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Abstract

Aggregation refers to a set of functions that provide
global information about a distributed system. These func-
tions operate on numeric values distributed over the system
and can be used to count network size, determine extremal
values and compute averages, products or sums. Aggrega-
tion allows important basic functionality to be achieved in
fully distributed and peer-to-peer networks. For example, in
a monitoring application, some aggregate reaching a spe-
cific value may trigger the execution of certain operations;
distributed storage systems may need to know the total free
space available; load-balancing protocols may benefit from
knowing the target average load so as to minimize the trans-
fered load. Building on the simple but efficient idea of anti-
entropy aggregation (a scheme based on the anti-entropy
epidemic communication model), in this paper we intro-
duce practically applicable robust and adaptive protocols
for proactive aggregation, including the calculation of aver-
age, product and extremal values. We show how the averag-
ing protocol can be applied to compute further aggregates
like sum, variance and the network size. We present theoret-
ical and empirical evidence supporting the robustness of the
averaging protocol under different scenarios.

1. Introduction

The latest generation of peer-to-peer (P2P) networks are
typically self-organizing, large-scale distributed systems.
Unlike many traditional distributed systems, however, nei-
ther a central authority nor a fixed communication topology
are employed to control the various components. Instead,
a dynamically changing overlay network is maintained and
control is completely decentralized with “cooperation” links
among nodes being created and deleted based on the re-
quirements of the particular application. Such systems are
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attractive for several reasons, including the lack of single
points of failure, the potential to scale to millions of nodes,
and the fact that they allow the creation of relatively inex-
pensive distributed computing platforms.

The decentralized nature of such systems, how-
ever, presents certain drawbacks. P2P systems tend to be
highly dynamic, with a continuous flow of nodes join-
ing and leaving the network. Control and monitoring in
such systems are difficult tasks: performing global compu-
tations requires orchestrating a huge number of nodes.

A useful building block for monitoring and control in
P2P systems is aggregation, which is the collective name
given to a set of functions that provide statistical informa-
tion about the system [10]. These functions include find-
ing extremal values of some property, computing averages
and sums, etc. Aggregation can provide participants in a P2P
network with important global information such as the size
of the network or the average load in a network. Further-
more, aggregation can be used as a building block for ob-
taining more complex protocols. For example, the knowl-
edge of the average load in a network can be exploited to
implement near-optimal load-balancing schemes [6].

Aggregation protocols can be divided into two cate-
gories: reactive and proactive. Reactive protocols respond
to specific queries issued by nodes in the network. The an-
swers are returned directly to the issuer of the query [3].
Proactive protocols, on the other hand, continuously pro-
vide the value of some aggregate to all nodes in the sys-
tem in an adaptive fashion. By adaptive we mean that if the
aggregate changes due to network dynamism or because of
variations in the values being aggregated, the output of the
aggregation protocol should follow this change reasonably
quickly. Proactive protocols are often useful when aggrega-
tion is used as a building block for completely decentralized
protocols. For example, in the load-balancing scheme cited
above, the knowledge of the average load is used by each
node to decide when it can stop transferring load [6].

In this paper we introduce a robust and adaptive proto-
col for calculating aggregates in a proactive manner. The
core of the protocol is a simple scheme [5] in which ag-
gregation is performed in the style of an anti-entropy epi-
demic protocol, typically used for propagating updates in
distributed databases [2]. Periodically, each node selects a
random peer and communicates with it to bring the two



states up-to-date. In our case, instead of resolving differ-
ences between databases, the elementary step consists of
some aggregation-specific computation based on the values
maintained by the two communicating peers.

Our contribution is threefold. First, we present a full-
fledged practical solution for proactive aggregation in dy-
namic environments, complete with mechanisms for adap-
tivity, robustness and topology management. Second, we
show how our approach can be extended to compute addi-
tional aggregates such as variances and products. Third, we
present both theoretical and experimental evidence on the
robustness of our protocol.

2. System Model

We consider a P2P network consisting of a large collec-
tion of nodes that are assigned unique identifiers and that
communicate through message exchanges. The network is
highly dynamic; new nodes may join at any time, and exist-
ing nodes may leave, either voluntarily or by crashing. Our
protocol does not need any mechanism specific to leaves so
crashes and voluntary leaves can be treated uniformly. Thus,
in the following, we limit our discussion to node crashes.
Byzantine failures, with nodes behaving arbitrarily, are ex-
cluded from the present discussion (but see [7]).

