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Abstract 

Since the creation of the first transgenic rabbit thirty years ago, pronuclear microinjection 

remained the single applied method and resulted in numerous important rabbit models of 

human diseases, including cardiac deficiencies, albeit with low efficiency. For additive 

transgenesis a novel transposon mediated method, e.g., the Sleeping Beauty transgenesis, 

increased the efficiency, and its application to create cardiac disease models is expected in the 

near future. The targeted genome engineering nuclease family, e.g., the zink finger nuclease 

(ZFN), the transcription activator-like effector nuclease (TALEN) and the newest, clustered 

regularly interspaced short palindromic repeats (CRISPR) with the CRISPR associated 

effector protein (CAS), revolutionized the non-mouse transgenesis. The latest gene-targeting 

technology, the CRISPR/CAS system, was proven to be efficient in rabbit to create multi-

gene knockout models. In the future, the number of tailor-made rabbit models produced with 

one of the above mentioned methods is expected to exponentially increase and to provide 

adequate models of heart diseases.  
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1. Overview of the cardiac disease transgenic rabbit models created with pronuclear 

microinjection 

 

Since the creation of the first transgenic rabbit thirty years ago (Hammer et al., 1985), 

pronuclear microinjection remained the single applied method and resulted in numerous 

important rabbit models of human diseases, with a variable (see Table 1), but in general low 

efficiency (Duranthon et al., 2012). These transgenic rabbit models were emerging as one of 

the most relevant experimental model systems for cardiovascular diseases. The lipid 

metabolism and the way atherosclerosis develops in rabbits are similar to that of the human 

(Fan et al., 2015). Since atherosclerosis and ischemic heart disease are among the leading 

causes of death in developed countries, most transgenic rabbit models were created in this 

area of cardiovascular diseases. The transgenic rabbit models of lipid metabolism and 

atherosclerosis established to date are listed in Table 1. Rabbit models of atherosclerosis and 

myocardial infarction are described in this issue by Baumgartner et al. and were recently 

reviewed by (Fan et al., 2015). Transgenic rabbit models have been established for 

hypertrophic cardiomyopathy (HCM), a relatively common inherited heart disease, that can 

lead to serious ventricular arrhythmias and is the most frequent cause of sudden cardiac death 

in young people (Decker et al., 2009).  Mutations of all known sarcomeric proteins, the 

structural components of heart can cause HCM. The protein composition of the rabbit heart is 

closer to humans than rodents: In the human heart the -myosin heavy chain (–MyHC) 

comprises 90% of the total myofibrillar myosin, in the rabbits heart similarly to humans, 80% 

is made of β–MyHC, in contrast to mouse heart, the other myosin isoform, -myosin heavy 

chain (-MyHC) predominates with 95% (Marian, 2005). Different transgenic mouse models 

were created, among which none reproduced left ventricular hypertrophy, the hallmark of 

HCM (Marian, 2005).The first rabbit model of HCM was created by (Marian et al., 1999) 



with pronuclear microinjection carrying a common point mutation of -myosin heavy chain 

R400Q (Table 1). Transgenic rabbits recapitulated the phenotype and primary abnormalities 

observed in human carriers: myocyte disarray and interstitial fibrosis, along with left 

ventricular hypertrophy. The usefulness of this transgenic rabbit strain in translational studies 

was underlined later, when it was used to prove, that simvastatin treatment induces regression 

of hypertrophy and fibrosis (Patel et al., 2001) and to evaluate the effect of atorvastatin in 

preventing cardiac hypertrophy (Senthil et al., 2005). Another transgenic rabbit model was 

created with pronuclear microinjection of the mutant cardiac troponin I (cTnI-R146G). 

R146G is a missense mutation causing HCM in human carriers (Sanbe et al., 2005). The 

cTnI-G146 rabbits recapitulated the phenotype of human HCM, including cardiac 

hypertrophy, myocyte disarray, interstitial fibrosis, and enhanced myofibrillar Ca2+ sensitivity. 

