to 

explore the potential biotransformation processes in serum [101,102]. 

The speciation [1] of the metal ion among the LMM and HMM components of blood 

serum, and the original carrier ligands, including mixed ligand species was calculated based 

on stability constants and concentration data at three concentration levels of antidiabetic 

compounds (1, 10 and 100 mM), the results are summarized in Fig. (9).  
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Fig. (9). Speciation of various potentially antidiabetic V(IV)O compounds (A: 1 mM, B: 10 mM, C: 

100 mM) in serum at pH 7.4. In this presentation the sum of the concentration of the similar type of 

species are depicted: VOA2: V(IV)O bound in the binary bis complex, (VO)xBy: binary species formed 

with the LMM components of the serum, (VO)xByCz: ternary species of the LMM components of the 

serum, (VO)xAyBz: ternary species of an antidiabetic complex with LMM components of the serum, 

(VO)xapoTf: binary species of V(IV)O with apoTf, (VO)xAyapoTf: ternary species of an antidiabetic 

complex with apoTf, (VO)xHSA: binary species of V(IV)O formed with HSA, (VO)xAyHSA: ternary 

species of an antidiabetic complex with HSA; A: carrier ligands, pic, maltol, dhp; B and C: LMM 

components of the serum: citric acid, lactic acid, phosphate. “B” taken from Ref. [1] “A” and “C” 

calculated similarly based on the published data in Ref. [1]. 
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The following conclusions could be drawn: (i) It is clear that apoTf, one of the two 

important HMM binders, is much more efficient than HSA and will displace 90-95% (1 mM 

and 10 mM V(IV)O compound concentration levels) of the original carrier from the complex 

or will form ternary complexes with them. (ii) Only the hydroxypyridinone derivative dhp is a 

strong enough carrier ligand to preserve a significant proportion of the V(IV)O in the original 

complex or still bound to V(IV)O in a ternary complex with apoTf. In the other two cases 

(pic, maltol), the carrier ligands are completely displaced by serum proteins. Similar behavior 

can be expected from the VO(acac)2, as the acac ligand is much weaker metal ion binder than 

dhp, maltol and pic. (iii) Among the LMM binders, citrate is the main ’active’ component, 

able to influence the solution state of these antidiabetics but only at 100 mM vanadium 

compound (VO(pic)2,VO(maltolato)2) level, when there is no Tf enough to bind all the metal 

ions. Among the LMM components the ternary complex(es) with the original carrier ligands 

dominate. (iv) The HSA containing fraction is negligible at 1 mM and 10 mM V(IV)O 

compound concentration level, similarly to citrate, it is able to bind the metal ion (or complex) 

only when the apoTf is already saturated with V(IV)O. The total vanadium containing HSA 

fraction is lower than 20% in all three cases even at 100 mM vanadium compound level. (v) 

The speciation is strongly concentration dependent in the 10-100 mM V(IV)O concentration 

range. 

The dominance of apoTf in V(IV)O binding was confirmed with the use of native 

blood serum measurements by ultrafiltration, separation through a 10 kDa membrane, the 

LMM and the HMM fraction bound V(IV)O was measured by atomic absorption 

spectroscopy method [103,104]. Similarly, the protein bound V(IV)O was separated by anion 

exchange chromatography and determined by ICP-MS. Only Tf was able to bind V(IV)O, the 

binding ability of the other important serum protein HSA was negligible [103]. 

Accordingly, the most important role of the carrier ligand seems to facilitate the 

absorption of V(IV)O from the GI tract, but the complexes fall apart at last in the serum. 

Pharmacokinetic investigations proved this prediction by using labelled V(IV)O(maltolato)2 

complexes [128]. 

It should be mentioned, that even at higher concentrations of the V(IV)O complexes, 

such as mM level, which exceed the serum level of the strongest V(IV)O binder protein Tf, 

HSA also becomes an important binder of the V(IV)O species in serum, due to its 

significantly higher concentration [1]. However, there is no real clinical importance of this 
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observation, as for example in the whole blood the LC50 value of vanadate is in the 2-5 mM 

range (estimated based on [129]). 