We assume that nodes are connected through an exist-
ing routed network, such as the Internet, where every node
can potentially communicate with every other node. To actu-
ally communicate, a node has to know the identifiers of a set
of other nodes, called its neighbors. This neighborhood re-
lation over the nodes defines the topology of the overlay net-
work. Given the large scale and the dynamicity of our envi-
sioned system, neighborhoods are typically limited to small
subsets of the entire network. Communication incurs unpre-
dictable delays and is subject to failures. Single messages
may be lost, links between pairs of nodes may break. Occa-
sional performance failures of nodes (e.g., delay in receiv-
ing or sending a message in time) can be seen as communi-
cation failures, and are treated as such. Nodes have access to
local clocks that can measure the passage of real time with
reasonable accuracy, that is, with small short-term drift.

In this paper we focus on node and link failure and mes-
sage loss. Some other aspects of the model that are outside
of the focus of our present analysis—like clock drift and
message delay—are discussed only informally in Section 4.

3. Aggregation: the Basic Idea

Each node in the network holds a numeric value. In a
practical setting, this value can characterize any (dynamic)
aspect of the node or its environment (e.g., the load at the
node, temperature monitored by a sensor network). The task
of a proactive protocol is to continously provide all nodes
with an up-to-date estimate of an aggregate function, com-
puted over the values held by the current set of nodes.

Our basic aggregation protocol is based on the epidemic-
style push-pull scheme illustrated in Figure 1. Each node

do forever
wait(δ time units)
q ← GETNEIGHBOR()
send sp to q
sq ← receive(q)
sp ← UPDATE(sp, sq)

(a) active thread

do forever
sq ← receive(*)
send sp to sender(sq)
sp ← UPDATE(sp, sq)

(b) passive thread

Figure 1. Protocol executed by node p.

p executes two different threads. The active thread period-
ically initiates an information exchange with a peer node q
selected randomly among its neighbors, by sending q a mes-
sage containing the local state sp and waiting for a response
with the remote state sq. The passive thread waits for mes-
sages sent by an initiator and replies with the local state.
The term push-pull refers to the fact that each information
exchange is performed in a symmetric manner: both peers
send and receive their states.

Even though the system is not synchronous, we find it
convenient to describe the protocol execution in terms of
consecutive real time intervals of length δ called cycles that
are enumerated starting from some convenient point.

Method UPDATE builds a new local state based on the pre-
vious one and the remote state received during the informa-
tion exchange. The output of UPDATE depends on the spe-
cific function being implemented by the protocol. Here, we
limit the discussion to AVERAGE, which computes the global
average. Additional functions are described in Section 4.

To implement AVERAGE, each node stores a single nu-
meric value representing the current estimate of the aggre-
gation output. Each node initializes the estimate with the lo-
cal value it holds. Method UPDATE(sp, sq), where sp and sq

are the estimates exchanged by p and q, returns (sp +sq)/2.
After one exchange, the sum of the two local estimates re-
mains unchanged since method UPDATE simply distributes
the initial sum equally among the two peers. So, the oper-
ation does not change the global average either; it only de-
creases the variance over all the estimates.

It is easy to see that the value at each node will converge
to the true global average, as long as the underlying over-
lay network remains connected. In our previous work [5],
we presented analytical results for the convergence speed of
the averaging protocol. Let µi be the empirical mean and σ2

i
be the empirical variance of the local estimates at cycle i:

µi =
1

N

N
∑

k=1

ai,k, σ2
i =

1

N − 1

N
∑

k=1

(ai,k − µi)
2 (1)

where ai,k is the estimate maintained at node k = 1, . . .N
during cycle i and N is the number of nodes.

The convergence factor ρi, with i ≥ 1, characterizes the
speed of convergence for the aggregation protocol and is
defined as ρi = E(σ2

i )/E(σ2
i−1). If the (connected) over-

lay network topology is sufficiently random, it is possible to
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Figure 2. Behavior of protocol AVERAGE.

show that for i ≥ 1, ρi ≈ 1/(2
√

e). In other words, each cy-
cle of the protocol reduces the expected variance of the lo-
cal estimates by a factor 2

√
e. From this result, it is clear

that the protocol converges exponentially and very high pre-
cision estimates of the true average can be achieved in only
a few cycles, irrespective of the network size, confirming the
extreme scalability of our protocol.

Figure 2 illustrates the behavior of the protocol. The AV-
ERAGE protocol was run on a simulated network composed
of 105 nodes connected through a regular random overlay
network, where each node knows exactly 20 neighbors. Ini-
tially, a single node has the value 105, while all others have
zero as their local value (so that the global average is 1). We
are interested in this peak distribution for two reasons: first,
it will be the basis of our COUNT protocol presented in Sec-
tion 4; and second, it is the most demanding scenario for
testing robustness, since the single node holding the initial
peak value constitutes a single point of failure.

