Characterizations of balls by sections and caps

Árpád Kurusa and Tibor Ódor

Abstract

Among others, we prove that if a convex body \mathcal{K} and a ball \mathcal{B} have equal constant volumes of caps and equal constant areas of sections with respect to the supporting planes of a sphere, then $\mathcal{K} \equiv \mathcal{B}$.

1 Introduction

If the convex body \mathcal{M}, the kernel, contains the origin O, let $\hbar_{\mathcal{M}}(\boldsymbol{u})$ denote the supporting hyperplane of \mathcal{M} that is perpendicular to the unit vector $\boldsymbol{u} \in \mathbb{S}^{n-1}$ and contains in its same half space $\hbar_{\mathcal{M}}^{-}(\boldsymbol{u})$ the origin O and the kernel \mathcal{M}. Its other half space is denoted by $\hbar_{\mathcal{M}}^{+}(\boldsymbol{u})$.

If the convex body \mathcal{K} contains the kernel \mathcal{M} in its interior, we define the functions

$$
\begin{align*}
\mathrm{S}_{\mathcal{M} ; \mathcal{K}}(\boldsymbol{u}) & =\left|\mathcal{K} \cap \hbar_{\mathcal{M}}(\boldsymbol{u})\right|, & & \text { (section function }^{1} \text {) } \tag{1.1}\\
\mathrm{C}_{\mathcal{M} ; \mathcal{K}}(\boldsymbol{u}) & =\left|\mathcal{K} \cap \hbar_{\mathcal{M}}^{+}(\boldsymbol{u})\right|, & & \text { (cap function) } \tag{1.2}
\end{align*}
$$

where $|\cdot|$ is the appropriate Lebesgue measure.

The goal of this article is to investigate the problem of determining \mathcal{K} if some functions of the form (1.1) and (1.2) are given for a kernel \mathcal{M}.

[^0]Two convex bodies \mathcal{K} and \mathcal{K}^{\prime} are called \mathcal{M}-equicapped if $\mathrm{C}_{\mathcal{M} ; \mathcal{K}} \equiv \mathrm{C}_{\mathcal{M} ; \mathcal{K}^{\prime}}$, and they are \mathcal{M}-equisectioned if $\mathrm{S}_{\mathcal{M} ; \mathcal{K}} \equiv \mathrm{S}_{\mathcal{M} ; \mathcal{K}^{\prime}}$. A convex body \mathcal{K} is called \mathcal{M}-isocapped if $\mathrm{C}_{\mathcal{M} ; \mathcal{K}}$ is constant. It is said to be \mathcal{M}-isosectioned if $\mathrm{S}_{\mathcal{M} ; \mathcal{K}}$ is constant.

First we prove in the plane that
(a) two convex bodies coincide if they are \mathcal{M}-equicapped and \mathcal{M}-equisectioned, no matter what \mathcal{M} is (Theorem 3.1), and
(b) any disc-isocapped convex body is a disc concentric to the kernel (Theorem 3.2^{2}).
Then, in higher dimensions we consider only such convex bodies that are sphereequisectioned and sphere-equicapped with a ball, and prove that
(1) a convex body that is sphere-equicapped and sphere-equisectioned with a ball, is itself a ball (Theorem 5.3);
(2) a convex body that is twice sphere-equicapped (for two different concentric spheres) with a ball is itself a ball (Theorem 5.1);
(3) a convex body that is twice sphere-equisectioned (for two different concentric spheres) with a ball is itself a ball (Theorem 5.2 , but dimension $n=3$ excluded).
For more information about the subject we refer the reader to $[1,3]$ etc.

2 Preliminaries

We work with the n-dimensional real space \mathbb{R}^{n}, its unit ball is $\mathcal{B}=\mathcal{B}^{n}$ (in the plane the unit disc is \mathcal{D}), its unit sphere is \mathbb{S}^{n-1} and the set of its hyperplanes is \mathbb{H}. The ball (resp. disc) of radius $\varrho>0$ centred to the origin is denoted by $\varrho \mathcal{B}=\varrho \mathcal{B}^{n}$ (resp. $\varrho \mathcal{D}$).

Using the spherical coordinates $\boldsymbol{\xi}=\left(\xi_{1}, \ldots, \xi_{n-1}\right)$ every unit vector can be written in the form $\boldsymbol{u}_{\boldsymbol{\xi}}=\left(\cos \xi_{1}, \sin \xi_{1} \cos \xi_{2}, \sin \xi_{1} \sin \xi_{2} \cos \xi_{3}, \ldots\right)$, the i-th coordinate of which is $u_{\boldsymbol{\xi}}^{i}=\left(\prod_{j=1}^{i-1} \sin \xi_{j}\right) \cos \xi_{i}\left(\xi_{n}:=0\right)$. In the plane we even use the $\boldsymbol{u}_{\xi}=(\cos \xi, \sin \xi)$ and $\boldsymbol{u}_{\xi}^{\perp}=\boldsymbol{u}_{\xi+\pi / 2}=(-\sin \xi, \cos \xi)$ notations and in analogy to this latter one, we introduce the notation $\boldsymbol{\xi}^{\perp}=\left(\xi_{1}, \ldots, \xi_{n-2}, \xi_{n-1}+\pi / 2\right)$ for higher dimensions.

A hyperplane $\hbar \in \mathbb{H}$ is parametrized so that $\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}}, r\right)$ means the one that is orthogonal to the unit vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$ and contains the point $r \boldsymbol{u}_{\boldsymbol{\xi}}$, where $r \in \mathbb{R}^{3}$. For convenience we also frequently use $\hbar\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)$ to denote the hyperplane through the point $P \in \mathbb{R}^{n}$ with normal vector $\boldsymbol{u}_{\boldsymbol{\xi}} \in \mathbb{S}^{n-1}$. For instance, $\hbar\left(P, \boldsymbol{u}_{\boldsymbol{\xi}}\right)=$ $\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}},\left\langle\overrightarrow{O P}, \boldsymbol{u}_{\boldsymbol{\xi}}\right\rangle\right)$, where $O=\mathbf{0}$ is the origin and $\langle.,$.$\rangle is the usual inner product.$