Among several drug candidate ligands (hpno/mpno/pic/dhp), the hpno (2-

hydroxypyridine-N-oxide, the O derivate of mpno) forms the highest stability complex with 

V(V) at pH 7.4 [130]. The [VO2(dipic)]- decomposes at this pH, as it is stable only in weakly 

acidic solution [1144]. Based on modeling calculation it is clear that at biologically relevant 

concentrations, c(V(V)) < 10 mM, the Tf is the only V(V) binder in the blood serum. Under 

such conditions, neither the carrier ligands, nor HSA nor the LMM biomolecules present in 

the serum (lactate, citrate, phosphate, Gly or His) form sufficiently strong complexes to 

compete with apoTf, even though ca. 5% of the V(V) exists as free H2VO4
– ion in solution 

[130]. 

XANES speciation studies of antidiabetic vanadium complexes in the whole blood 

[131] were carried out using the same classification method on 3D diagrams of pre-edge and 

edge parameters similarly to GI speciation (Section 5.1.1). The outcome suggests an 

important role of the red blood cells in the biospeciation of vanadium, however the applied 

concentration of vanadium was 1 mM, which is therapeutically irrelevant, and makes the 

results questionable. 

 

5.1.3. Speciation of vanadium in the cells  

Vanadium, either in oxidation state IV or V, mainly binds to Tf in human serum (see 

Section 5.1.2). Accordingly, vanadium may be assumed to enter the cell through the Tf 

receptor following the iron pathway. 

In the intracellular environment, reducing agents can redox-interact with vanadate(V). 

A frequently discussed candidate for the reduction is GSH [132]. A high intracellular excess 

of GSH increases the possibility of formation of V(IV)O and its complexation with either 

GSH or GSSG. Both have been shown to be reasonably potent binders for V(IV)O [132-134]. 

Other effective reducing agents, such as NADH or ascorbate, may cause the formation of 

even V(III) species [135,136]. Hydrolytic degradation of V(IV)O may be responsible for the 

reoxidation to vanadate(V).  

Among the LMM binders, the widely distributed ATP may also be of importance 

[137], as it efficiently binds V(IV)O and is also present in millimolar concentration in cells. 

Comparing the V(IV)O complex-forming properties of ATP and GSH, it can be concluded 

that in the whole pH range ATP is a more efficient V(IV)O binder. When ATP and GSH are 

simultaneously considered as potential V(IV)O binders, GSH is not expected to be able to 
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compete with ATP for binding to V(IV)O. Since ATP is a strong V(IV)O binder, ATP will 

chelate the metal ion, forming binary and/or ternary complexes, and thus might somehow be 

involved in the antidiabetic action of the V(IV)O compounds. 

XANES spectroscopic studies [138] on vanadium uptake and speciation in mammalian 

cells and cell culture media were carried out also by P. Lay and coworkers, similarly to the 

other two XANES studies (GI tract/blood). In this work they experimentally proved the 

earlier criticism of some of the authors of this paper: (Section 5.1.2) namely the 1.0 mM 

vanadium concentration is therapeutically irrelevant. Such conditions were toxic for the cells 

at >8 h treatments, but the authors can not use lower V concentration because of the X-ray 

fluorescence detection limit. [139] However, the conclusions of this study are that the easy 

interconversions of V(IV) and V(V) species in the cells, i.e. the antidiabetic V(V) and V(IV) 

complexes undergo profound transformations in cell culture media, and the resultant products 

are further metabolized by cultured mammalian cells. 

After vanadium enters the body and undergoes several biotransformations finally it 

may be excreted or accumulated by different tissues. Direct comparison studies between 48V-

BMOV and 48VOSO4 demonstrated a similar pattern of biodistribution to that of inorganic 

vanadium salts observed earlier: the order of relative accumulation is bone > kidney > liver. 

The absorption level is low, the bones retaining only the ca. 0.1% of an oral dose/g tissue 24 h 

after an oral dose of VOSO4, however half-life of elimination is quite long (>10 d for 48V in 

bone after a single dose 10 mM by oral gavage in rats). [105,113] 

5.2. Speciation of insulin-enhancing zinc(II)-complexes in blood serum 

However, Zn(II) is not so effictive in insulin mimesis as vanadium, as it is an essential 

metal ion it may be introduced more easily as a medical drug. Studies were also carried out 

with some Zn(II) complexes (e.g. Zn(pic)2; Zn(maltolato)2 Zn(dhp)2 and Zn(dipic)2) having 

insulin-enhancing activity in the concentration range of 100 mM level [1]. The possible 

interactions of the drug candidate complexes in blood with the LMM components were 

studied by pH-potentiometry in details [140,141], based on modeling calculation among these 

binders (without the HMM components) His and Cys and their ternary complexes are the 

primary Zn(II) binders [142]. 