In order to better understand the role of the myosin isoforms, the -myosin heavy chain was 

overexpressed in the transgenic rabbit heart, where it reached 15-40% of the total myofibrillar 

myosin, contrary to the normal adult human ventricle, where it is composed of 5-10% (James 

et al., 2000). The incorporation of 40% alpha-MHC led to greater myofilament power 

production and more rapid crossbridge cycling, which facilitate ejection and relengthening 

during short cycle intervals, and thus protected against tachycardia-induced cardiomyopathy 

(Suzuki et al., 2009)  

Another emerging area of cardiac disease models are the so called inborn 

arrhythmogenic diseases such as long QT syndrome (LQTS). Relevant transgenic rabbit 

models created with pronuclear microinjection are reviewed by Lang and Odening in this 

issue and listed in Table 1. In brief, transgenic LQTS rabbit models selectively overexpressing 

dominant-negative pore mutants of the human KvLQT1 (KvLQT1-Y315S, LQT1, loss of 

IKs) or HERG channels (HERG-G628S, LQT2, loss of IKr) in the heart completely mimic the 

human LQTS phenotype with QT prolongation, spontaneous sustained pVTs and SCD 



(Brunner et al., 2008; Odening et al., 2008). The first LQT5 transgenic rabbit model 

expressing a mutant human minK (KCNE1-G52R) protein exhibits increased cardiac 

repolarization instability and may thus be very useful for  proarrhythmia studies on drugs 

challenging “silent” LQTS subjects clinically (Major et al., 2016).   



Table 1.  Cardiac disease transgenic rabbit models created with pronuclear microinjection  

 

* transgenic efficiencies are indicated where relevant data were published A: % transgenic of 

total injected and transplanted and B: % transgenic of total born alive) 

 

Models for lipid metabolism and atherosclerosis  
Overexpressed mutant or wild type protein and 

transgenic efficiencies* 
References 

       Hepatic lipase (Fan et al., 1994) 

       Apolipoprotein B100     A: 0.25; B: 10% (Fan et al., 1995) 

       15-Lipoxygenase             (Shen et al., 1996; Shen et al., 1995)  

       Matrix metalloproteinase (Liang et al., 2006; Yamanaka et al., 1995)  

       Apolipoprotein A1          A: 1.0%; B: 11% (Boullier et al., 2001; Duverger et al., 1996) 

       Lecithin-cholesterol acyltransferase (Hoeg et al., 1996) 

       Apolipoprotein E2 (Huang et al., 1997) 

       Apolipoprotein E3 (Fan et al., 1998) 

       Lipoprotein lipase        A: 0.53%; B:8.3% (Fan et al., 2001; Ichikawa et al., 2004)  

       Apolipoprotein A         A: 0.71%; B: 11.7% (Fan et al., 2001; Kitajima et al., 2007; Rouy 
et al., 1998; Senthil et al., 2005)     

      Apolipoprotein A2 (Koike et al., 2009) 
      Apolipoprotein CIII (Ding et al., 2011) 
 Vascular Endothelial Growth Factor (VEGF) 
       A: 0.33% ; B:4.37% 

(Kitajima et al., 2005; Liu et al., 2007) 

 Matrix metalloproteinase [MMP]-12 (Liang et al., 2006; Yamada et al., 2008) 

 Plasma phospholipid transfer protein (Masson et al., 2011) 
 C-reactive protein (CRP) (Matsuda et al., 2011) 

  
Models of altered sarcomeric proteins  

       β –MyHC-Q403 (β-myosin heavy chain) (R400Q) 
     A:0.65%; B:21%

(Marian et al., 1999; Patel et al., 2001; 
Senthil et al., 2005)   

       cTnI-G146Cardiac troponin I (R146G) (Sanbe et al., 2005) 

 -MyHC (-myosin heavy chain) (James et al., 2000; Suzuki et al., 2009)  
  

Models of inborn arrhythmogenic disease long QT syndrome 

  

       KCNQ1/KvLQT1 (KvLQT1-Y315S, LQT1, loss of IKs) (Brunner et al., 2008; Odening et al., 2008) 

       KCNH2/HERG   (HERG-G628S, LQT2, loss of IKr) (Brunner et al., 2008; Odening et al., 2008) 

 KCNE1/minK  (KCNE1-G52R, LQT5, altered IKs) 
      A: 0.80%; B: 10.5% 

(Major et al., 2016) 



2. Potential advantages of transposon mediated additive transgenesis 

 
DNA transposons were primarily developed for gene therapeutic aims, but turned out to be 

applicable in mammalian transgenesis as well. DNA transposons are mobile genetic elements, 

which can integrate into the genome of the host cell by a simple “cut and paste” mechanism. 