In the Figure, results for the first 30 cycles of the proto-
col are shown. The two curves represent the minimum and
the maximum estimates of the average over all the nodes at
the completion of each cycle. The curves correspond to av-
erages over 50 independent experiments, whose results are
shown as individual points in the figure.

4. Aggregation: A Practical Protocol

4.1. Automatic Restarting

The generic protocol described so far is not adaptive, as
the aggregation takes into account neither the dynamicity of
the network nor the variability of values. To provide up-to-
date estimates, the protocol must be periodically restarted:
at each node, the protocol is terminated and the current esti-
mate is returned as aggregation output; then, the current val-
ues are used to re-initialize the estimates and aggregation
starts again with these fresh initial values.

To implement termination, we adopt a very simple mech-
anism: each node executes the protocol for a predefined
number of cycles, denoted as γ, depending on the required

accuracy of the output and the convergence factor that can
be achieved in the particular overlay topology adopted.

To implement restarting, we divide the protocol execu-
tion in consecutive epochs of length ∆ and start a new in-
stance of the protocol in each epoch. Depending on the ra-
tio between ∆ and γδ, it is possible that different epochs of
the protocol may be executing concurrently in the network.
Thus, messages exchanged for a particular epoch have to be
tagged with unique epoch identifiers.

4.2. Dynamic Membership

When a new node joins the network, it contacts a node
that is already participating in the protocol. Here, we as-
sume the existence of an out-of-band mechanism to discover
such a node, and the problem of initializing the neighbor set
of the new node is discussed in Section 4.4.

The existing node provides the new node with the next
epoch identifier and the time until the start of the next epoch.
Joining nodes are not allowed to participate in the current
epoch; this is necessary to make sure that each epoch con-
verges to the average that existed at the start of the epoch.

As for crashes, when a node initiates a exchange, it sets
a timeout period to detect the failure of the contacted node.
If the timeout expires before the message is received, the
exchange step is skipped. The effect of these missing ex-
changes due to real (or presumed) failures on the final aver-
age will be discussed in Section 7.

4.3. Synchronization

The protocol described so far is based on the assumption
that cycles and epochs proceed in lock step at all nodes. In
a large-scale distributed system, this assumption cannot be
satisfied due to the unpredictability of message delays and
the different drift rates of local clocks.

Given an epoch j, let Tj be the time interval from when
the first node starts participating in epoch j to when the last
node starts participating in the same epoch. In our protocol
as it stands, the length of this interval would increase with-
out bound given the different drift rates of local clocks an
the fact that a new node joining the network obtains the next
epoch identifier and start time from an existing node, incur-
ring a message delay.

To avoid the above problem, we modify our protocol as
follows. When a node participating in epoch i receives an
exchange message tagged with epoch identifier j such that
j > i, it stops participating in epoch i and instead starts par-
ticipating in epoch j. This has the effect of propagating the
larger epoch identifier (j) throughout the system in an epi-
demic broadcast fashion forcing all (slow) nodes to move to
the new epoch. In other words, the start of a new epoch acts
as a synchronization point for the protocol execution forc-
ing all nodes to follow the pace being set by the nodes that
enter the new epoch first. Informally, knowing that push-
pull epidemic broadcasts propagate super-exponentially [2]
and assuming that each message arrives within the timeout
used during all communications, we can give a logarithmic
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Figure 3. Behavior of protocol AVERAGE.

bound on Tj for each epoch j. Considering also that typ-
ically many nodes will start the new epoch independently,
this bound can be expected to be sufficiently small, which
allows picking an epoch length, ∆, such that it is signifi-
cantly larger that Tj . Although it would be interesting, fur-
ther analysis of this mechanism is out of the scope of the
present discussion. The effect of lost messages (i.e., those
that time out) is discussed later.

4.4. Overlay Topology for Aggregation

The theoretical results mentioned in Section 3 are based
on the assumption that the underlying overlay is “suffi-
ciently random”. More formally, this means that the neigh-
bor selected by a node when initiating communication is a

uniform random sample among its peers. Yet, our aggrega-
tion scheme can be applied to generic connected topolo-
gies. To explore deviation from the theoretically predicted
behavior, Figure 3(a) illustrates the performance of aggre-
gation for different topologies, by showing the average con-
vergence factor over a period of 20 cycles, for network sizes
ranging from 102 to 106 nodes. Figure 3(b) provides addi-
tional details. Here, the network size is fixed at 105 nodes.
Instead of displaying the average convergence factor, the
curves represent the actual variance reduction normalized
with respect to the initial variance for the same set of topolo-
gies. Before going into the details of the topologies, we can
already conclude that performance is independent of net-
work size for all topologies, while it is highly sensitive to the
particular topologies. Furthermore, the convergence factor
is constant through the sequence of cycle, with non-random
topologies being the only exceptions.

