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You can recognize the shap e of a �gure
from its shadows!

�Arp �ad Kurusa �

Abstract. Let C1 and C2 be convex closed domains in the plane with C2

boundaries @C1 and @C2 intersecting each other in nonzero angles. Assume
the two strictly convex bodies F 1 and F 2 with C 2 boundaries in the interior
of C1 \ C 2 subtend equal visual angles at each point of @C1 and @C2. Then F 1

and F 2 coincide. Generalizations are also discussed.

1. Intro duction

The already classical question of P.C. Hammer‘How many X-ray pictures of a
convex body must be taken to permit its exact reconstruction?’ has been investigated
in several aspects during the last decade [2,3,10,12]. Motivated by the results the
problem arises if the reconstruction is possible using poorer pictures. J. Kincses
[6] proposed to investigate the shadow picture.

The shadow picture of a convex body is closely related to the X-ray picture,
but, somewhat surprisingly, it has been de�ned only for the parallel beam case.
The paral lel beam shadow picture corresponding to a direction is the orthogonal
projection of the body to the subspace orthogonal to the given direction. One can
regard this as the parallel beam X-ray picture of an impenetrable body. In the plane
it is the width of the body in the given direction. Therefore the reconstruction
is impossible as there are di�erent convex bodies (bodies of constant width for
example), even polygons, having equal widths in every directions.

We de�ne the divergent beam shadow picture of a convex body in the plane as
the divergent beam X-ray picture of an impenetrable convex bodyF . More exactly,
the shadow picture of F at P 2 R2 is the visual angle of F at P, i.e. the angle the
body F subtends at P. We disregard the position of the angle and consider only
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2. The pro of

Theorem 1 will be proved through an easy lemma and a rather complicated
proposition. Our notations throughout these are the following. F is a strictly
convex body in the plane with C2 boundary. The C2 curve g: [� 1; 0] ! R2 is
outside F , parameterized by arc length and its tangents do not meetF . T(s), t(s),
n(s) and � (s) are the tangent line, the tangent vector, the normal vector and the
curvature of the curve g at g(s), respectively. � (s) denotes the visual angle ofF at
the point g(s). T a(s) and T b(s) denote the tangent lines of F through g(s). � a(s)
and � b(s) denote the unit direction vectors of these tangents lines, respectively.
They are in the same side ofT(s) as F and � a(s) is a positive linear combination of
� b(s) and t(s). � (s) and � (s) are the angles of� a(s) and � b(s) to t(s), respectively,
so that 0 < � (s) < � (s) < � . � a(s) and � b(s) are the curvatures of @F at the
points A(s) and B (s), the intersection of F with the tangent lines T a(s) and T b(s),
respectively. Let a(s) = j A(s) � g(s) j and b(s) = j B (s) � g(s) j . If more objects enter
the picture, then we shall index them consequently. If no argument of a function
is written then it is understood at the appropriate arclength parameter s 2 [� 1; 0].

The second equation in the following lemma will be used only to see that •� is
su�ciently smooth. Therefore we only outline its proof.

Lemma 1. With the notations introduced above,

_� =
sin �

b
�

sin �
a

and •� =
sin 2�

b2 �
sin 2�

a2 +
sin2 �
b3� b +

sin2 �
a3� a � �

� cos�
b

�
cos�

a

�
:

Pro of. Only the derivatives of � will be calculated. The corresponding results for
� can be obtained in the same way. We use row-vectors and the rotation matrix

�
cos� sin �

� sin � cos�

�
= R(� ):

Obviously B (s) = b(s)t(s)R(� (s)) + g(s). Di�erentiating w.r.t. s, we obtain

_B = _btR(� ) + b�nR (� ) + bt _R(� ) _� + t:

The vector _B is tangent to F , hence _B = �j _B j tR (� ). Since t _R(� ) = nR(� ), the
multiplication of the above equation with R( � � ) gives

tR( � � ) = � ( j _B j + _b)t � b(� + _� )n:
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By the following inequalities the sequencel2i keeps close to� b
1 (0). We shall

use this fact frequently.