The newly developed transposon vectors enable to cut out the transgene of interest flanked by 

inverted terminal repeats from the plasmid and integrate it into the host genome. The 

excisions from the plasmid vector and the integration to a genomic region at special target 

sequences are catalysed by a transposase. The transposase can be provided on a plasmid DNA 

or even better as an in vitro synthesized transcript. Different transposon based systems were 

used to produce transgenic mammals, but the Sleeping Beauty was the first and to date the 

only one which was successfully applied in rabbit  Figure 1 (Ivics et al., 2014; Katter et al., 

2013).  

Sleeping Beauty was reconstructed by molecular methods from a fish and belongs to 

the TC1/mariner family of DNA transposons (Izsvak et al., 2000). The hyperactive variant 

(SB 100X) was later developed to increase its efficacy in biotechnological processes (Mates et 

al., 2009). The SB100X vector system can be used in non dividing cells also with low 

silencing activity in mammalian cells (Grabundzija et al., 2010).The Sleeping beauty 

transposon directs integration into a genomic region quasi randomly (its target sequence is 

AT) avoiding coding region of genes (“gene free zones” or introns). To create the first 

transgenic rabbits with Sleeping Beauty transposon system 0.4 ng/ul circular pT2/Venus 

plasmid (Venus is a reporter gene driven by CAG promoter) and 5 ng/ul Sleeping Beauty 

100X transposase mRNA cocktail was microinjected into the pronucleus of early rabbit 

zygotes (Katter et al., 2013). Due to the transposase mediated cut and paste mechanism, the 

founder rabbits carry one single transgene copy at each integration site contrary to the plasmid 

based pronuclear microinjection when the transgene integrates in head-to-tail tandems with 



copy numbers in the range of 2-100 copies or above. The number of integration sites were 

also examined and found to vary between 1 to 3 in founder animals. It is an apparent 

advantage of transposon based transgenesis, since a transgenic rabbit which integrated a 

single copy mutant human gene in hemizygote form will be better comparable at gene 

expression levels to the modelled individuals, who harbour one normal and one mutant gene. 

The other advantage of the transposon based transgenesis is the reported transgenic/total born 

alive 15.1 % efficiency together with the 1.48% transgenic out of total injected and 

transplanted, which is higher than the average efficiencies obtained with pronuclear 

microinjection (Table 1). The above mentioned characteristics makes the Sleeping Beauty 

transposon based transgenesis to  an attractive alternative method of pronuclear 

microinjection, to create monogenic cardiac disease models with additive transgenesis in a 

cost and time saving way. 

 

3. The targeted genome engineering/designer nuclease family 

In the last decade several new genome editing technologies have been developed. The most 

significant systems are the zinc finger nucleases (ZNFs), the transcription activator-like 

effector nucleases (TALENs) and the RNA guided nucleases, represented by the 

CRISPR/Cas9 endonuclease. The adaptation of designer nucleases to targeted genetic 

modification of mammalian genome has changed the potential of transgenic technology via 

opening new perspectives both in laboratory and livestock animals during the last 5 years and 

has already hit rabbit biotechnology too. The prerequisite for targeted gene modification in 

rabbit, like in any other species was a high quality annotated genome sequence. The Broad 

Institute released the 7x coverage OryCun2.0 database in 2009, which is publicly available. 

The reference sequence for the rabbits genome was established using a female rabbit of the 

partially inbred Thorbecke strain. It should be emphasized that with this available database, 



the targeted gene needs to be resequenced in most of the cases from the genomic DNA of the 

selected rabbit breed or hybrid, before planning the DNA nuclease vectors. Current efforts at 

different laboratories are aiming to complete the genomes of all experimental rabbit breeds, 

including RNA sequence analysis (Fan et al., 2015; Miller et al., 2014). 

The designer nuclease technologies share a couple of common characteristics.  

1. They are able to recognize DNA sequences with highly flexible design options in order to 

make them strictly specific to unique DNA sequences with few limitations.  

2.  Two out of the three systems involve a restriction enzyme which in a form of a dimer is 

able to cut double stranded DNA.  

3. As a consequence of a DNA double strand break (DSB) the cells/organism own repair 

system is activated and uses the most common DNA repair system of non-homologous end 

joining (NHEJ) which most of the cases results in small deletions or insertions (indel) at the 

point of the DSB in the targeted gene. This event disrupts gene function by causing a frame 

shift mutation and/or emergence of a termination signal. The other DSB repair mechanism is 

called homology-directed repair (HDR) that occurs in the presence of a homologous DNA 

template, provided by the experimenter. 