HSA binds Zn(II) with conditional binding constants in the range of logK’ = 7.1–7.9 

[11,143]. 2-macroglobulin has also significant Zn(II) binding properties though found at 

much lower concentration in the serum than albumin (2–6 mM), with the reported conditional 

formation constants logK’1 = 7.49 and logK’2 = 5.12 [144,145]. The third possible Zn(II) 
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binder is apoTf, the Zn(II) binding constants are logK’1 = 7.8 and logK’2 = 6.4 (at 15 mM 

NaHCO3) [146]. 

When both the HMM and the LMM serum binders are considered without the 

presence of any carrier ligand, the modeling calculations showed that most of the total serum 

Zn(II) is bound to the serum proteins (~98%) and HSA is the primary binder (80–90%) 

[37,140,147, 148] followed by 2-macroglobulin (5–15%) [144,147,148]. However, the role 

of apoTf is still under discussion [147,149], a minority of Zn(II) is mobile and circulating 

attached to LMM components or as free metal ion. 

 

 

Fig. (10). Speciation of various potentially antidiabetic Zn(II) compounds in serum pH 7.4. Taken 

from Ref. [1] 

 

In order to investigate the binding properties of the Zn(II) compounds to blood serum 

components under more realistic conditions, human serum samples were incubated with the 

Zn(II) complexes. CZE experiments with ICP-MS detection was used to quantify the metal 

ion binding towards the different serum components. Most of the Zn(II) was bound to HSA 

(ca. 80–95%) as identified via the 34S trace. A minor amount (<5%) of Zn(II) was still 

coordinated to the original carrier (or other buffer components); however no Zn(II) was 

detected bound by Tf [140]. 

The latest modeling calculation on the Zn(II) distribution in serum samples containing 

100 mM of insulin-enhancing bis-ligand complex are depicted in Fig. (10). Formation of 

binary complexes [Zn(II)-carrier ligands]; [Zn(II)-LMM compounds], mixed ligand 

complexes [Zn(II)-carrier ligands-LMM compounds] and the interactions between serum 

proteins and Zn(II), and also between HSA and the carrier ligands were considered [140]. The 
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results of the modeling calculations (see above) were confirmed experimentally not only by 

CZE-ICP-MS but also by ultrafiltration-ICP-atomic emission spectroscopy [141] studies. 

 

6. SPECIATION OF MRI CONTRAST AGENTS 

Magnetic resonance imaging (MRI), a powerful and indispensable medical diagnostics 

technique is used to image the anatomy and the physiological processes of the body. MRI has 

a wide range of applications in medical diagnostic and over 25,000 scanners are estimated to 

be used worldwide [150]. MRI is based upon NMR spectroscopy, the most frequently studied 

nuclei is 1H. By varying the parameters of the pulse sequence, different contrasts can be 

generated between tissues, based on the relaxation properties of the hydrogen atoms therein. 

Contrast agents (CAs) usually shorten, but in some instances increase the value of spin-lattice 

relaxation time (T1) of nearby water protons thereby altering the contrast in the image [151]. 

Approximately 35% of the clinical MRI applications apply paramagnetic complexes (or 

superparamagnetic, ferromagnetic substances) as CAs [152]. The trivalent Gd(III) is the most 

efficient relaxation agent among all paramagnetic cations due to its high electron spin (S = 

7/2) and slow electron spin relaxation and therefore it is the most commonly used ion in MRI 

as CAs. Other paramagnetic metal ions, in particular the non-toxic biocompatible Mn(II) (S = 

5/2) have also been considered as MRI contrast agent and their role becomes more and more 

important [153]. 