All the topologies examined in this section (with the ex-
ception of NEWSCAST) are static—the neighbor set of each
node is fixed. While static topologies are unrealistic in the
presence of node joins and crashes, we still consider them
due to their theoretical importance and the fact that our pro-
tocol can in fact be applied in static networks as well, al-
though they are not in the focus of the present discussion.
Static topologies All topologies considered have a regular
degree of 20 neighbors, with the exception of the complete
network (where each node knows every other node) and the
Barabasi-Albert network (where the degree distribution is
a power-law). For the random network the neighbor set of
each node is filled with a random sample of the peers.

The remaining topologies are realistic small-world
topologies that are often used to model different natu-
ral and artificial phenomena [1, 13]. The first class of these
topologies (the Watts-Strogatz model [14]) is built start-
ing from a regular ring lattice. The ring lattice is built by
connecting the nodes in a ring and adding links to their near-
est neighbors until the desired node degree is reached. Start-
ing with this ring lattice, each edge is then randomly rewired
with probabilityβ. Rewiring an edge at node n means re-
moving that edge and adding a new edge connecting n to
another node picked at random. When β = 0, the ring lat-
tice remains unchanged, while when β = 1, all edges are
rewired, generating a random graph.

Figure 4(a) focuses on the Watts-Strogatz model show-
ing the convergence factor as a function of β ranging from
0 (complete order) to 1 (complete disorder). Although there
is no sharp phase transition, we observe that increased ran-
domness results in a better convergence factor.

Scale-free topologies form the other class of realistic
small world topologies. In particular, the WWW, the Inter-
net and P2P networks such as Gnutella [9] have been shown
to be instances of scale-free topologies. We have tested our
protocol over scale-free graphs generated using the prefer-
ential attachment method of Barabasi and Albert [1]. The
basic idea of preferential attachment is that we build the
graph by adding new nodes one-by-one, wiring the new
node to an existing node already in the network. This ex-
isting contact node is picked randomly with a probability
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Figure 4. Behavior of the AVERAGE protocol in
Watts-Strogatz and NEWSCAST graphs.

proportional to its degree (number of neighbors). The re-
sults are encouraging, as the observed convergence factors
are similar to those obtained in random graphs.

Dynamic topologies From the above results, it is clear that
the topology of the overlay should be as random as possi-
ble. Furthermore, in dynamic systems, there must be mech-
anisms in place that preserve this property. To achieve this
goal, we propose to use NEWSCAST [4], a decentralized
membership protocol based on an epidemic scheme simi-
lar to the one described in Figure 1.

In NEWSCAST, the overlay is generated by a continuous
exchange of neighbor sets, where each neighbor is associ-
ated with its identifier and a timestamp. These sets have a
fixed size, which will be denoted by c. After an exchange,

participating nodes update their neighbor sets by selecting
the c node identifiers (from the union of the two sets) that
have the freshest timestamps. Nodes belonging to the net-
work continously inject their identifiers in the network with
the current timestamp, so old identifiers are gradually re-
moved from the system and get replaced by new informa-
tion. This feature allows the protocol to “repair” the over-
lay topology by forgetting information about crashed neigh-
bors, which by definition do not inject their identifier.

The resulting topology has a very low diameter [4]. Fig-
ure 4(b) show the performance of aggregation over a NEWS-
CAST network of 105 nodes, with c varying between 2 and
50. According to our experimental results, choosing c = 30
is already sufficient to obtain fast convergence for aggrega-
tion. Furthermore, the same value is sufficient for very sta-
ble and robust connectivity.