 

3.1. RNA guided nucleases – Clustered regularly interspaced short palindromic repeats 

(CRISPR) with its associated effector protein (CAS) 

The CRISPR/CAS  RNA guided nuclease system is the most recent among the three available 

designer nuclease methods, but due to its simplicity and effectiveness it is the most popular 

with increasing number of transgenic rabbit strains created with this method. The CRISPR 

associated protein-9 (Cas9) nuclease gene was isolated from a bacteria Streptococcus 

pyogenes and along with other CAS genes has essential role in adaptive immunity, enabling 

the organisms to respond and eliminate invading genetic material. The CRISPRs represent the 



memory of the system, which based on previous infection create a library of short, directly 

repeating nucleotide sequences that alternate with small unique DNA fragments (Bolotin et al., 

2005). The effector CAS proteins process the CRISPR sequences into small RNAs and cleave 

the invading DNA molecules which match the produced small RNAs (Haurwitz et al., 2010). 

In the genome editing tool, which is based on this prokaryotic system the CRISPR RNA 

(crRNA) and the trans-activating RNA (tracrRNA) were fused into a synthetic small guide 

RNA (sgRNA), which harbours a hairpin RNA structure linked to an approximately 20 bp 

long target DNA homologous sequence. Cas9 is able to cleave both strands of the targeted 

DNA after detecting WatsonCrick homologous base pair match with the sgRNA (Fig 

2a)(Charpentier and Doudna, 2013). A high fidelity variant of Cas9 (Cas9-HFI) was 

published in early 2016, which was designed to reduce non-specific DNA contacts and hereby 

significantly reduce the off- target effect by the CRISPR-CAS-HFI nucleases (Kleinstiver et 

al., 2016). . 

The first transgenic rabbits produced by RNA-Guided Nucleases (CRISPR/Cas9) were 

reported in 2014. Yang and co-workers published the successful knockout of nine rabbit 

genes in in vitro cultured rabbit embryos (Yang et al., 2014). Four gene’s specific RNA 

mixture was used to create founders and eventually establish novel knockout rabbit lines 

(CD36, low density lipoprotein receptor, apolipoprotein E and ryanodine receptor 2). Some 

founder rabbit carried a biallelic mutation for the targeted gene, with other words, it was 

possible to create a homozygote knockout rabbit model at one-step. Moreover the authors 

could not detect off-target effects at least in the potential exons. Importantly, CD36 (Febbraio 

et al., 2000), low density lipoprotein receptor (Ishibashi et al., 1993) and apolipoprotein E 

have a role in atheroscleorsis and therefore the gene deleted rabbit will be or are already 

important models of different cardiac diseases in translational studies or gene therapy. CD36 

is a member of the class B scavenger receptor family of cell surface proteins, and using 



genetically modified rodents a clear role for CD36 in fatty acid metabolism and heart disease 

was identified (Febbraio et al., 2000). Mutations in the ryanodine receptor 2 gene, the fourth 

gene deleted by Yang and co-workers (2014) are associated with catecholaminergic 

polymorphic ventricular tachycardia, stress-induced polymorphic ventricular tachycardia and 

arrhythmogenic right ventricular dysplasia (Bround et al., 2012). 

 The pilot, single-gene editing studies were followed a few months later with multi-

gene knockout rabbit models in which three or five genes were simultaneously targeted in a 

single embryo, with high efficiency, underlining the power of the CRISPR/CAS technology  

(Yan et al., 2014) . Among the genes deleted the Tiki1 gene, - which is a Wnt inhibitor and 

required for embryonic patterning, as well as organogenesis-  is noticeably absent in the 

rodent lineage, but is present in Lagomorphs and all other vertebrate/mammalian species 

examined (Reis et al., 2014), outlining the special advantage of rabbit models in those 

category of genes, where the rodent ortholog of the human gene is missing.  