[^1]On a convex body we mean a convex compact set $\mathcal{K} \subseteq \mathbb{R}^{n}$ with nonempty interior \mathcal{K}° and with piecewise C^{1} boundary $\partial \mathcal{K}$. For a convex body \mathcal{K} we let $p_{\mathcal{K}}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}$ denote support function of \mathcal{K}, which is defined by $p_{\mathcal{K}}\left(\boldsymbol{u}_{\xi}\right)=\sup _{\boldsymbol{x} \in \mathcal{K}}\left\langle\boldsymbol{u}_{\xi}, x\right\rangle$. We also use the notation $\hbar_{\mathcal{K}}(\boldsymbol{u})=\hbar\left(\boldsymbol{u}, p_{\mathcal{K}}(\boldsymbol{u})\right)$. If the origin is in \mathcal{K}°, another useful function of a convex body \mathcal{K} is its radial function $\varrho_{\mathcal{K}}: \mathbb{S}^{n-1} \rightarrow \mathbb{R}_{+}$which is defined by $\varrho_{\mathcal{K}}(\boldsymbol{u})=|\{r \boldsymbol{u}: r>0\} \cap \partial K|$.

We need the special functions $I_{x}(a, b)$, the regularized incomplete beta function, $B(x ; a, b)$, the incomplete beta function, $B(a, b)$, the beta function, and $\Gamma(y)$, Euler's Gamma function, where $0<a, b \in \mathbb{R}, x \in[0,1]$ and $y \in \mathbb{R}$. We introduce finally the notation $\left|\mathbb{S}^{k}\right|:=2 \pi^{k / 2} / \Gamma(k / 2)$ as the standard surface measure of the k-dimensional sphere. For the special functions we refer the reader to [11, 12].

We shall frequently use the utility function χ that takes relations as argument and gives 1 if its argument fulfilled. For example $\chi(1>0)=1$, but $\chi(1 \leq 0)=0$ and $\chi(x>y)$ is 1 if $x>y$ and it is zero if $x \leq y$. Nevertheless we still use χ also as the indicator function of the set given in its subscript.

A strictly positive integrable function $\omega: \mathbb{R}^{n} \backslash \mathcal{B} \rightarrow \mathbb{R}_{+}$is called weight and the integral

$$
V_{\omega}(f):=\int_{\mathbb{R}^{n} \backslash \mathcal{B}} f(x) \omega(x) d x
$$

of an integrable function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is called the volume of f with respect to the weight ω or simply the ω-volume of f. For the volume of the indicator function $\chi_{\mathcal{S}}$ of a set $\mathcal{S} \subseteq \mathbb{R}^{n}$ we use the notation $V_{\omega}(\mathcal{S}):=V_{\omega}\left(\chi_{\mathcal{S}}\right)$ as a shorthand. If more weights are indexed by $i \in \mathbb{N}$, then we use the even shorter notation $V_{i}(\mathcal{S}):=$ $V_{\omega_{i}}(\mathcal{S})=V_{i}\left(\chi_{\mathcal{S}}\right):=V_{\omega_{i}}\left(\chi_{\mathcal{S}}\right)$.

3 In the plane

We heard the following easy result from Kincses [5].
Theorem 3.1. Assume that the border of the strictly convex plane bodies \mathcal{M} and \mathcal{K} are differentiable of class C^{1} and we are given \mathcal{M} and the functions $\mathrm{S}_{\mathcal{M} ; \mathcal{K}}$ and $\mathrm{C}_{\mathcal{M} ; \mathcal{K}}$. Then \mathcal{K} can be uniquely determined.

Proof. Fix the origin $\mathbf{0}$ in \mathcal{M}°. In the plane $\boldsymbol{u}_{\xi}=(\cos \xi, \sin \xi)$, therefore we consider the functions

$$
\begin{aligned}
f(\xi) & :=\mathrm{S}_{\mathcal{M} ; \mathcal{K}}\left(\boldsymbol{u}_{\xi}\right)=\left|\hbar\left(p_{\mathcal{M}}\left(\boldsymbol{u}_{\xi}\right), \boldsymbol{u}_{\xi}\right) \cap \mathcal{K}\right| \\
g(\xi) & :=\mathrm{C}_{\mathcal{M} ; \mathcal{K}}\left(\boldsymbol{u}_{\xi}\right)=\left|\hbar^{+}\left(p_{\mathcal{M}}\left(\boldsymbol{u}_{\xi}\right), \boldsymbol{u}_{\xi}\right) \cap \mathcal{K}\right|
\end{aligned}
$$

where \hbar^{+}is the appropriate halfplane bordered by \hbar.

Let $\boldsymbol{h}(\xi)$ be the point, where $\hbar\left(p_{\mathcal{M}}(\xi), \boldsymbol{u}_{\xi}\right)$ touches \mathcal{M}. Then, as it is well known, $\boldsymbol{h}(\xi)-p_{\mathcal{M}}(\xi) \boldsymbol{u}_{\xi}=p_{\mathcal{M}}^{\prime}(\xi) \boldsymbol{u}_{\xi}^{\perp}$. Let $\boldsymbol{a}(\xi)$ and $\boldsymbol{b}(\xi)$ be the two intersections of $\hbar\left(p_{\mathcal{M}}(\xi), \boldsymbol{u}_{\xi}\right)$ and $\partial \mathcal{K}$ taken so that $\boldsymbol{a}(\xi)=\boldsymbol{h}(\xi)+a(\xi) \boldsymbol{u}_{\xi}^{\perp}$ and $\boldsymbol{b}(\xi)=\boldsymbol{h}(\xi)-b(\xi) \boldsymbol{u}_{\xi}^{\perp}$, where $a(\xi)$ and $b(\xi)$ are positive functions.