4.5. Cost Analysis

Both the communication cost and time complexity of our
algorithms follow from properties of the aggregation proto-
col and are inversely related. The cycle length, δ defines the
time complexity of convergence. Choosing a short δ will re-
sult in proportionally faster convergence but higher commu-
nication costs per unit time. It is possible to show that if the
overlay is sufficiently random, the number of exchanges for
each node in δ time units can be described by the random
variable 1 + φ where φ has a Poisson distribution with pa-
rameter 1. Thus, on the average, there are two exchanges per
node (one initiated and one coming from another node), with
a very low variance. Based on this distribution, parameter δ
must be selected to guarantee that, with very high probabil-
ity, each node will be able to complete the expected num-
ber of exchanges before the next cycle starts. Failing to sat-
isfy this requirement results in a violation of our theoretical
assumptions. Similarly, parameter γ must be chosen appro-
priately, based on the desired accuracy of the estimate and
the convergence factor ρ characterizing the overlay network.
After γ cycles, we have E(σ2

γ)/E(σ2
0) = ργ where E(σ2

0)
is the expected variance of the initial values. If ε is the de-
sired accuracy of the final estimate, then γ ≥ logρ ε. Note
that ρ is independent of N , so the time complexity of reach-
ing a given precision is O(1).

5. Other Aggregation Functions

In the following, we briefly outline how our protocol for
averaging can be easily modified to compute several other
interesting aggregation functions.

MIN and MAX: To obtain the maximum or minimum value
among those maintained by nodes, method UPDATE(a, b) of
the generic scheme of Figure 1 must return max(a, b) or
min(a, b), respectively. In this case, the global maximum
or minimum value will be effectively broadcast like an
epidemic. Existing results about epidemic-style broadcast-
ing [2] are applicable.

COUNT: We base this protocol on the observation that if
the initial distribution of local values is such that exactly one



node has the value 1 and all the others have 0, then the global
average is exactly 1/N and thus the network size, N , can be
easily deduced from it.

However, implementing this function in distributed sys-
tem where new nodes may appear and existing ones may
crash may not be possible. An alternative approach consists
in enabling multiple nodes to start concurrent instances of
the averaging protocol. Each concurrent instance is lead by
a different node. Messages and data related to an instance
are tagged with a unique identifier (e.g., the address of the
leader). Each node maintains a map M associating a leader
id with an average estimate. When nodes ni and nj main-
taining the maps Mi and Mj perform an exchange, the new
map M (to be installed at both nodes) is obtained by merg-
ing Mi and Mj in the following way:

M = {(l, e/2) | e = Mi(l) ∈Mi ∧ l 6∈ D(Mj)} ∪
{(l, e/2) | e = Mj(l) ∈Mj ∧ l 6∈ D(Mi)} ∪
{(l, (ei + ej)/2 | ei = Mi(l) ∧ ej = Mj(l)},

where D(M) corresponds to the domain (key set) of map
M and ei is the current estimate of node ni.

Maps are initialized in the following way: if node nl is
a leader, the map is equal to {(l, 1)}, otherwise the map is
empty. All nodes participate in the protocol described in the
previous section. In other words, even nodes with an empty
map perform random exchanges. Otherwise, an approach
where only nodes with a non-empty set perform exchanges
would be less effective in the initial phase while few nodes
have non-empty maps.

Clearly, the number of concurrent protocols in execution
must be bounded, to limit the communication cost involved.
A simple mechanism that we adopt is the following. At the
beginning of each epoch, each node may become leader of
a run of the aggregation protocol with probability Plead. At
each epoch, we set Plead = C/N̂ , where C is the desired
number of concurrent runs and N̂ is the estimate obtained in
the previous epoch. If the systems size does not change dra-
matically within one epoch then this solution ensures that
the number of concurrently running protocols will be ap-
proximately Poisson distributed with the parameter C.

SUM: Two concurrent aggregation protocols are run, one
to estimate the size of the network, the other to estimate the
average of the values to be summed. Size and average are
multiplied in order to obtain an estimate of the sum.

GEOMETRICMEAN and PRODUCT: In order to compute the
geometric mean and the product of the values contained
in the network, the same approach to compute the arith-
metic mean and the sum may be used. Rather than return-
ing the arithmetic mean of the two local values, method
UPDATE(a, b) now returns

√
ab. After one cycle, the prod-

uct of the two local values remains unchanged, but the vari-
ance over the set of values decreases such that the local es-
timates converge toward the global geometric mean. As be-
fore, once the geometric mean is known with sufficient pre-
cision, the result of a concurrent COUNT protocol can be used
to obtain the product.

VARIANCE: We run two instances of the averaging proto-
col to compute a, the average of the initial values and a2,
the average of the squares of the initial values. Then, an es-
timate for the variance can be obtained as a2 − a2.

6. Theoretical Results on Benign Failure

6.1. Crashing Nodes

The result on convergence discussed in Section 3 is based
on the assumption that the overlay network is static and that
nodes do not crash. When in fact in a dynamic environment,
nodes come and go continuously. In this section we present
results on the sensitivity of our protocols to dynamism of
the environment.