33 
 

N N

N N

HOOC

HOOC

COOH

COOH

H4DOTA
(NMG)Gd(DOTA): Dotarem

N N N

COOH
COOH

COOHHOOC

HOOC

H5DTPA
(NMG)2Gd(DOTA): Magnevist

N N N

COOH

COOHHOOC

H3DTPA-BMA

Gd(DTPA-BMA): Omniscan

O

H
N

O

H
N

N N

N N

HOOC

HOOC COOH

H3(HP-DO3A)

Gd(HP-DO3A): ProHance

OH

N N N

COOH

COOHHOOC

H3DTPA-BMEA
Gd(DTPA-BMEA): OptiMARK

O

H
N

O

H
N

O
O

N N N

COOH
COOH

COOHHOOC

HOOC

H5BOPTA
(NMG)2Gd(BOPTA): Multihance

O

N N

N N

HOOC COOH

COOH

H3DO3-butrol
Gd(DO3-butrol): Gadovist/Gadavist

HO

HO

HO

N N N

COOH
COOH

COOHHOOC

HOOC

diphenyl-cyclohexyl
phosphodiester-H5DTPA
(Na)3Gd(diphenyl-
cyclohexylphosphodiester -
DOTA): Vasovist/Ablavar

O

PO
OH

Ph

Ph

N N N

COOH
COOH

COOHHOOC

HOOC

H5EOB-DTPA
(Na)2Gd(EOB-DOTA): Primovist/Eovist

O

 

Chart 4. Chemical structures of ligands, formulae, and trade names of Gd(III) complexes 

used as contrast agents (NMG: N-methylglucosamine) 

 

As the free Gd(III) ion is toxic [154], it is necessary to be chelated with appropriate 

multidentate ligands (Chart 4), which ensure a high thermodynamic stability and/or kinetic 

inertness.  
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The first model calculation on Gd(III) speciation in serum conditions has been made 

by Jackson and his coworkers in 1990 [155]. They used mainly literature data with ionic 

strength and temperature corrections, or even estimated values when it was necessary. They 

already concluded that at the normally applied Gd(III) CAs level (>0.1 mM) there is no apoTf 

enough to bind significant amount of Gd(III), in the absence of chelator the Gd(III) supposed 

to be coordinated by LMM serum components mainly amino acids, lactate and citrate. The 

possible importance of the phosphate was proposed, as Gd(III)PO3 is a precipitate. 

Theoretically it should form, however the authors were not able to include it into the 

speciation model. Gd(III)PO3 was not possible to detect experimentally either, most probable 

due to the kinetically slow decomposition of the Gd(III)-containing CAs. A weak relationship 

between the thermodynamic stability of a Gd-CAs – calculated free Gd(III) concentration and 

the toxicity (LD50) was observed. 

The major part of the clinical Gd(III)-based agents, which mean approximately the 

90% of all clinical contrast agent injections, are non-specific, have low molecular weight, and 

are localized in the extracellular space [152]. At present, nine different Gd(III)-

aminopolycarboxylate complexes are used in the clinics, they are derivatives of the open 

chain H5DTPA (diethylenetriaminepentaacetic acid) or the macrocyclic H4DOTA (1,4,7,10-

tetraazacyclododecane-1,4,7,10-tetraacetic acid) [156,157] (Chart 4). 

 

Table 4. The detected number of NSF and the conditional stability constant of different number 

of CAs. (Data are taken from Ref. [158]) 

Chemical name Commercial 
name 

Detected number of 
NSFa 

logK’ (conditional stability 
constant at pH 7.4) 

Gd-DTPA-BMA Omniscan 163 14.9 

Gd-DTPA Magnevist 85 17.7 

Gd-DTPA-BMEA OptiMARK 9 15.0 

Gd-BOPTA MultiHance 2 18.4 

Gd-HP-DO3A ProHance 0 17.1 
a Total number of clinical applications of the individual drugs are not known, During the mid-

2000s Omniscan (market share: ~50%) and Magnevist (market share: ~40%) dominated the 

application in the USA [159]. 

 

The expanding clinical use of Gd(III)-based contrast agents was halted in 2006, when 

the development of a newly observed disease, namely nephrogenic systemic fibrosis (NSF), 
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was assumed to be related to the use of these Gd(III) complexes [160,161]. NSF is a very rare, 

highly debilitating, life-threatening disease, which was observed only in patients with severe 

or end-stage renal disease [160-167]. The number of NSF cases reported up to the end of 2007 

was around 400, but due to the recommendations of health authorities, the number of cases 

has dramatically reduced and no new cases have been reported [163,168,169]. About 75–80% 

of the known NSF cases could be associated with the use of Omniscan (Gd(DTPA-BMA)), 

where BMA = bis-(methylamide)) and far fewer diseases have been reported in patients 

treated with Magnevist (Gd(DTPA)), and only a few cases have been observed after the use of 

macrocyclic agents [160,164,170-174]. 