Then $f(\xi)=a(\xi)+b(\xi)$.
In the other hand, we have

$$
g(\xi)=\int_{\mathcal{K} \backslash \mathcal{M}} \chi\left(\left\langle\boldsymbol{x}, \boldsymbol{u}_{\xi}\right\rangle \geq p_{\mathcal{M}}(\xi)\right) d \boldsymbol{x}=\int_{-\pi / 2}^{\pi / 2} \int_{0}^{\varrho_{\xi}(\zeta)} r d r d \zeta
$$

where $\boldsymbol{h}(\xi)+\varrho_{\xi}(\zeta) \boldsymbol{u}_{\zeta} \in \partial \mathcal{K}$. Since $\frac{d \varrho_{\xi}(\zeta)}{d \xi}=\frac{d \varrho_{\xi}(\zeta)}{d \zeta}$, this leads to

$$
2 g^{\prime}(\xi)=\int_{-\pi / 2}^{\pi / 2} \frac{d}{d \xi}\left(\int_{0}^{\varrho_{\xi}(\zeta)} 2 r d r\right) d \zeta=\int_{-\pi / 2}^{\pi / 2} 2 \varrho_{\xi}(\zeta) \varrho_{\xi}^{\prime}(\zeta) d \zeta=a^{2}(\xi)-b^{2}(\xi)
$$

that implies

$$
a(\xi)=\frac{\frac{2 g^{\prime}(\xi)}{f(\xi)}+f(\xi)}{2}=\frac{2 g^{\prime}(\xi)+f^{2}(\xi)}{2 f(\xi)}
$$

This clearly determines \mathcal{K}.
If the kernel \mathcal{M} is known to be a $\operatorname{disc} \varrho \mathcal{D}$, then any one of the functions $\mathrm{S}_{\varrho \mathcal{D} ; \mathcal{K}}$ and $\mathrm{C}_{\varrho \mathcal{D} ; \mathcal{K}}$ can determine concentric discs by its constant value.

Theorem 3.2. Assume that one of the functions $\mathrm{S}_{\varrho \mathcal{D} ; \mathcal{K}}$ and $\mathrm{C}_{\varrho \mathcal{D} ; \mathcal{K}}$ is constant, where \mathcal{D} is the unit disc. Then \mathcal{K} is a disc centred to the origin.

Proof. If $\mathrm{S}_{\varrho \mathcal{D} ; \mathcal{K}}$ is constant, then this theorem is [1, Theorem 1].
If $\mathrm{C}_{\varrho \mathcal{D} ; \mathcal{K}}$ is constant, the derivative of $\mathrm{C}_{\varrho \mathcal{D} ; \mathcal{K}}$ is zero, hence -using the notations of the previous proof $-a(\xi)=b(\xi)$ for every $\xi \in[0,2 \pi)$, that is, the point $\boldsymbol{h}(\xi)$ is the midpoint of the segment $\overline{\boldsymbol{a}(\xi) \boldsymbol{b}(\xi)}$ on $\hbar\left(\varrho, \boldsymbol{u}_{\xi}\right)$.

Let us consider the chord-map $C: \partial \mathcal{K} \rightarrow \partial \mathcal{K}$, that is defined by $C(\boldsymbol{b}(\xi))=\boldsymbol{a}(\xi)$ for every $\xi \in[0,2 \pi)$. This is clearly a bijective map. If $\boldsymbol{\ell}_{0} \in \partial \mathcal{K}$, then by $a(\xi)=b(\xi)$ the whole sequence $\ell_{i}=C^{i}(\ell)$, where C^{i} means the i consecutive usage of C, are on a concentric circle of radius $\left|\ell_{0}\right|$. Moreover, every point $\ell_{i}(i>0)$ is the concentric rotation of ℓ_{i-1} with angle $\lambda=2 \arccos \left(\varrho /\left|\ell_{0}\right|\right)$. It is well known [4, Proposition 1.3.3] that such a sequence is dense in $\partial \mathcal{K}$ if λ / π is irrational, or it is finitely periodic in $\partial \mathcal{K}$ if λ / π is rational. However, if \mathcal{K} is not a disc, then there is surely a point $\ell \in \partial \mathcal{K}$ for which $2 \arccos \left(\varrho /\left|\ell_{0}\right|\right) / \pi$ is irrational, hence \mathcal{K} must be a concentric disc.

4 Measures of convex bodies

In this section the dimension of the space is $n=2,3, \ldots$ As a shorthand we introduce the notations

$$
\begin{align*}
& \mathrm{S}_{\varrho ; \mathcal{K}}(\boldsymbol{u}):=\mathrm{S}_{\varrho \mathcal{B} ; \mathcal{K}}(\hbar(\varrho, \boldsymbol{u})) \tag{4.1}\\
& \mathrm{C}_{\varrho ; \mathcal{K}}(\boldsymbol{u}):=\mathrm{C}_{\varrho \mathcal{B} ; \mathcal{K}}(\hbar(\varrho, \boldsymbol{u}))=\left|\mathcal{K} \cap \hbar^{+}(\varrho, \boldsymbol{u})\right| \tag{4.2}
\end{align*}
$$

where $\varrho \mathcal{B}^{n}$ is the ball of radius $\varrho>0$ centred to the origin and \hbar^{+}is the appropriate halfspace bordered by \hbar.

Lemma 4.1. If the convex body \mathcal{K} in \mathbb{R}^{n} contains in its interior the ball $\varrho \mathcal{B}^{n}$, then

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\frac{\pi^{n / 2}}{\Gamma(n / 2)} \int_{\mathcal{K} \backslash \varrho \mathcal{B}} I_{1-\frac{\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x}, . \tag{4.3}
\end{equation*}
$$

Proof. We have

$$
\begin{aligned}
\int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} & =\int_{\mathbb{S}^{n-1}} \int_{\mathbb{R}^{n}} \chi_{\mathcal{K}}(\boldsymbol{x}) \chi\left(\left\langle\boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{\xi}}\right\rangle \geq \varrho\right) d \boldsymbol{x} d \boldsymbol{\xi} \\
& =\int_{\mathcal{K} \backslash \varrho \mathcal{B}} \int_{\mathbb{S}^{n-1}} \chi\left(\left\langle\frac{\boldsymbol{x}}{|\boldsymbol{x}|}, \boldsymbol{u}_{\boldsymbol{\xi}}\right\rangle \geq \frac{\varrho}{|\boldsymbol{x}|}\right) d \boldsymbol{\xi} d \boldsymbol{x}
\end{aligned}
$$

The inner integral is the surface of the hyperspherical cap. The height of this hyperspherical cap is $h=1-\varrho /|\boldsymbol{x}|$, hence by the well-known formula [13] we obtain

$$
\int_{\mathbb{S}^{n-1}} \chi\left(\left\langle\frac{\boldsymbol{x}}{|\boldsymbol{x}|}, \boldsymbol{u}_{\boldsymbol{\xi}}\right\rangle \geq \frac{\varrho}{|\boldsymbol{x}|}\right) d \boldsymbol{\xi}=\frac{\pi^{n / 2}}{\Gamma(n / 2)} I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) .
$$

This proves the lemma.