j! i � � j � j ! 0 � � 1(s0)j + j� 1(si ) � � j +
iX

j =1

j(! j � � 1(sj )) � (! j � 1 � � 1(sj � 1)) j

� 2� 1 +
iX

j =1

j� b
1 (sj � 1)� b

2 (r j � 1)6 � � a
1 (sj )� a

2 (r j � 1)6 j

� 2� 1 +
iX

j =1

� b
1 (sj � 1)� b

2 (r j � 1)6 +
iX

j =1

� a
1 (sj )� a

2 (r j � 1)6

� 2� 1 + � b
1 (s0)� b

2 (r i )6 + � a
1 (s1)� a

2 (r i � 1)6 � 2� 1 + � 1 + � 1 = � 0:

For the second inequality we used that

! j � � 1(sj ) = l2j � b
1 (sj )6 = l2j � 1� a

1 (sj )6 = � a
1 (sj )� a

2 (r j � 1)6 + l2j � 1� a
2 (r j � 1)6

! j � 1 � � 1(sj � 1) = � b
1 (sj � 1)� b

2 (r j � 1)6 + l2j � 2� b
2 (r j � 1)6

and that l2j � 1� a
2 (r j � 1)6 = l2j � 2� b

2 (r j � 1)6 .
Our further observation is that the sequencessi and r i are increasing and

bounded, hences = lim si and r = lim r i exist. Assume g1(s) 6= g2(r ). This
implies the existence of the limit straight lines lb = lim l2i and la = lim l2i +1 . Then
lb � la , because both go throughg1(s) and g2(r ). This contradicts that the angle
between l2i and l2i +1 is � 2(r i ) ! � 2(r ) > 0, henceg1(s) = g2(r ) and therefore
r = s = 0.

In the calculations we shall frequently substitute arcs of curves by their chords.
We will use the following two basic formulas for estimating the error.

lim
h! 0

�
�
� gi (s+ h) � gi (s)

jgi (s+ h) � gi (s) j � _gi (s)
�
�
�

h
=

� i (s)
2

and lim
h! 0

jgi (s + h) � gi (s)j � h
h2 =

� i (s)
6

:

We shall now estimatesi +1 and r i in terms of si . First we take the triangles
g1(si )g2(r i )X and g1(si +1 )g2(r i )X the vertexes of which belong to the arcs we are
interested in. The sine law combined with the above equations gives

(3)
r i

si

(1 + r i O(1))
(1 + si O(1))

=
sin ! i + si O(1)

sin(! i �  ) + si O(1) + r i O(1)

and

(4)
r i

si +1

(1 + r i O(1))
(1 + si +1 O(1))

=
sin(! i +1 � � 1(si +1 )) + si +1 O(1)

sin(! i +1 � � 1(si +1 ) �  ) + si +1 O(1) + r i O(1)
:
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Again the sine law, but in the triangles g1(� i +1 )g1(si +1 )I i and g2(%i )g2(r i )I i leads
to

(1300)
(� i +1 � si +1 )(1 + ( � i +1 � si +1 )O(1))

zi
=

sin(� i + � 2(r i ) � � 2(%i ))
sin � 1(� i +1 ) + ( � i +1 � si +1 )O(1)

and

(13000)
(%i � r i )(1 + ( %i � r i )O(1))

zi + yi
=

sin(� i + � 2(r i ) � � 2(%i ))
sin � 2(%i ) + ( %i � r i )O(1)

;

where � i + � 2(r i ) � � 2(%i ) is the angle betweenl2i +1 and � a
2 (%i ) at I i . Eliminating

zi and yi from (13000) with (13 00) and (130) gives us that
(13)

(� i +1 � si +1 )
si +1

(sin � 1(� i +1 ) + ( � i +1 � si +1 )O(1))

=
(%i � r i )

r i

r i

si +1
(sin � 2(%i ) + ( %i � r i )O(1)) �

� � i
sin(� i + � 2(r i ) � � 2(%i ))

� i

sin � i

sin(! i +1 � � i (si +1 ) � � i ) + si +1 O(1)
:

The terms (%i � r i )=ri and r i =si +1 are convergent by (11) and (4). We also know

(14)
sin(� i � � 2(r i ) + � 2(%i ))

� i
�!

