
DOI: 10.1007/BF01207544

Support curves of invertible Radon transforms

�Arp �ad Kurusa �

Abstract. Let S and the origin b e di�erent p oints of the closed curve S in the
plane. For any p oint P there is exactly one orientation preserving similarity
A P which �xes the origin and takes S to P . The function transformation

R S f ( P ) =
Z

A P S

f ( X ) dX

is said to b e the Radon transform with resp ect to the support curve S , where
dX is the arclength measure on A P S . The invertibility of R S is proved on
a subspace of the C 2 functions if S has strictly convex distance function.
The supp ort theorem is shown on a subspace of the L 2 functions for curves
having exactly two cross p oints with any of the circles centered to the origin.
Counterexample shows the necessity of this condition. Finally a generalization
to higher dimensions and a continuity result are given.

1. Introduction

Radon's problem to recover a function from its integrals along straight lines
in the plane has b een generalized in many ways [1 -7]. With resp ect to our following
investigations the most interesting one is found in Cormack's pap er [2]. In his pap er
Cormack gave an inversion formula for Radon's problem when the line integrals are
evaluated along the so called � -curves given, for �xed p olar co ordinates ( p; ' ), by
r � cos( � (  � ' )) = p � , where � is real and nonzero. This family of curves contains
the most familiar curves like parab olas, straight lines, circles etc. The aim of this
pap er is to prove the invertibility and the supp ort theorem for more general curves.

Our considerations constitute also a part of a more general question app ears in
the literature [1-3,6,8]. Let us take a hyp ersurface S in R n , the support hypersurface
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De�ne the following function spaces for k 2 Z and m > 0.

L 2 ( R n ; r k ) = f f : R n ! R : f ( X ) jX j k = 2 2 L 2 ( R n ) g;
L 2
m ( R n ; r k ) = f f 2 L 2 ( R n ; r k ): jX j � m ) f ( X ) = 0 g

and L 2
� ( R n ; r k ) =

S
m> 0 L 2

m ( R n ; r k ).

Theorem 1. IfS isC 2 curve having strictly convex distance function then the
Radon transformR S is invertible on the spaceC 2

c .

Proof. Let f 2 L 2
2 ( R 2 ). We are tracing back this theorem to Mukhometov's The-

orem 2 in [5] via the inversion of the plane to the unit circle. (See Figure 1; the
idea to use inversion originates to [2]).

Figure 1

It is cle ar that the arc length measure transforms to the arclength measure
multiplied by jX j � 2 . Hence the Radon transform of the function f transforms to
the Radon transform of the function h ( X ) = f ( X jX j � 2 ) jX j � 2 . By our c ondition h

is in C 2
c ( R 2 ). Thus, to use Mukhometov's the orem, we have to consider the family

of the inversed supp ort curves and, as we shall see b elow, the straight lines through
the origin. Since the other two necessary conditions are obviously ful�lle d in our
situation we deal only with the �rst one. This condition says that any two p oints
in the disc should b e joined by exactly one curve. Translating this to our original
supp ort curve S we get that no two inscrib ed triangles with common ve rte x in the
origin can b e similar, but any triangle should have a similar inscrib ed triangle with
one vertex in the origin.

To prove the uniqueness, let the curve S b e parameterized in p olar co ordinate
system as ( s ( � ) ; � ), where � varies on [0 ; �]. The distance function s is convex and
s (0) = s ( �) = 0. If two inscrib ed triangles with common vertex in the origin are
similar than there exist �;  2 (0 ; �) such that

s ( � + � )
s ( �)

=
s (  + � )

s (  )
:
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Proof. Since (ii) is clearly implied by (i), we deal only with the �rst statement
that is in fact the support theorem.

There must be n > 0 that f 2 L2
n (R2) and so the claim is not obvious only

in the case whenm > n . If we regard f and RS f in polar coordinates, our Radon
transform takes the form
(1)

RS f (r; � ) =
Z 1

0

�
f (rt; � + ' (t))

p
1 + t2 _' 2(t) + f (rt; � +  (t))

q
1 + t2 _ 2(t)

�
r dt:

The expansions off and RS f into Fourier series are

f (r; � ) =
1X

k= �1

f k (r )eik� and RS f (r; � ) =
1X

k= �1

(RS f )k (r )eik� :

Using the symmetry of S (i.e. ' = �  ) a quick calculation shows
(2)

(RS f )k (r ) = 2
Z r

n
f k (t) cos(k' (t=r ))

s

1 +
t2

r 2 _' 2

�
t
r

�
dt = 2

Z r

n
f k (t) �K (r; t ) dt:

To �nd out the singularity of the kernel �K (r; t ) we prove that

(� ) lim
" ! 0

_' (1 � " )
p

" =
� 1

p
2� � 2

:

Figure 3.

See Figure 3. LetP(" ) be the point (1 � "; ' (1 � " )), and � (" ) be the angle
P(" )SO6 . X is the orthogonal projection of P(" ) to OS and P0(" ) is the reection
of P(" ) to OS. The basic theory of the curves states that the radius%(") of the
circle determined by the pointsP(" ), S and P0(" ) tends to 1=� . Taking into account
the symmetry of S we obtain

%(") =
jSPj=2
cos� (" )

=
jSX j2 + jXP j2

2jSX j
�!

1
�

:
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Since C �
m is polynomial and C �

m (1) 6= 0, using (� ) and (�� ) (in the proof
of Theorem 2) we can write the kernel of this integral equation in the form
K (r; t )

p
r � t

n � 3
, where K (r; t ) is C[n= 2]([p; s]2) by the di�erentiability condition

on ' and K (t; t ) = jSn � 2 j
2

q
2t

� � 1

n � 1
6= 0 for t 2 [p; s]. The integral equations of

this type are proved to have unique solutions [6, pp. 515 (3.9); 7, pp.41], hence
f k;m (t) = 0 for t 2 [p; s].

Now we prove (i). By the de�nition of the norm

k RS f kL 2
s (Rn ;r � n � 1 ) =

Z 1

0
r � 2

Z

Sn � 1
(RS f (r! ))2 d! dr:

Substituting the spherical harmonic expansion ofRS f into and using the orthog-
onality of the spherical harmonics in L2(Sn � 1) we obtain

k RS f kL 2
s (Rn ;r � n � 1 ) =

X

k;m

Z 1

0
r � 2((RS f )k;m (r ))2 dr

Z

Sn � 1
(Yk;m (! ))2 d!:

Therefore, to prove (i) we only have to show

(4)
Z 1

0
r � 2((RS f )k;m (r ))2 dr � C

Z 1

0
r 2n � 4(f k;m (r ))2 dr

for some constant C independent from k and m. To this end, we estimate the
left hand side after rewriting (3) into (4). We know that sin n � 2 ' (p)

p
1 + p2 _' 2(p)

is continuous on the interval [0; 1] by (� ), ( �� ) and n � 3 and therefore it has
maximum M . Observing also that jC �

m (x)j � j C �
m (1)j for x 2 [� 1; 1], we see that

(5)
Z 1

0

�
M jSn � 1j

r

Z r

s
jf k;m jtn � 2 dt

� 2

dr

is more than the left hand side of (4). Using Hardy's inequality





1
�

Z �

0
g(u) du






L 2 (R+ )
� 2kgkL 2 (R+ )

for the function jf k;m (t)jtn � 2 one obtains just the result requested for (4).

We are closing the paper by discussing further possible generalizations of our
results and their relations to other problems.

Considering the conditions in Theorem 2 and Theorem 3, it may be worth to
note that S may intersect itself and even may wind around the origin. One can also
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