Note that the weight in (4.3) is $\frac{\pi}{\Gamma(1)} I_{1-\frac{\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{1}{2}, \frac{1}{2}\right)=2 \arccos (\varrho /|\boldsymbol{x}|)$ for dimension $n=2$, and it is $\frac{\pi^{3 / 2}}{\Gamma(3 / 2)} I_{1-\frac{e^{2}}{|\boldsymbol{x}|^{2}}}\left(1, \frac{1}{2}\right)=2 \pi(1-\varrho /|\boldsymbol{x}|)$ for dimension $n=3$.

Lemma 4.2. Let the convex body \mathcal{K} contain in its interior the ball $\varrho \mathcal{B}^{n}$. Then the integral of the section function is

$$
\begin{equation*}
\int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\left|\mathbb{S}^{n-2}\right| \int_{\mathcal{K} \backslash \varrho \mathcal{B}^{n}} \frac{\left(\boldsymbol{x}^{2}-\varrho^{2}\right)^{\frac{n-3}{2}}}{|\boldsymbol{x}|^{n-2}} d \boldsymbol{x} \tag{4.4}
\end{equation*}
$$

Proof. Observe, that using (4.3) we have for any $\varepsilon>0$ that

$$
\begin{aligned}
& \frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{0}^{\varepsilon} \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho+\delta ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} d \delta \\
& =\frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{\mathbb{S}^{n-1}} \int_{0}^{\varepsilon} \mathrm{S}_{\varrho+\delta ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \delta d \boldsymbol{\xi} \\
& =\frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right)-\mathrm{C}_{\varrho+\varepsilon ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} \\
& =\int_{\mathcal{K} \backslash \varrho \mathcal{B}} I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x}-\int_{\mathcal{K} \backslash(\varrho+\varepsilon) \mathcal{B}} I_{\frac{|\boldsymbol{x}|^{2}-(\varrho+\varepsilon)^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x} \\
& =\int_{(\varrho+\varepsilon) \mathcal{B} \backslash \varrho \mathcal{B}} I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x}- \\
& -\int_{\mathcal{K} \backslash(\varrho+\varepsilon) \mathcal{B}} I_{\frac{|\boldsymbol{x}|^{2}-(\varrho+\varepsilon)^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)-I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x},
\end{aligned}
$$

hence

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{0}^{\varepsilon} \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho+\delta ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi} d \delta \\
&= \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{(\varrho+\varepsilon) \mathcal{B} \backslash \varrho \mathcal{B}} I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d \boldsymbol{x}- \\
&-\int_{\mathcal{K} \backslash \varrho \mathcal{B}} \lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon}\left(I_{\frac{|\boldsymbol{x}|^{2}-(\varrho+\varepsilon)^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)-I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{|\boldsymbol{x}|^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)\right) d \boldsymbol{x} \\
&= \lim _{\varepsilon \rightarrow 0} \frac{\left|\mathbb{S}^{n-1}\right|}{\varepsilon} \int_{\varrho}^{\varrho+\varepsilon} r^{n-1} I_{\frac{r^{2}-\varrho^{2}}{r^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right) d r- \\
& \quad-\int_{\mathcal{K} \backslash \varrho \mathcal{B}} \frac{d}{d \varrho}\left(I_{\frac{|\boldsymbol{x}|^{2}-\varrho^{2}}{\mid \boldsymbol{x}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)\right) d \boldsymbol{x} \\
&=\left|\mathbb{S}^{n-1}\right| \varrho^{n-1} I_{\frac{\varrho^{2}-\varrho^{2}}{\varrho^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)- \\
& \quad-\frac{1}{B\left(\frac{n-1}{2}, \frac{1}{2}\right)} \int_{\mathcal{K} \backslash \varrho \mathcal{B}}\left(1-\frac{\varrho^{2}}{|\boldsymbol{x}|^{2}}\right)^{\frac{n-3}{2}}\left(\frac{\varrho^{2}}{|\boldsymbol{x}|^{2}}\right)^{-1 / 2} \frac{-2 \varrho}{|\boldsymbol{x}|^{2}} d \boldsymbol{x} \\
&= \frac{2}{B\left(\frac{n-1}{2}, \frac{1}{2}\right)} \int_{\mathcal{K} \backslash \varrho \mathcal{B}}\left(1-\frac{\varrho^{2}}{|\boldsymbol{x}|^{2}}\right)^{\frac{n-3}{2}} \frac{1}{|\boldsymbol{x}|} d \boldsymbol{x} .
\end{aligned}
$$

As

$$
\frac{\pi^{n / 2}}{\Gamma(n / 2)} \frac{2}{B\left(\frac{n-1}{2}, \frac{1}{2}\right)}=\frac{2 \pi^{n / 2}}{\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{1}{2}\right)}=\frac{\frac{n-1}{2}}{\frac{n-1}{2}} \frac{2 \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}\right)}=\frac{(n-1) \pi^{\frac{n-1}{2}}}{\Gamma\left(\frac{n-1}{2}+1\right)}=\left|\mathbb{S}^{n-2}\right|
$$

the statement is proved.

Note that the weight in (4.4) is $\frac{2}{\sqrt{\boldsymbol{x}^{2}-\varrho^{2}}}$ in the plane, and $2 \pi /|x|$ in dimension $n=3$, which is independent from ϱ !

A version of the following lemma first appeared in [9].
Lemma 4.3. Let $\omega_{i}(i=1,2)$ be weights and let \mathcal{K} and \mathcal{L} be convex bodies containing the unit ball \mathcal{B}. If $V_{1}(\mathcal{K}) \leq V_{1}(\mathcal{L})$ and
(1) either ω_{2} / ω_{1} is a constant $c_{\mathcal{K}}$ on $\partial \mathcal{K}$ and $\frac{\omega_{2}}{\omega_{1}}(X)\left\{\begin{array}{ll}\geq c_{\mathcal{K}}, & \text { if } X \notin \mathcal{K}, \\ \leq c_{\mathcal{K}}, & \text { if } X \in \mathcal{K},\end{array}\right.$ where equality may occur in a set of measure zero at most,
(2) or ω_{2} / ω_{1} is a constant $c_{\mathcal{L}}$ on $\partial \mathcal{L}$ and $\frac{\omega_{2}}{\omega_{1}}(X)\left\{\begin{array}{ll}\leq c_{\mathcal{L}}, & \text { if } X \notin \mathcal{L}, \\ \geq c_{\mathcal{L}}, & \text { if } X \in \mathcal{L},\end{array}\right.$ where equality may occur in a set of measure zero at most, then $V_{2}(\mathcal{K}) \leq V_{2}(\mathcal{L})$, where equality is if and only if $\mathcal{K}=\mathcal{L}$.