The efficiency and flexibility of the CRISPR/Cas9 system have called forth the possibility to 

commercially order gene targeted rabbits (http://www.sageresearchlabs.com   

Useful website to design target site for use with the CRISPR system: http://www.e-

crisp.org/E-CRISP/ 

 

 3.2. Zinc-finger nucleases - ZFN 

Zinc-finger nucleases have two domains: a DNA-binding zinc finger protein domain which is 

a tandem of 3-6 zinc finger-binding motifs each recognizing a 3 nucleotide sequence adding 

up to a specific 9-18 bp sequence. This predesigned, programmable protein domain is fused to 

a nuclease domain such as the FokI, type II endonuclease (Bibikova et al., 2001). The protein 

domain provides target specificity for the nuclease domain which in a form of a dimer cleaves 

DNA, leaving double strand breaks (Fig 2b) (Mani et al., 2005). The cell using its own repair 



pathways either rejoins the DSB with non-homologous end joining mainly resulting in 

deletions or insertions (Lieber, 1999). In most of the cases indels disrupt gene function 

resulting in a gene knock out cell. The other cellular pathway to fix the DSB is homologous 

recombination that occurs when a homologous template is present. Adding it to the system 

artificially a knock in or allele exchanged cell can be produced.  

Major drawback of the first available ZNF systems is the assembly and testing of the protein 

domain. It is a time consuming and laborious process that requires robust laboratory settings 

for designing and testing the individual and the tandemized ZFNs. The first transgenic rabbit 

with targeted gene modification was created with ZFN technology: the immunoglobulin M 

(IgM) locus was disrupted. The functional knock-out phenotype was established with high 

efficiency in a heritable way (Flisikowska et al., 2011). This rabbit model could be the first 

step to create a transgenic rabbit platform for the production of therapeutic human polyclonal 

antibodies. The first ZFN targeted transgenic rabbit with cardiovascular phenotype was an 

Apolipoprotein C-III  knockout rabbit (Yang et al., 2013). Apolipoprotein E KO rabbits were 

also produced using ZFN technology. The knockout rabbits had drastically elevated 

cholesterol and moderately increased triglyceride levels, mimicking symptoms in human heart 

disease (Ji et al., 2015). 

Useful websites for adapting ZFN technology:http://www.sigmaaldrich.com/life-

science/learning-center/biowire/biowire-fall-2010/zfn-donor-design.html 

 http://www.bioinformatics.org/primerx/cgi-bin/DNA_1.cgi 
 
 
3.3 Transcription activator-like effector nucleases - TALENs 

TALENs similarly to ZFNs build up of two domains, a protein and a nuclease domain. The 

protein domain is an artificial sequence-specific DNA-binding domain that can be costumized 

to any DNA sequence. It is originated from proteins secreted by Xanthomonas bacteria during 

colonization of its host plant. 



These proteins are highly conserved repeats derived from transcription activator-like effectors 

(TALE). Each individual TALE protein consists of 33-35 highly conserved amino acid 

repeats which are able to recognize and bind a single base of DNA. The base specificity of 

each TALE typically found at the 12 and 13 position of the domain termed repeat-variable 

diresidues (RVDs)(Streubel et al., 2012). Building up an array of TALEs it can recognize and 

bind DNA with sequence specificity. The TALE array is flanked by additional TALE-derived 

domains at the amino and carboxy-terminal. The nuclease domain, the restriction 

endonuclease FokI is fused to this artificial TALE array and after recognition and binding of 

DNA forms a dimer and cleaves double stranded DNA ( Fig 2c)(Joung and Sander, 2013). 

RAG-1 and RAG-2 deficient rabbits were created with adapting TALEN method to 

this species at first (Song et al., 2013). With the targeted gene deletion transgenic rabbits 

without mature T and B cells were created. The efficiency of genetic modification was 

extremely high. These rabbits could be used as valuable animal models for drug discovery. 

Useful websites for adapting TALEN technology https://tale-nt.cac.cornell.edu/; 

http://www.e-talen.org/E-TALEN/index.html 

4. Conclusive remarks and future directions 

Rabbit is model animal and –including the transgenic rabbits- it already has and will have its 

place among the different models of cardiac diseases. Table 2 summarizes the pros- and cons 

for the transgenic rabbit in the light of other alternatives. The available rabbit breeds as 

starting genetic material for transgenesis are not inbreds, therefore the rabbits within the 

transgenic strains might have high inter-individual variations, which should be taken into 

consideration. 