Our failure model is the following. Before each cy-
cle, a fixed proportion, Pf , of the nodes crash. Given N ∗

nodes initially, PfN∗ nodes are removed (without replace-
ment).We assume crashed nodes do not recover. Note that
considering crashes only at the beginning of cycles corre-
sponds to a worst-case scenario since the crashed nodes ren-
der their local values inaccessible when the variance among
the local values is at its maximum.

Let us begin with some simple observations. Using the
notations in (1) in our failure model the expected value of
µi and σ2

i will stay the same independently of Pf since the
model is completely symmetric. The variance reduction rate
also remains the same since it does not rely on any particu-
lar network size. So the only interesting thing is the variance
of µi, which characterizes the expected error of the approx-
imation of the average. We will describe the variance of µi

as a function of Pf .

Theorem 1. Let us assume that E(σ2
i+1) = ρE(σ2

i ) and
that the values ai,1, . . . , aiN

are pairwise uncorrelated for
i = 0, 1, . . . Then µi has a variance

Var(µi) =
Pf

N(1− Pf )
E(σ2

0)
1−

(

ρ
1−Pf

)i

1− ρ
1−Pf

. (2)

Proof. Let us take the decomposition µi+1 = µi + di. Ran-
dom variable di is independent of µi so

Var(µi+1) = Var(µi) + Var(di). (3)

This allows us to consider only Var(di) as a function of
failures. Note that E(di) = 0 since E(µi) = E(µi+1).
Then, using the assumptions of the theorem and the fact that
E(di) = 0 it can be proven that

Var(di) = E((µi − µi+1)
2) =

Pf

Ni(1− Pf )
E(σ2

i )

=
Pf

1− Pf
E(σ2

0)
ρi

N(1− Pf )i
. (4)

Now, from (3) we see that Var(µi) =
∑i−1

j=0 Var(dj) which
gives the desired formula when substituting (4).
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ance computed by AVERAGE at cycle 20.

We performed simulations with N = 105 to validate
these results (see Figure 5). For each value of Pf , the empir-
ical data is based on 100 independent experiments whereas
the prediction is obtained from (2) with ρ = 1/(2

√
e). The

empirical data fits the prediction nicely. Note that the largest
value of Pf examined was 0.3 which means that in each
cycle almost one third of the nodes is removed. This al-
ready represents an extremely severe damage. See also Fig-
ure 6(b), which depicts the whole distribution of the esti-
mates with NEWSCAST, not only the normalized variance.

If ρ > 1− Pf then the variance is not bounded, it grows
with the cycle index, otherwise it is bounded. Also note that
increasing network size decreases the variance of the ap-
proximation µi. This is optimal for scalability, as the larger
the network, the more stable the approximation becomes.

6.2. Link Failures

In a realistic system, links fail in addition to nodes crash-
ing. Let us adopt a failure model in which an exchange is
performed only with probability 1 − Pd, that is, each link
between any pair of nodes is down with probability Pd.

In [5] it was proven that ρ = 1/e if we assume that during
a cycle for each particular variance reduction step each pair
of nodes has an equal probability to perform that particu-
lar variance reduction step. Note that assuming the protocol
described in Section 3—where ρ = 1/(2

√
e)—this assump-

tion is not true, because there, it is guaranteed that each node
participates in at least one variance reduction step, the one
initiated actively by the node. In this more random model
however, it is possible for example that a node does not par-
ticipate in a given cycle at all.

Consider that a system model with Pd > 0 is very simi-
lar to a model in which Pd = 0 but which is “slower” (less
pairwise exchanges are performed in a unit time interval).
In the limit case when Pd is close to 1 the randomness as-

sumption described above (when ρ = 1/e) is fulfilled with
a high accuracy.

This motivates our conclusion that the performance can
be bounded from below by the model where Pd = 0, and
ρ = 1/e instead of 1/(2

√
e), and which is 1/(1−Pd)-times

slower than the original system in terms of wall clock time.
That is, the upper bound on the convergence factor can be
expressed as

ρd = (
1

e
)1−Pd = ePd−1 (5)

which gives ρ
1/(1−Pf )
d = 1/e. Since the reduction defined

by 1/e is not significantly worse than 1/(2
√

e) we can con-
clude that practically only a proportional slowdown of the
system can be observed. In other words, link failure does
not result in any loss of approximation quality or increased
unreliability.

7. Simulation Results on Benign Failures

To complement the theoretical analysis, we have per-
formed numerous experiments based on simulation. In all
experiments, we have used NEWSCAST as the underlying
overlay network. The reason for this choice is twofold: first,
we want to show empirical results in a realistic overlay net-
work that can actually be built in a decentralized way; sec-
ond, NEWSCAST is known to be robust and capable of main-
taining a sufficiently random network in the failure scenar-
ios we are analyzing [4].