Proof. We have

$$
\begin{aligned}
& V_{2}(\mathcal{L})-V_{2}(\mathcal{K}) \\
& \quad=V_{2}(\mathcal{L} \backslash \mathcal{K})-V_{2}(\mathcal{K} \backslash \mathcal{L})=\int_{\mathcal{L} \backslash \mathcal{K}} \frac{\omega_{2}(x)}{\omega_{1}(x)} \omega_{1}(x) d x-\int_{\mathcal{K} \backslash \mathcal{L}} \frac{\omega_{2}(x)}{\omega_{1}(x)} \omega_{1}(x) d x \\
& \begin{cases}=0, & \text { if } \mathcal{K} \Delta \mathcal{L}=\emptyset, \\
>c_{\mathcal{K}}\left(V_{1}(\mathcal{L} \backslash \mathcal{K})-V_{1}(\mathcal{K} \backslash \mathcal{L})\right)=c_{\mathcal{K}}\left(V_{1}(\mathcal{L})-V_{1}(\mathcal{K})\right), & \text { if } \mathcal{K} \Delta \mathcal{L} \neq \emptyset \text { and (1), }, \\
>c_{\mathcal{L}}\left(V_{1}(\mathcal{L} \backslash \mathcal{K})-V_{1}(\mathcal{K} \backslash \mathcal{L})\right)=c_{\mathcal{L}}\left(V_{1}(\mathcal{L})-V_{1}(\mathcal{K})\right), & \text { if } \mathcal{K} \Delta \mathcal{L} \neq \emptyset \text { and (2), }\end{cases}
\end{aligned}
$$

that proves the theorem.

5 Ball characterizations

Although the following results are valid also in the plane, their points are for higher dimensions.

Theorem 5.1. Let $0<\varrho_{1}<\varrho_{2}<\bar{r}$ and let \mathcal{K} be a convex body having $\varrho_{2} \mathcal{B}$ in its interior. If $\mathrm{C}_{\varrho_{1} ; \mathcal{K}}=\mathrm{C}_{\varrho_{1} ; \overline{r \mathcal{B}}}$ and $\mathrm{C}_{Q_{2} ; \mathcal{K}}=\mathrm{C}_{\varrho_{2} ; \bar{r} \mathcal{B}}$, then $\mathcal{K} \equiv \bar{r} \mathcal{B}$, where \mathcal{B} is the unit ball.

Proof. Let $\bar{\omega}_{1}(r)=I_{\frac{r^{2}-e_{1}^{2}}{r_{1}^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)$ and $\bar{\omega}_{2}(r)=I_{\frac{r^{2}-\rho_{2}^{2}}{r^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)$ for every nonvanishing $r \in \mathbb{R}$, where $\stackrel{r}{r}_{I}^{2}$ is the regularized incomplete beta function, and define $\omega_{1}(\boldsymbol{x}):=\bar{\omega}_{1}(|\boldsymbol{x}|)$ and $\omega_{2}(\boldsymbol{x}):=\bar{\omega}_{2}(|\boldsymbol{x}|)$.

By formula (4.3) in Lemma 4.1 we have

$$
\int_{\tilde{r} \mathcal{B} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x}=\frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho_{1} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x},
$$

and similarly

$$
\int_{\bar{r} \mathcal{B} \backslash \varrho_{2} \mathcal{B}^{n}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x}=\frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho_{2} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K} \backslash \varrho_{2} \mathcal{B}^{n}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x}
$$

With the notations in Lemma 4.3, these mean $V_{1}(\mathcal{K})=V_{1}(\bar{r} \mathcal{B})$ and $V_{2}(\mathcal{K})=V_{2}(\bar{r} \mathcal{B})$.
Further, one can easily see that

$$
1<\frac{\omega_{1}(\boldsymbol{x})}{\omega_{2}(\boldsymbol{x})}=\frac{\bar{\omega}_{1}(|\boldsymbol{x}|)}{\bar{\omega}_{2}(|\boldsymbol{x}|)}=: q_{n}(|\boldsymbol{x}|), \quad(n \text { is the dimension })
$$

is constant on every sphere, especially on $\bar{r} \mathbb{S}^{n-1}$.
As $\bar{\omega}_{1}$ and $\bar{\omega}_{2}$ are both strictly increasing, q_{n} is strictly decreasing if and only if

$$
\begin{equation*}
\frac{\bar{\omega}_{1}^{\prime}(r)}{\bar{\omega}_{2}^{\prime}(r)}<\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)} . \tag{5.1}
\end{equation*}
$$

First calculate for any $n \in \mathbb{N}$ that

$$
\frac{\bar{\omega}_{1}^{\prime}(r)}{\bar{\omega}_{2}^{\prime}(r)}=\frac{\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{\varrho_{1}^{2}}{r^{2}}\right)^{-1 / 2} \frac{2 \varrho_{1}^{2}}{r^{3}}}{\left(1-\frac{\varrho_{2}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{\varrho_{2}^{2}}{r^{2}}\right)^{-1 / 2} \frac{2 \varrho_{2}^{2}}{r^{3}}}=\frac{\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} \varrho_{1}}{\left(r^{2}-\varrho_{2}^{2}\right)^{\frac{n-3}{2}} \varrho_{2}}
$$

then consider for $n \geq 4$ that

$$
\begin{align*}
\frac{\bar{\omega}_{1}(r) B\left(\frac{n-1}{2}, \frac{1}{2}\right)}{\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}} & =\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{3-n}{2}} \int_{0}^{1-\frac{\varrho_{1}^{2}}{r^{2}}} t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}} d t \\
& =\int_{0}^{1} s^{\frac{n-3}{2}}\left(1-s\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)\right)^{\frac{-1}{2}}\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right) d s \\
& =-2 \int_{0}^{1} s^{\frac{n-3}{2}} \frac{d}{d s}\left(\left(1-s\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)\right)^{\frac{1}{2}}\right) d s \tag{5.2}\\
& =-2\left(\frac{\varrho_{1}}{r}-\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(1-s\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)\right)^{\frac{1}{2}} d s\right) \\
& =\frac{2 \varrho_{1}}{r}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{1}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right)
\end{align*}
$$

