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The totally geodesic Radon transform on

the Lorentz space of curvature � 1

�Arp �ad Kurusa ∗

Abstract. We present a rotational symmetric model for the Lorentzian of

curvature � 1 in which the geodesics are straightlines. Investigating the Radon

transform in this model yields to explicit formulas, inversion formulas range

descriptions and support theorems.

1. Introduction

The Radon transform is heavily studied in a number of different settings

nowadays. The spectrum of the investigations spread from the discrete case to the

higher rank symmetric spaces but somewhat surprisingly the pseudo Riemannian

spaces have not yet recieved much attention by now. The only works I know about

are [3], [5].

We consider the isotropic Lorentz space Ln of signature (1, n − 1) with con-

stant curvature −1, where n is the dimension of Ln. This work depends basically

on the observation that this space has a rotational O(n) symmetry around its ideal

points. (There are two ideal points and every timelike geodesic reach these points

at +∞ and −∞.) The other crucial fact, that we use, is the geodesic correspon-

dence between Rn and Ln. Here, one has to note that a Lorentzian with geodesic

correspondence is isotropic, hence harmonic and therefore of constant curvature

according to Lichnerowicz and Walker (See [5]).

In Section 2 we present our model for Ln. We use the quadratic hypersurface

model of Helgason [5] and project it onto a hyperplane orthogonal to the rotational

axis. We determine explicitly the arclength on the geodesics, and the Haar measure

of the isotropy group at all the points.
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Radon transform on Lorentzian 3

this projection. By the above observations, the modelL n is rotational symmetric
around the origin and the geodesics are straightlines. ObviouslyL n is a double-
covering model.

Let us take a point P on Qn
� 1, and take the two dimensional subspace� of

Rn +1 containing P and the x1-axis. Clearly, the intersection of � with Qn
� 1 is a

hyperbola (two sheeted). Say, this hyperbola intersects the subspacex1 = 0 of
Rn +1 in the point O. Let r denote the Lorentzian distance ofP and O. Then r is
the Lorentzian distance ofP from the equator, the intersection of Qn

� 1 and x1 = 0.
Let the coordinates of P be (p1; p2; : : : ; pn +1 ) in Rn +1 . Relative to � we may use

the coordinates � 1 = p1 and � 2 =
q P n +1

i =2 p2
i . These coordinates are functions of

r . Sincer is arclength parameter

(2:3)
�

d� 1

dr

� 2

�
�

d� 2

dr

� 2

= +1 and � 2
1 � � 2

2 = � 1

by (2.1) and (2.2). The second part gives a function� (r ) so that � 1 = sinh( � ) and
� 2 = cosh(� ). Then the �rst part gives d�=dr � 1, that is

(2:4) p1 = � 1 = sinh( r ) and � 2 = cosh(r ):

Hence the projection� (P) of P onto x1 = 1 is a point in the corresponding direc-
tion, i.e. in � , and j� (P)j = coth r . We parameterizeL n so that (!; r ) means the
point � (P) = ! coth r in x1 = 1, where ! 2 Sn � 1, h:; :i is the standard Euclidean
inner product and hP; ! i > 0.

Let h:; :i ( !;r ) be the Lorentzian inner product on T( !;r ) L n so that � (P) =
! coth r .

Figure 1.

To determine h:; i ( !;r ) we observe Figure 1. It shows the situation what is seen
on the plane� whereTP Qn

� 1 is the tangent space ofQn
� 1 at the point P. Obviously

a vector v in TP Qn
� 1 orthogonal to � will be mapped by � � : TP Qn

� 1 ! T( !;r ) L n ,
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Radon transform on Lorentzian 7

The formula for ω̂ ∈ DX can be proved in the same way.

Since Sn− 1 and Σn− 1
X are both rotational symmetric with respect to the axis

OX the surface measure on the Lorentzian unit sphere Σn− 1
X around X with re-

spect to the Euclidean measure on Sn− 1 is given with the same formula as that of

Lemma 2.2.

Now, we have all the necessities about the Lorentzian to calculate with the

Lorentzian Radon transform.

3. The Radon transform and its dual

In this section we determine explicitly the Radon transform and its dual. The

Radon transform integrates a ‘good enough’ function f on the 1-codimensional

totally geodesic submanifolds, that is

(3.1) Rf(ω, p) = Rf(Ĥ(ω, p)) =

∫
Ĥ ( ω,p )

f(X)dX,

where dX is the Lorentzian surface measure on Ĥ(ω, p).

To define the dual transform Rt we need a function F , say, continuous on the

set of 1-codimensional totally geodesic submanifolds of Ln. Then

(3.2) RtF (X) =

∫
X∈Ĥ ; ˆ ω∈ Σ n � 1

X

F (Ĥ)dω̂,

where dω̂ is the Lorentzian measure on Σn− 1
X and ω̂ is the normal of Ĥ at X ∈ Ln,

that is d(ω̂, η) = 0 for any η ∈ TXĤ.

Proposition 3.1. (i) The Radon transform of f ∈ S(L 2 ) is

(3.3) Rf(ωϕ̄, p) =

∫
S1

p

f
(
ωϕ̄ + ϕ, arccoth

( p

cosϕ

)) p
√

|p 2 − 1|
p 2 − cos 2 ϕ

dϕ,

where ϕ̄ and ϕ+ϕ̄ are the angles of the unit vectors ωϕ̄ and ωϕ̄ + ϕ to a fixed direction

respectively, and

S 1
p =

{
[−π, π] if p > 1

((−π/2, 0] ∪ (π/2, π]) ∩ {ϕ : | cosϕ| < p} if p < 1.
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Proposition 3.4. If f (!; p ) 2 L 2(L n ) is even andn > 2 then

(3:16)
(Rf ) l;m (p) =

2jSn � 2j
C �

m (1)

Z v(p)

0
f `;m (q)

p
jp2 � 1j coshn � 2 q�

�
�

1 �
p2

coth2 q

� n � 3
2

C �
m

� p
coth q

�
dq;

where v(p) =
�

1 if p � 1,
arccoth p if p > 1.