Furthermore, all our experiments were performed with
the COUNT aggregation protocol since it represents a worst-
case being the most sensitive to failures (both node crashes
and message omissions). During the first few cycles of an
epoch when only a few nodes have a local estimate other
than 0, their removal from the network due to failures can
cause the final result of COUNT to diverge significantly from
the actual network size.

All experiments in the paper are performed with PEER-
SIM, a simulator developed by us and optimized for our ag-
gregation protocol [6]. Unless stated otherwise, all simula-
tions are performed on networks composed of 105 nodes.
We do not present results for different network sizes since
they display similar trends (as predicted by our theoretical
results and confirmed by Figure 3(a)).

The size of the neighbor sets maintained and exchanged
by the NEWSCAST protocol is set to 30. As discussed in Sec-
tion 4.4, this value is large enough to result in convergence
factors similar to those of random networks; furthermore,
as our experiments confirm, the overlay network maintains
this property also in the face of the node crash scenarios we
examined. Unless explicitly stated, the size estimations and
the convergence factor plotted in the figures are those ob-
tained at the end of a single epoch of 30 cycles. In all fig-
ures, 50 individual experiments were performed. The result
of each experiment is shown in the figure as a dot to illus-
trate the entire distribution. A small random factor is added
to the x-coordinates so as to separate results having similar
y-coordinates. When applicable, averages computed over all
experiments are also shown as curves.
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(a) Network size estimation with protocol COUNT where 50%
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Figure 6. Effects of node crashes on the
COUNT protocol in a NEWSCAST network.

7.1. Node Crashes

The crash of a node may have several possible effects. If
the crashed node had a value smaller than the actual global
average, the estimated average (which should be 1/N ) will
increase and consequently the reported size of the network
N will decrease. If the crashed node has a value larger than
the average, the estimated average will decrease and conse-
quently the reported size of the network N will increase.

The effects of a crashing are potentially more damaging
in the latter case. The larger the removed value, the larger
the estimated size. At the beginning of an epoch, relatively

large values are present, obtained from the first exchanges
originated by the initial value 1. These observations are con-
firmed by Figure 6(a), that shows the effect of the “sudden
death” of 50% of the nodes in a network of 105 nodes at dif-
ferent cycles of an epoch. Note that in the first cycles, the ef-
fect of crashing may be very harsh: the estimate can even be-
come infinite (not shown in the figure), if all nodes having a
value different from 0 crash. However, around the tenth cy-
cle the variance is already so small that the damaging effect
of node crashes is practically negligible.

A more realistic scenario is a network characterized by
continuously leaving and joining nodes. Figure 6(b) illus-
trates the behavior of aggregation in such a network. At each
cycle, a variable number of nodes are removed from the net-
work and are substituted with completely new nodes. In this
way, the size of the network is constant, while its compo-
sition is dynamic. The plotted dots correspond to the aver-
age estimate computed over all nodes that still participate in
the protocol (recall that joining nodes cannot participate un-
til the start of the next epoch) at the end of a single epoch (30
cycles). Note that although the average estimate is plotted,
in cycle 30 the estimates are practically identical at all nodes
as Figure 3(b) confirms. Also note that 2,500 nodes crashing
in a cycle means that 75% of the nodes ((30× 2500)/105)
are substituted during the epoch, leaving 25% of the nodes
that make it until the end of the epoch.

The figure demonstrates that—even when a large number
of nodes are substituted during an epoch—most of the esti-
mates are included in a reasonable range. This is consistent
with the theoretical result discussed in Section 6.1, although
in this case we have an additional source of error; nodes are
not only removed but replaced by new nodes. While the new
nodes do not participate in the epoch, they result in an effect
similar to link failure, as new nodes will refuse all connec-
tions that belong to the currently running epoch. However,
the variance of the estimate is still the same as according
to Sections 6.2 and 7.2 link failure does not change the es-
timate, only slows down convergence. Since an epoch lasts
30 cycles, this time is enough for convergence even beside
the highest fluctuation rate. See also Figure 5 for the esti-
mate varianceplotted against the theoretical prediction.

7.2. Link Failures and Message Omissions

Figure 7(a) shows the convergence factor of COUNT in the
presence of link failures. As discussed earlier, in this case
the only effect is a proportionally slower convergence. The
theoretically predicted upper bound of the convergence fac-
tor (see (5)) indeed bounds the average convergence factor,
and—as predicted—it is more accurate for higher values of
Pd.