From the two equations above we deduce

$$
\begin{aligned}
\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)} \frac{\bar{\omega}_{2}^{\prime}(r)}{\bar{\omega}_{1}^{\prime}(r)} & =\frac{\frac{2 \varrho_{1}}{r}\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{1}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right)}{\frac{2 \varrho_{2}}{r}\left(1-\frac{\varrho_{2}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right)} \frac{\left(r^{2}-\varrho_{2}^{2}\right)^{\frac{n-3}{2}} \varrho_{2}}{\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} \varrho_{1}} \\
& =\frac{\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{1}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1}{\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1} \geq 1,
\end{aligned}
$$

where in the last inequality we used $\varrho_{1}<\varrho_{2}$. Thus, for $n \geq 4$ we have proved (5.1).

Assume now, that $n<4$. It is easy to see that

$$
\bar{\omega}_{1}(r)-\bar{\omega}_{2}(r)=\frac{1}{B\left(\frac{n-1}{2}, \frac{1}{2}\right)} \int_{1-\varrho_{2}^{2} / r^{2}}^{1-\varrho_{1}^{2} / r^{2}} t^{\frac{n-3}{2}}(1-t)^{-1 / 2} d t
$$

hence differentiation leads to

$$
\begin{aligned}
\left(\bar{\omega}_{1}^{\prime}(r)\right. & \left.-\bar{\omega}_{2}^{\prime}(r)\right) B\left(\frac{n-1}{2}, \frac{1}{2}\right) \\
& =\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{\varrho_{1}^{2}}{r^{2}}\right)^{-1 / 2} \frac{2 \varrho_{1}^{2}}{r^{3}}-\left(1-\frac{\varrho_{2}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{\varrho_{2}^{2}}{r^{2}}\right)^{-1 / 2} \frac{2 \varrho_{2}^{2}}{r^{3}} \\
& =\frac{2}{r^{n-1}}\left(\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} \varrho_{1}-\left(r^{2}-\varrho_{2}^{2}\right)^{\frac{n-3}{2}} \varrho_{2}\right) .
\end{aligned}
$$

This is clearly negative for all r if $n=2$ and $n=3$, hence

$$
\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)} \frac{\bar{\omega}_{2}^{\prime}(r)}{\bar{\omega}_{1}^{\prime}(r)}=\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)}\left(\frac{\bar{\omega}_{2}^{\prime}(r)-\bar{\omega}_{1}^{\prime}(r)}{\bar{\omega}_{1}^{\prime}(r)}+1\right) \geq \frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)} \geq 1
$$

proving (5.1) for $n \leq 3$.
Thus, $\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)}$ is strictly monotone decreasing in any dimension, hence $\mathcal{K} \equiv \bar{r} \mathcal{B}$ follows from Lemma 4.3.

Theorem 5.2. Let $0<\varrho_{1}<\varrho_{2}<\bar{r}$ and the dimension be $n \neq 3$. If \mathcal{K} is a convex body having $\varrho_{2} \mathcal{B}$ in its interior, and $\mathrm{S}_{\varrho_{1} ; \mathcal{K}} \equiv \mathrm{S}_{\varrho_{1} ; \bar{r} \mathcal{B}}, \mathrm{~S}_{\varrho_{2} ; \mathcal{K}} \equiv \mathrm{S}_{\varrho_{2} ; \bar{r} \mathcal{B}}$, then $\mathcal{K} \equiv \bar{r} \mathcal{B}$.
Proof. Let $\bar{\omega}_{1}(r)=\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} r^{2-n}$ and $\bar{\omega}_{2}(r)=\left(r^{2}-\varrho_{2}^{2}\right)^{\frac{n-3}{2}} r^{2-n}$ for every non-vanishing $r \in \mathbb{R}$, and define $\omega_{1}(\boldsymbol{x}):=\bar{\omega}_{1}(|\boldsymbol{x}|)$ and $\omega_{2}(\boldsymbol{x}):=\bar{\omega}_{2}(|\boldsymbol{x}|)$.

By formula (4.4) in Lemma 4.2 we have

$$
\int_{\bar{r} \mathcal{B} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x}=\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho_{1} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x}
$$

and similarly

$$
\int_{\bar{r} \mathcal{B} \backslash \varrho_{2} \mathcal{B}^{n}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x}=\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho_{2} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K} \backslash \varrho_{2} \mathcal{B}^{n}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x} .
$$

With the notations in Lemma 4.3, these mean $V_{1}(\mathcal{K})=V_{1}(\bar{r} \mathcal{B})$ and $V_{2}(\mathcal{K})=V_{2}(\bar{r} \mathcal{B})$.
The ratio $\frac{\omega_{1}(\boldsymbol{x})}{\omega_{2}(\boldsymbol{x})}=\frac{\bar{\omega}_{1}(|\boldsymbol{x}|)}{\bar{\omega}_{2}(|\boldsymbol{x}|)}$ is obviously constant on every sphere, especially on $\bar{r} \mathbb{S}^{n-1}$, and it is

$$
\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)}= \begin{cases}\frac{\sqrt{r^{2}-\varrho_{2}^{2}}}{\sqrt{r^{2}-\varrho_{1}^{2}}}=\sqrt{1-\frac{\varrho_{1}^{2}-\varrho_{2}^{2}}{r^{2}-\varrho_{1}^{2}}}, & \text { if } n=2 \\ 1, & \text { if } n=3 \\ \left(1+\frac{\varrho_{2}^{2}-\varrho_{1}^{2}}{r^{2}-\varrho_{2}^{2}}\right)^{\frac{n-3}{2}}, & \text { if } n>3\end{cases}
$$

Thus, $\frac{\bar{\omega}_{1}(r)}{\bar{\omega}_{2}(r)}$ is strictly monotone if the dimension $n \neq 3$, hence $\mathcal{K} \equiv \bar{r} \mathcal{B}$ follows from Lemma 4.3 for dimensions other than 3.