Proof. Becausef is even (3.4) reads

(3:17) Rf (�!; p ) = 2
Z

0< h!; �! i <p
f

�
!; arccoth

� p
h!; �! i

�� pn � 1
p

jp2 � 1j
(p2 � h �!; ! i 2)n= 2

d!:

The Funk-Hecke theorem (3.10) implies

Z

0< h!; �! i <p

f `;m

�
arccoth

� p
h!; �! i

�� Y`;m (! )pn � 1
p

jp2 � 1j
(p2 � h !; �! i 2) �= 2

d!

= Y`;m (�! )
jSn � 2j
C �

m (1)

min( p;1)Z

0

f `;m

�
arccoth

� p
t

�� pn � 1
p

jp2 � 1j
(p2 � t2)n= 2

�

� (1 � t2) � � 1=2C �
m (t)dt

hence

(Rf )`;m (p) =
2jSn � 2j
C �

m (1)

min( p;1)Z

0

f `;m

�
arccoth

� p
t

�� pn � 1
p

jp2 � 1j
(p2 � t2)n= 2

�

� (1 � t2) � � 1=2C �
m (t)dt:

Substituting t = p=coth q leads to the desired formula.

Because we shall not need it in this paper, we present the following result
without details.
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By the homogeneity ofL n Theorem 4.2 is valid for any spacelike totalgeodesic
in place of the equator. To formulate the inversion formula we de�ne the operator
� by

��( !; p ) =

8
><

>:

@n � 1

@pn � 1 �( !; p ) n odd

i
�

Z 1

�1

@n � 1

@tn � 1 �( !; p )
dt

t � p
n even

for � in the Schwartz space of the functions on the set of hyperplanes inRn .

Theorem 4.3. For f 2 S(L n ) even that is zero with all of its derivatives at the
equator

cf = sinh 1� n rR t

 
1

j1 � p2j
�

 
Rf (!; p )

2
p

j1 � p2j

!!

;

where c = ( � 4� )(n � 1)=2�( n=2)=�(1 =2).

Proof. Observej sinhr jRt F (!; r ) = �R� G(!; coth r ) for G(!; p ) = F (!; p )=j1 � p2j,
where �R� is the Euclidean dual Radon transform. Substitute this and Theorem 4.1
into Helgason's Theorem 3.4 in [5].

This result shows that in odd dimensions the inversion is local contrary the
even dimensions, where the reconstruction needsRf on all the total geodesics. On
the other hand, this inversion formula hides an important aspect of the Lorentzian
Radon transform, namely, that the spacelike and timelike, for even dimensions only,
Radon transform is injection.

We shall need the formula
(4:1)

M
�

sinh(s � q)
coshqcoshs

� n � 2

=
Z s

q
C �

m

�
coth r
coth q

� �
1 �

coth2 r

coth2 q

� n � 3
2

�

� C �
m

�
coth r
coth s

� �
coth2 r

coth2 s
� 1

� n � 3
2

�
tanhn � 3 r

cosh2 r
dr;

where

M =
� 23� n

�( n � 1)

�
�( m + n � 2)
�( m + 1)�( � )

� 2

:

It can be proven by a simple substitution from the corresponding formula of [1].
The following result gives an inversion formula for the spacelike Radon transform
in terms of spherical harmonic expansions.
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Theorem 5.2. If f 2 C1 (L 2) is even and zero in a neighborhood of the equatorE
then

f m (s) =
� 1
2�

d
ds

Z 1

coth s
(RS f )m (p)

cosh(m arccosh (p=coth s))

p
p

p2 � 1
q

p2=coth2 s � 1
dp:

Proof. Multiply the �rst formula of Proposition 3.3 with

cosh(m arccosh (p=coth s))

p
p

p2 � 1
q

p2=coth2 s � 1

and integrate from coth s to 1 by p. The result is

Fm (s) = �
Z 1

coth s

cosh(m arccosh (p=coth s))

p
q

p2=coth2 s � 1
�

� 4
Z arccoth p

0
f m (q)

cos(m arccos(p=coth q))
q

1 � p2=coth2 q
dqdp:

Substituting p = coth r and changing the order of the integrations lead to
(5:1)

Fm (s) = � 4
Z s

0
f m (q)

Z s

q

cos(m arccos(cothr= coth q))
q

1 � coth2 r= coth2 q
�

�
cosh(m arccosh (cothr= coth s))

q
coth2 r= coth2 s � 1

tanh r

sinh2 r
drdq:

The inner integral is known to be �= 2 by [1]. Thus we have

Fm (s) = 2 �
Z s

0
f m (q)dq

that gives the statement.

Now, we are interested in what extend the odd functions can be reconstructed
from the timelike Radon transform.

Theorem 5.3. The null space of RT in L 2
odd (L 2) is the closure of the span of

functions
f `;m ('; r ) = cosh rP ( � 1=2;" m )

` (2 tanh2 r � 1) sin(m' );

where P ( �;� )
` are the shifted Jacobi polynomials[2] of order `,

` �
�

m + 1
2

�
and "m =

�
0 if m is even
� 1=2 if m is odd.
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