  



Table 2 Comparative advantages of transgenic animal models of cardiac diseases 

Species Advantages Best for 
Small rodents: mice, rat *shorter life span, shorter 

gestation periods 
*lower interindividual 
variability  
*lower cost 

*studying gene expression 
and function 
*assessment of 
pharmacological therapies 
(rat) 

Medium size: rabbit *fill the gap between small and 
large animal models 
*relatively inexpensive 
compared to large animals, 
*housing and maintenance 
more affordable in laboratory 
settings 
*easy to breed 
*phylogenetically closer to 
primates than rodents 
*the more diverse genetic 
background allows a better 
approximation to humans 

*translational research: drug 
testing, diagnostics 
*transgenic model to study 
the development of coronary 
and cardiovascular diseases 
and conditions 
*study the ethiology of 
atherosclerosis 
*testing endovascular 
therapeutic devices 

Large animal: porcine, 
monkey 

*similar plasma lipoprotein 
profile to humans 
*similar cardiac anatomy and 
physiology to humans 

*drug testing, xenografting 
*development and testing of 
imaging technologies and 
interventional cardiology 
 

 

Contrary to the mouse, genetically modified embryonic stem cells or induced pluripotent stem 

cells do not contribute to germline transmission in rabbit, moreover to date the somatic 

cloning worked at very low efficiency in this species (Zakhartchenko et al., 2011), however 

recently the first knock out rabbit by nuclear transfer has been created (Yin et al., 2015). 

Pronuclear microinjection remained the single applied method for twenty five years. The 

recently published SB transposon mediated transgenesis could be an efficient alternative to 

create rabbit models with human genes carrying a dominant  negative mutation, SB 

transgenesis results in one copy integration per site, compared with the less advantageous 

tandem transgene arrangements in case of traditional pronucear microinjection. In a cardiac 

disease model, which might be created with SB transgenesis, the animal will have its own 

wild type ortholog biallelic gene and upon this background optimally one or two copies of the 



transgene. Those kind of transgenic rabbits offer a relatively quick and cheap way to analyse 

the phenotype of a newly identified mutation e.g. a novel LQTS mutation identified in 

patients. 

The designer nucleases opened another avenue and made possible to remove-knockout- one 

or more rabbit genes in a single founder animal or even replace the rabbit gene with the 

mutant human ortholog gene (knock-in).  

 Due to the relative low number of transgenic rabbit strains created with either of the 

designer nucleases, limitations of those novel technologies could be mainly extrapolated from 

results obtained in cell lines. One potential unwanted effect is creation off-target mutations in 

the rabbit genome. Recent publications offer safer gene-editing solutions in cell lines, for 

example via reducing the long-time expression of the Cas9 protein packed in lentivirus (Choi 

et al., 2016) or with the high fidelity variant of the CRISPR/CAS9 nuclease with reduced  

non-specific DNA contacts (Kleinstiver et al., 2016). It is worth to mention, that contrary to 

the most recent  and effective CRISPR/CAS9 nuclease method, the  more  laborious and time 

consuming  ZFN based technology  already reached the level of specificity, that ex vivo and in 

vivo clinical trails  were permitted by the authorities and were performed successfully 

(Sharma et al., 2015; Tebas et al., 2014) 

In the future more and more suitable cardiac disease rabbit models could be used to 

analyse  the knockout /knock-in phenotype, to perform drug tests or gene therapy. Overall the 

new generation transgenic methods described above enable the fast production and as a 

consequence the availability of multiple specialized transgenic animal strains to model many 

human diseases, including cardiac diseases. 



Legend for Figures  

Figure 1. The Sleeping Beauty transposon system (Katter et al., 2013)  

A: The binary system comprise a transposon construct with the gene of interest (promoter and 

coding region) flanked by inverted terminal repeats (TIR) and the transposase helper protein. 

The transposase is introduced as in vitro synthesized mRNA.  

B: Following delivery of the components to the one cell embryos by microinjection, the 

transposase mRNA translated by the cellular machinery to transposase protein (green cube), 

binds the TIRs flanking the gene of interest (GOI) and catalyzes the excision and subsequent 

random genomic integration of the gene of interest flanked by TA sites, in one copy per 

integration site.  

Figure 2 Schematic description of the designer nucleases 

A: The clustered regularly interspaced short palindromic repeats (CRISPR) with its 

associated effector protein (CAS 9), sgRNA: a hairpin RNA structure linked to an 

approximately 20 bp long target DNA homologous sequence; PAM: protospacer adjacent 

motif, a DNA sequence motif determined by the CAS protein (TGG for Cas9) 

B:  The zinc-finger nuclease (ZFN) 

C: The transcription activator-like effector nuclease (TALEN) 
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