This theorem leaves the question open in dimension 3 if $\mathrm{S}_{\varrho_{1} ; \mathcal{K}} \equiv \mathrm{S}_{\varrho_{1} ; \bar{r} \mathcal{B}}$ and $\mathrm{S}_{\varrho_{2} ; \mathcal{K}} \equiv \mathrm{S}_{\varrho_{2} ; \bar{r} \mathcal{B}}$ imply $\mathcal{K} \equiv \bar{r} \mathcal{B}$. We have not yet tried to find an answer.

The following generalizes Theorem 3.1 for most dimensions, but only for spheres.

Theorem 5.3. Let $\varrho_{1}, \varrho_{2} \in(0, \bar{r})$ and let \mathcal{K} be a convex body in \mathbb{R}^{n} having $\max \left(\varrho_{1}, \varrho_{2}\right) \mathcal{B}$ in its interior. If $\mathrm{S}_{\varrho_{1} ; \mathcal{K}} \equiv \mathrm{S}_{\varrho_{1} ; \bar{r} \mathcal{B}}$ and $\mathrm{C}_{\varrho_{2} ; \mathcal{K}} \equiv \mathrm{C}_{\varrho_{2} ; \bar{r} \mathcal{B}}$, and
(1) $n=2$ or $n=3$, or
(2) $n \geq 4$ and $\varrho_{1} \leq \varrho_{2}$,
then $\mathcal{K} \equiv \bar{r} \mathcal{B}$.
Proof. Let $\bar{\omega}_{1}(r)=\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} r^{2-n}$ and and $\bar{\omega}_{2}(r)=I_{\frac{r^{2}-e_{2}^{2}}{r^{2}}}\left(\frac{n-1}{2}, \frac{1}{2}\right)$ for every non-vanishing $r \in \mathbb{R}$, and define $\omega_{1}(\boldsymbol{x}):=\bar{\omega}_{1}(|\boldsymbol{x}|)$ and $\omega_{2}(\boldsymbol{x}):=\bar{\omega}_{2}(|\boldsymbol{x}|)$.

By formula (4.4) in Lemma 4.2 we have

$$
\int_{\bar{r} \mathcal{B} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x}=\frac{1}{\left|\mathbb{S}^{n-2}\right|} \int_{\mathbb{S}^{n-1}} \mathrm{~S}_{\varrho_{1} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K} \backslash \varrho_{1} \mathcal{B}^{n}} \omega_{1}(\boldsymbol{x}) d \boldsymbol{x}
$$

and by formula (4.3) in Lemma 4.1 we have

$$
\int_{\bar{r} \mathcal{B} \backslash \varrho_{2} \mathcal{B}^{n}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x}=\frac{\Gamma(n / 2)}{\pi^{n / 2}} \int_{\mathbb{S}^{n-1}} \mathrm{C}_{\varrho_{2} ; \mathcal{K}}\left(\boldsymbol{u}_{\boldsymbol{\xi}}\right) d \boldsymbol{\xi}=\int_{\mathcal{K}_{\varrho_{2} \mathcal{B}^{n}}} \omega_{2}(\boldsymbol{x}) d \boldsymbol{x}
$$

With the notations in Lemma 4.3, these mean $V_{1}(\mathcal{K})=V_{1}(\bar{r} \mathcal{B})$ and $V_{2}(\mathcal{K})=V_{2}(\bar{r} \mathcal{B})$.
The ratio $\frac{\omega_{2}(\boldsymbol{x})}{\omega_{1}(\boldsymbol{x})}=\frac{\bar{\omega}_{2}(|\boldsymbol{x}|)}{\bar{\omega}_{1}(|\boldsymbol{x}|)}$ is obviously constant on every sphere, especially on $\bar{r} \mathbb{S}^{n-1}$, and it is

$$
\begin{align*}
\frac{\bar{\omega}_{2}(r)}{\bar{\omega}_{1}(r)} & =\frac{\int_{0}^{1-\frac{\varrho_{2}^{2}}{r^{2}}} t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}} d t}{\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} r^{2-n}} \\
& =\frac{\frac{2 \varrho_{2}}{r}\left(1-\frac{\varrho_{2}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right)}{\frac{1}{r}\left(1-\frac{\varrho_{1}^{2}}{r^{2}}\right)^{\frac{n-3}{2}}} \quad \text { by }(5 \tag{5.2}\\
& =2 \varrho_{1}\left(\frac{r^{2}-\varrho_{2}^{2}}{r^{2}-\varrho_{1}^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right) \\
& =2 \varrho_{1}\left(1+\frac{\varrho_{1}^{2}-\varrho_{2}^{2}}{r^{2}-\varrho_{1}^{2}}\right)^{\frac{n-3}{2}}\left(\frac{n-3}{2} \int_{0}^{1} s^{\frac{n-5}{2}}\left(\frac{r^{2}}{\varrho_{2}^{2}}(1-s)+s\right)^{\frac{1}{2}} d s-1\right)
\end{align*}
$$

if $n>3$. For other values of n we have

$$
\begin{aligned}
\frac{\bar{\omega}_{2}(r)}{\bar{\omega}_{1}(r)} & =\frac{\int_{0}^{1-\frac{Q_{2}^{2}}{r^{2}}} t^{\frac{n-3}{2}}(1-t)^{\frac{-1}{2}} d t}{\left(r^{2}-\varrho_{1}^{2}\right)^{\frac{n-3}{2}} r^{2-n}} \\
& = \begin{cases}\left(r^{2}-\varrho_{0}^{2}\right)^{\frac{1}{2}} \int_{0}^{1-\frac{e_{2}^{2}}{r^{2}}} t^{\frac{-1}{2}}(1-t)^{\frac{-1}{2}} d t, & \text { if } n=2 \\
r \int_{0}^{1-\frac{\varrho_{2}^{2}}{r^{2}}}(1-t)^{\frac{-1}{2}} d t, & \text { if } n=3\end{cases}
\end{aligned}
$$

Thus, $\frac{\bar{\omega}_{2}(r)}{\bar{\omega}_{1}(r)}$ is strictly monotone increasing if $n=2,3$ and it is also strictly monotone increasing if $n>3$ and $\varrho_{1} \leq \varrho_{2}$. In these cases Lemma 4.3 implies $\mathcal{K} \equiv \bar{r} \mathcal{B}$.