Apart from link failures that interrupt communication be-
tween two nodes in a symmetric way, it is also possible that
single messages are lost. If the message sent to initiate an
exchange is lost, the final effect is the same as with link fail-
ure: the entire exchange is lost, and the convergence process
is just slowed down. But if the message lost is the response
to an initiated exchange, the global average may change (ei-
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Figure 7. Effects of communication failures
on the COUNT protocol in a NEWSCAST network.

ther increasing or decreasing, depending on the value con-
tained in the message).

The effect of message omissions is illustrated in Fig-
ure 7(b). The given percentage of all messages (initiated or
response) was dropped. For each experiment, both the max-
imum and the minimum estimates over the nodes in the net-
work are shown. As can be seen, when a small percentage of
messages are lost, estimations of reasonable quality can be
obtained. Unfortunately, when the number of messages lost
is higher, the results provided by aggregation can be larger
or smaller by several order of magnitudes. In this case, how-
ever, it is possible to improve the quality of estimations con-
siderably by running multiple concurrent instances of the
protocol, as explained in the next section.
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(b) Network size estimation with protocol COUNT as a function
of concurrent protocol instances. 20% of messages are lost.

Figure 8. Effects of failures on protocol COUNT

with multiple concurrent instances.

7.3. Increasing Robustness Using Multiple In-
stances of Aggregation

To reduce the impact of “unlucky” runs of the aggrega-
tion protocol that generate incorrect estimates due to fail-
ures, one possibility is to run multiple concurrent instances
of the aggregation protocol. To test this solution, we have
simulated a number t of concurrent instances of the COUNT

protocol, with t varying in the range between 1 and 50. At
each node, the t estimates obtained at the end of each epoch
are ordered. Subsequently, the bt/3c lowest estimates and
the bt/3c highest estimates are discarded, and the reported
estimate is given by the average of the remaining results.

Figure 8(a) shows the results obtained by applying this
technique in a system where 1000 nodes per cycle are sub-



stituted with new nodes, while Figure 8(b) shows the re-
sults in a system where 20% of the messages are lost. Re-
call that even though in the node crashing scenario the num-
ber of nodes participating in the epoch decreases, the cor-
rect estimation is 105 as the protocol reports network size at
the beginning of the epoch. The results are quite encourag-
ing; by maintaining and exchanging just 20 numerical val-
ues (resulting in messages of still only a few hundreds of
bytes), the accuracy that may be obtained is very high, es-
pecially considering the hostility of the scenarios tested.

8. Related Work

Protocols based on the analogy with the spreading of epi-
demics have found many applications. Examples include
database replication [2] and failure detection [12].

The idea of aggregation was pionereed by Van Renesse in
Astrolabe [10, 11]. In Astrolabe, a hierarchical architecture
is deployed. While this approach reduces the cost of find-
ing the aggregates and enables the execution of complex,
database-style queries, the maintenance of the hierarchical
topology introduces additional overhead. Our anti-entropy
aggregation is substantially different, since it is extremely
simple, lightweight, and targeted to unstructured, highly dy-
namic environments. Furthermore, our protocol is proactive:
the result of aggregation is known to all nodes.

Kempe et al. [8] propose an aggregation protocol similar
to ours. The main difference is that their protocol is based
on push-only gossiping mechanisms. Furthermore, their dis-
cussion is limited to the theoretical version of the proto-
col, while this paper discusses at length the practical de-
tails needed for a real implementation and assesses its per-
formance in a faulty environment.

9. Conclusions

In this paper we have presented a full-fledged proactive
aggregation protocol and we have demonstrated its adaptiv-
ity and robustness to benign failure through theoretical an
experimental analysis.

We have seen that a reasonably good approximation can
be obtained even if 75% of the nodes crash during the calcu-
lation of the aggregate. Furthermore, the protocol is totally
insensitive to link failure, which results only in proportional
slowdown but no approximation error. In the case of mes-
sage loss we did not see this extreme and exceptional robust-
ness, but the protocol is still reliable under usual, reasonable
levels of message loss. However, as was shown, robustness
to message loss can be greatly improved by the inexpensive
and simple extension of running multiple instances of the
protocol at the same time and calculate the final approxima-
tion based on the output of the parallel instances. In the case
of crash and link failure our experimental results are sup-
ported by theoretical analysis as well.

In short, based on the presented results we can conclude
that our aggregation protocol is robust to benign failure and
can cope with an extremely high level of dynamism. The
fact that our experiments were carried out using the worst

case peak distribution further confirms the practical applica-
bility of the protocol.
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