In Table 4. the detected number of published NSF (FDA’s Med-Watch database for 

NSF as of May 2, 2007) and the conditional stability constants logK’ were collected together 

for five Gd(III)-CAs. Although some tendencies are clear, it is  seen that there is no direct 

connection between the thermodynamic stability and the observed number of caused NSF 

patients. For example in spite of the lower stability constant, the chemical properties of 

Gd(DTPA-BMA) were considered to be favorable for in vivo use, because in parallel with the 

decreased stability of Gd(DTPA-BMA), the stabilities of the DTPA-BMA3- complexes of 

Zn(II), Cu(II) and Ca(II), which may compete with Gd(III) in body fluids, decreased more 

markedly [175]. Moreover, other kinetic processes may play a role in the dissociation. 

In body fluids, a lot of various metal ions and ligands may compete with the Gd(III) 

ion and the DTPA-BMA3- ligand, respectively. Equilibrium calculations performed with a 

simplified plasma model including the Cu(II) / Zn(II) / Ca(II) cations, amino acids (Ala, Cys, 

Glu, Gly, His and Lys), HSA and Tf, and other small biomolecules (hydrogencarbonate, 

phosphate, citrate, lactate, malate and succinate) [176]. The model predicts, that under 

physiological conditions (pH = 7.4, T = 310 K, I = 0.15 NaCl) phosphate ion is the only 

endogenous ligand that can compete with DTPA-BMA3- for binding of Gd(III). 

Approximately 17% of the Gd(DTPA-BMA) dissociate to form Gd(PO4) as a precipitate. As 

the ligand DTPA-BMA is also released it is able to form complexes with the endogenous 

metal ions such as Zn(II), Cu(II), and Ca(II). Due to the relatively high (0.35 mM) 

concentration of the contrast agent, the free DTPA-BMA could collect approximately ~80% 

of the serum Zn(II) and ~90% of the Cu(II) content [176]. 

However, decomposition of the Gd(DTPA-BMA) in human serum is controlled 

kinetically, not thermodynamically. The decomposition of the complex occurs parallel with its 

elimination from the body, the amount of Gd(III) released from Gd(DTPA-BMA) in body 

fluids depends on the rates of decomposition and elimination of the complex. Based on rate 
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data from pharmacokinetic studies on the elimination of Gd(DTPA-BMA) and the rate data 

characterizing the dissociation of the Gd(III) complex, a two-compartment open model has 

been developed (Fig. 11) to assess the amounts of Gd(III) released in body fluids [176]. 

 

 

Fig. (11). Simulation of the amounts of ‘free’ Gd(III) released during the elimination of Omniscan 

from subjects with normal (1) and severely impaired (2) renal function (the dose of CA was 0.1 

mmol/kg body weight). Taken from Ref. [176]. 

 

In patients with normal renal function the rate data predict the elimination of about 

95% of the administered Gd(DTPA-BMA) within ca. 48 h. In patients with severe renal 

impairment, the elimination of the Gd(DTPA-BMA) is slow (t1/2 ~30–40 h) and during the 

long residence time larger amounts of complex may dissociate and significant amounts of 

Gd(III) (approximately 12.5% in 5 d after the administration) may be deposited in their body 

[176]. 

 

7. CONCLUSIONS 

In this review different examples were given how the behavior of the metal complexes 

(primarily the character of the metal ion) in the various biological milieu (fluids and tissues) 

can influence the reactions of these compounds with endogenous biomolecules, their 

decomposition, etc., which will basically affect their ADME properties. 

The serum speciation of the metal ion will basically determined by its kinetic inertness 

or lability, the strength of its Lewis acidity and its binding ability to the different serum 

constituents.  Low molecular mass binders provide the easily exchangeable, mobile forms of 

the metal ions, while high molecular mass components namely serum proteins, serve as the 

less mobile metal ion pool. Alkaline and alkaline earth metal ions will be hardly or relatively 



37 
 

weakly bound to serum components. On the other hand heavy metal ions can bind to 

biomolecules much stronger, which can be either advantageous (e.g. in metalloproteins), but 

disadvantageous as well, interfering normal function of essential biomolecules. For this 

reason, in any case when a metal ion with strong affinity to biomolecules is going to added to 

a biological system it has to be surrounded (wrapped) by a carrier molecule to hinder its 

interaction with the endogenous biomolecules. 