This theorem leaves open the case when $\varrho_{1}>\varrho_{2}$ in dimensions $n>3$. We have not yet tried to complete our theorem.

6 Discussion

Barker and Larman conjectured in [1, Conjecture 2] that in the plane \mathcal{M} equisectioned convex bodies coincide, but they were unable to justify this in full ${ }^{4}$. Nevertheless they proved, among others, that a \mathcal{D}-isosectioned convex body \mathcal{K} in the plane is a disc concentric to the disc \mathcal{D}.

Having a convex body \mathcal{K} that is sphere-isocapped with respect to two concentric spheres raises the problem if there is a concentric ball $\bar{r} \mathcal{B}$-obviously sphereisocapped with respect to that two concentric spheres- that is sphere-equicapped to \mathcal{K} with respect to that two concentric spheres. The very same problem exists also for bodies that are sphere-isosectioned with respect to two concentric spheres. So we have the following range characterization problems: Let $0<\varrho_{1}<\varrho_{2}$ and let $c_{1}>c_{2}>0$ be positive constants. Is there a convex body \mathcal{K} containing the ball $\varrho_{2} \mathcal{B}$ in its interior and satisfying
(i) $c_{1} \equiv \mathrm{C}_{\varrho_{1} ; \mathcal{K}}$ and $c_{2} \equiv \mathrm{C}_{\varrho_{2} ; \mathcal{K}}$ (raised by Theorem 5.1)?
(ii) $c_{1} \equiv \mathrm{~S}_{\varrho_{1} ; \mathcal{K}}$ and $c_{2} \equiv \mathrm{~S}_{\varrho_{2} ; \mathcal{K}}$ (raised by Theorem 5.2)?
(iii) $c_{1} \equiv \mathrm{~S}_{\varrho_{1} ; \mathcal{K}}$ and $c_{1} \equiv \mathrm{C}_{\varrho_{1} ; \mathcal{K}}$ (raised by Theorem 5.3)?

In the plane if \mathcal{M} is allowed to shrink to a point (empty interior), then $\mathrm{S}_{\mathcal{M} ; \mathcal{K}}$ is the X-ray picture at a point source [3] investigated by Falconer in [2]. The method used in Falconer's article made Barker and Larman mention in [1] that in dimension 2 the convex body \mathcal{K} can be determined from $S_{\mathcal{M} ; \mathcal{K}}$ and $S_{\mathcal{M}^{\prime} ; \mathcal{K}}$ if $\partial \mathcal{M}$ and $\partial \mathcal{M}^{\prime}$ are intersecting each other in a suitable manner. The method in the

[^2]anticipated proof presented in [1] decisively depends on the condition of proper intersection.

Finally we note that determining a convex body by its constant width and constant brightness [8] sounds very similar a problem as the ones investigated in this paper. Moreover also the result is analogous to Theorem 5.3.

Acknowledgements. This research was supported by the European Union and co-funded by the European Social Fund under the project "Telemedicine-focused research activities on the field of Mathematics, Informatics and Medical sciences" of project number 'TÁMOP-4.2.2.A-11/1/KONV-2012-0073".

The authors appreciate János Kincses for discussions of the problems solved in this paper.

References

[1] J. A. Barker and D. G. Larman, Determination of convex bodies by certain sets of sectional volumes, Discrete Math., 241 (2001), 79-96.
[2] K. J. Falconer, X-ray problems for point sources, Proc. London Math. Soc., 46 (1983), 241-262.
[3] R. J. Gardner, Geometric tomography (second edition), Encyclopedia of Math. and its Appl. 58, Cambridge University Press, Cambridge, 2006 (first edition in 1996).
[4] A. Katok and B. Hasselblatt, Introduction to the Modern Theory of Dynamical Systems, Cambridge University Press, Cambridge, 1995.
[5] J. Kincses, Oral discussion, 2013.
[6] Á. Kurusa and T. Ódor, Isoptic characterization of spheres, J. Geom. (2014), to appear.
[7] Á. Kurusa and T. Ódor, Spherical floating body, manuscript (2014).
[8] S. Nakajima, Eine charakteristicische Eigenschaft der Kugel, Jber. Deutsche Math.-Verein, 35 (1926), 298-300.
[9] T. Ódor, Rekonstrukciós, karakterizációs és extrémum problémák a geometriában, PhD dissertation, Budapest, 1994 (in hungarian; title in english: Problems of reconstruction, characterization and extremum in geometry).
[10] T. Ódor, Ball characterizations by visual angles and sections, unpublished manuscript, 2003.
[11] Wikipedia, Beta function, http://en.wikipedia.org/wiki/Beta_function.
[12] Wikipedia, Gamma function, http://en.wikipedia.org/wiki/Gamma_function.
[13] Wikipedia, Spherical cap, http://en.wikipedia.org/wiki/Spherical_cap.

Á. Kurusa, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: kurusa@math.u-szeged.hu
T. Ódor, Bolyai Institute, University of Szeged, Aradi vértanúk tere 1., H-6720 Szeged, Hungary; e-mail: odor@math.u-szeged.hu

[^0]: AMS Subject Classification (2012): 52A40.
 Key words and phrases: sections, caps, ball, sphere, characterization, isoperimetric inequality, floating body.
 ${ }^{1}$ This is usually called chord function in the plane.

[^1]: ${ }^{2}$ [1, Theorem 1] gives the same conclusion in the plane for disc-isosectioned convex bodies.
 ${ }^{3}$ Athough $\hbar\left(\boldsymbol{u}_{\boldsymbol{\xi}}, r\right)=\hbar\left(-\boldsymbol{u}_{\boldsymbol{\xi}},-r\right)$ this parametrization is locally bijective.

[^2]: ${ }^{4}$ Recently J. Kincses informed the authors in detail [5] that he is very close to finish the construction of two different \mathcal{D}-equisectioned convex bodies \mathcal{K}_{1} and \mathcal{K}_{2} in the plane for a disk \mathcal{D}.