� sin F ( � 0 )
F ( � 0 ) if F (� 0) 6= 0

1 if F (� 0) = 0

from equation (12). Therefore (13) can be written as

(15) � i +1 = si +1 + � i si +1 L i ;

where limi !1 L i = L 1 is �nite. As to the terms in (9) this implies the Taylor
expansions of second order

� 1(� i +1 ) = � 1(si +1 ) + _� 1(si +1 )� i si +1 L i + � 2
i s2

i +1 O(1);(16)

� 1(� i +1 ) = � 1(si +1 ) + _� 1(si +1 )� i si +1 L i + � 2
i s2

i +1 O(1);(17)
Z � i +1

si +1

� 1(s) ds = � 1(si +1 )� i si +1 L i + � 2
i s2

i +1 O(1):(18)

Using these and (12) in (9), and ordering the result according to the power of
� i , we obtain

(19) � i +1 = � i (1 + si +1 N i +1 + � i s2
i +1 O(1)) ;
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3. Some generalizations

The most natural generalization is to consider the problem in higher dimen-
sions, but we have more ways to de�ne `visual angle'. In two dimension the shape
of the visual angle and its measure cover the same information, but in the higher
dimensions this holds no longer. Moreover, in higher dimensions one can choose
further possibilities using di�erent dimensions for the picture.

Let n be the dimension and 1< k � n. Let Dn;k = f (P; K ) 2 Rn � Gn;k : P 2
K g, where Gn;k is the Grassman manifold of thek-dimensional hyperplanes. We
call the set VF (P) � Sk � 1 the visual shapeof a convex bodyF at (P; K ) 2 D n;k

if there is an isometric map m of Sk � 1 into K so that the center of m(Sk � 1) is P
and for any ! 2 Sk � 1 the straight line f P + �! : � 2 Rg intersect F if and only
if ! 2 VF (P). The surface measure ofVF (P) is called the visual angle of F at
(P; K ) 2 D n;k .

Theorem 2. Let n > 2 and 1 < k < n . Let C and F be convex bodies,F � Int C.
Then F can be reconstructed by its(k � 1)-dimensional visual angles at(P; K ),
where P 2 @C.

Proof. Take a point P of @C. Let FP be the intersection of Sn � 1
P , the unit sphere

centered at P, with [ X 2F XP , where XP is the straight line through X and P.
SinceF is compact and convex,FP is contained in a half sphere of Sn � 1. Then a
(k � 1)-dimensional visual angle at (P; K ) is the integral of the indicator function
� of FP over the (k � 1)-dimensional great sphereK \ Sn � 1. Therefore, the visual
angle function at the point P as it depends onK is just the (k � 1)-dimensional
Radon transform of � . It is very well known [11] that this transform is invertible.
The inversion of the Radon transform therefore gives back the (n � 1)-dimensional
visual shape ofF together with its position at every points of @C. Obviously these
determine F that was to be proved.

This surprisingly easy theorem leaves unanswered the uniqueness problem
only for the (n � 1)-dimensional visual shape and of the (n � 1)-dimensional visual
angle (if a�rmative, this would imply the previous one). T. �Odor could generalize
Nietsche's result for higher dimension and it turned out, that for n � 3 one sphere
is enough to distinguish any concentric sphere from the other convex bodies [9].

Another interesting generalization in the plane comes from a connection with
the problem G.8 of [1]. Let n(!; X ) be the number of the intersections of the curve
c with the straight line l(!; X ) going through X in direction ! 2 S1. The question
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