Anticancer, antidiabetic compounds and MRI diagnostics were used to illustrate how 

the thermodynamic parameters and the kinetic behaviour of the compounds will affect their 

solution state in the biological milieu. What is the distribution of these compounds when they 

are transported in the blood serum between the LMM and HMM fractions (protein and non-

protein bound mobile and less mobile fractions of these drugs which e.g. strongly affects their 

transport properties and their absorption In the case of the MRI contrast agents their 

thermodynamic and kinetic properties gave answer to the appearance of  a side effect of the 

Gd(III) containg agents, which reflected attention to other metal ion (Mn, Fe) containg MRI 

agents. 

 

FUTURE PERSPECTIVES 

Several examples have been given in this paper representing how stability data and 

speciation modeling calculations can be used to provide detailed description of the 

distribution of metal ions or metal compounds with physiological activity in biological 

systems. Basic condition of making modeling speciation calculations is the need of correct 

speciation models and stability data. For this reason we need reliable databases. There are 

enormous amount of stability data in the literature. These, however, should be critically 

evaluated and classified into groups according to the needs of the potential users to help them 

to find more easily the data they need. This work has already been started and critically 

evaluated databases are also available in the literature (e.g. IUPAC Stability Constants 

Database), even some for special users, but there is still enough work to do in this field. 

The parallel use of thermodynamic and structural investigating methods is needed with 

a complete identification of each species formed in the equilibrium system. In many cases the 

in vitro determination and quantification of the metal containing species confirm the in vivo 

results in biological fluids or tissues. Due to the not high enough sensitivity of the 

experimental methods, it is quite frequent that not a complete confirmation of the results of 

the modeling calculations can be achieved but only the sum of the concentration of a group of 

the species can be determined, and so only a kind of fractionation can be experimentally 
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verified. The other way of improving the reliability of modeling calculations is to increase the 

sensitivity of experimental techniques to provide in vivo confirmation of the modeling 

calculations for real systems. We can prove for the potential users with these efforts that 

modeling calculations can provide reliable results for conditions when there is no way for 

direct experimental measurements. 
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ABBREVIATIONS 

acac acetylacetonate 

apoTf apotransferrin 

ATCUN motif amino terminal Cu(II)- and Ni(II)-binding motif 

BEOV bis(ethylmaltolato)oxovanadium(IV) 

BMA bis-(methylamide) 

bpy 2,2ʹ-bipyridine 

CA contrast agent 

Cis cystine 

Cp* pentamethylcyclopentadienyl 

CZE capillary zone electrophoresis 

dhp 1,2-dimethyl-3-hydroxy-pyrid-4(1H)-one, deferiprone 

DM diabetes mellitus 

DMSO dimethyl sulfoxide 

en ethylenediamine 

EPR electron paramagnetic resonacne 

ESI-MS electrospray ionisation mass spectrometry 

FA fatty acid 

GaM tris(maltolato)gallium(III) 

GI gastrointestinal tract  

GSH glutathione 

H4DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid 

H5DTPA  diethylenetriaminepentaacetic acid 

HMM high molecular mass 
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hpno  2-hydroxypyridine-N-oxide 

HSA human serum albumin 

ICP-MS inductively coupled plasma mass spectrometry 

KP46 tris(8-quinolinolato)gallium 

LMM low molecular mass 

maltol 3-hydroxy-2-methyl-4H-pyran-4-one 

MBS multi-metal binding site 

mpno 2-mercaptopyridine-N-oxide 

MRI magnetic resonance imaging 

NADH nicotinamide adenine dinucleotide 

NAMI-A  imidazolium [trans-tetrachlorido(dmso)(imidazole)ruthenate(III)] 

NKP-1339 sodium [trans-tetrachloridobis(1H-indazole)ruthenate(III)] 

NSF nephrogenic systemic fibrosis 

NTS N-terminal site 

phen 1,10-phenanthroline 

pic picolinic acid 

PTA 1,3,5-triaza-7-phosphatricyclo-[3.3.1.1]decane 

Tf human serum transferrin 

UV-Vis UV-visible 

XANES X-ray absorption near edge structure 
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