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Abstract 

It is essential to more reliably assess the pro-arrhythmic liability of compounds in 

development. Current guidelines for pre-clinical and clinical testing of drug candidates 

advocate the use of healthy animals/tissues and healthy individuals and focus on the test 

compound’s ability to block the hERG current and prolong cardiac ventricular repolarization. 

Also, pre-clinical safety tests utilize several species commonly used in cardiac 

electrophysiological studies. In this review, important species differences in cardiac 

ventricular repolarizing ion currents are considered, followed by the discussion on electrical 

remodeling associated with chronic cardiovascular diseases that leads to altered ion channel 

and transporter expression and densities in pathological settings. We argue that the choice of 

species strongly influences experimental outcome and extrapolation of results to human 

clinical settings. We suggest that based on cardiac cellular electrophysiology, the rabbit is a 

useful species for pharmacological pro-arrhythmic investigations. In addition to healthy 

animals and tissues, the use of animal models (e.g. those with impaired repolarization reserve) 

is suggested that more closely resemble subsets of patients exhibiting increased vulnerability 

towards the development of ventricular arrhythmias and sudden cardiac death. 

 

Keywords pre-clinical safety testing, cardiac arrhythmias, repolarization reserve, IKs, 
species differences, rabbit 
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1. Introduction 

To markedly reduce compound attrition during drug development as well as to prevent 

the relegation or withdrawal of already approved drugs from the market, the efficacy of pro-

arrhythmic liability assessment of drugs needs vast improvement. Many cardiovascular and 

non-cardiovascular compounds have been associated with provoking Torsades de Pointes 

(TdP) arrhythmia (Haverkamp et al, 2000; Redfern et al, 2003), a typical drug-induced 

chaotic ventricular tachycardia that can degenerate into ventricular fibrillation and lead to 

sudden cardiac death (SCD; Fenichel et al, 2004). It is unacceptable to use drugs for non life 

threatening pathologies that can cause SCD, however, in the clinical setting, it is very difficult 

to predict TdP arrhythmia due to its low incidence (Fenichel et al, 2004). Although 

recognized as essential to study, pro-arrhythmic potential is investigated in healthy tissue, 

isolated heart preparations and animals in pre-clinical safety assessment and in healthy 

volunteers as described by current international guidelines (ICH-S7B, 2005; ICH-E14, 2005). 

In addition, most of these tests concentrate on the potential of candidate compounds to block 

hERG current in expression systems, and on the prolongation of action potentials (AP) in 

cardiac tissue, manifested as QT interval prolongation on the surface electrocardiogram. 

However, a growing body of evidence indicates that repolarization prolongation in itself does 

not equal to increased pro-arrhythmic risk (Mattioni et al, 1989; Weissenburger et al, 1991; 

Carlsson et al, 1993; Hondeghem et al, 2001; van Opstal et al, 2001; Belardinelli et al, 2003; 

Thomsen et al, 2004; Anderson, 2006). Crucial issues of phase 3 repolarization disturbances, 

including action potential triangulation (Hondeghem et al, 2001) are not adequately addressed 

by pro-arrhythmic tests. It is clear, that drug-induced arrhythmia episodes occur mostly in 

subsets of patients that are more vulnerable to rhythm disturbances, i.e. mostly in 

cardiovascular and metabolic diseases that involve structural and/or electrical remodeling of 

the heart leading to serious impairments in conduction and/or repolarization. Such common 

examples are: congestive heart failure (Kjekshus, 1990), hypertrophic cardiomyopathy 

(Decker et al, 2009), congenital long-QT syndromes (El-Sherif and Turitto, 1999) and 

diabetes mellitus (McNally et al, 1999; Whitsel et al, 2005). Slowing of the upstroke of the 

action potential and impaired conduction also play key roles in increased arrhythmia 

susceptibility. Changes in connexin expression (Poelzing and Rosenbaum, 2004), structural 

remodeling (chamber enlargement, hypertrophy, fibrosis, etc.) significantly alter conduction 



5 
 

and contribute to the arrhythmia substrate and maintenance (Akar et al, 2004). The discussion 

of conduction disturbances is beyond the scope of this paper. 

In this review, we focus on species differences in repolarizing ion currents in animals 

most often used for cardiac electrophysiological and pro-arrhythmic investigations, followed 

by a description of electrical remodeling associated with some common chronic 

cardiovascular diseases, also showing differences among species used in pre-clinical safety 

studies. We strongly argue that the choice of species will significantly influence experimental 

results and their extrapolation to human clinical settings. 

 

2. Species differences in repolarizing potassium currents 

The repolarization of cardiomyocytes is governed by the highly regulated and 

balanced activities of inward and outward currents via different ion channels and electrogenic 

ion pumps (Fig. 1). The value of the rabbit ventricular arrhythmia and pro-arrhythmia models 

largely depend on their predictive capability to human. Human relevance is determined by the 

electrophysiological background of rabbit ventricular myocytes compared to humans and 

other frequently used animal preparations in experimental arrhythmia research or drug testing. 

Mice and rats are commonly used in arrhythmia research and to create transgenic long QT 

(LQT; Table 1) models. They have the advantage of low cost and fairly good predictive 

capability for ischaemia-induced arrhythmias. In small rodents, impulse conduction 

depending on sodium, calcium currents and connexin function, is similar to that in human. 

However, for studies on repolarization, mice and rats have limited value: they have a 

triangular AP (Fig. 2A-E) while humans, dogs and rabbits have a prominent plateau phase 

(Fig. 2F-H) and a rectangular AP (Yang et al, 2014; Nerbonne and Kass, 2005; Saito et al, 

2009; Grandy et al, 2007). The main repolarizing currents in mice and rats are transient 

outward (Ito) and ultrarapid delayed rectifier like (IKur) potassium currents, as opposed to IKr in 

dogs, rabbits and humans. Inhibition of Ito and IKur significantly prolonged AP duration in 

mice and rats (Fig. 2 B and D). The functions of IKr and IKs are still not well explored and 

controversial (Nerbonne and Kass, 2005; Babij et al, 1998; Saito et al, 2009; Grandy et al, 

2007; Yang et al, 2014) in mice. Acute administration of IKr blockers exert no effect on 

ventricular AP in mice and rats (Fig. 2A and C) but prolong repolarization in human, dog and 

rabbit (Fig. 2F-H). However, transgenic LQT1 (genetic loss of IKs function; Table 1) and 

LQT2 (loss of IKr function; Table 1) murine models exhibited arrhythmias and prolonged QT 

intervals (Drici et al, 1998; Babij et al, 1998). A recent report by Yang et al. (Yang et al, 
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2014) may resolve this controversy: prolonged exposure to IKr inhibitors lengthened the AP in 

mice (Fig. 2E) and caused afterdepolarizations. However, the authors found that the IKr 

blocker indirectly (involving the phosphoinositide 3-kinase pathway) augmented the late 

component of INa and prolonged repolarization by increasing an excess of inward current. 

Based on the above, it is assumed that murine transgenic LQT models may have limited 

pharmacological and pathophysiological implications for humans. On the other hand, rabbit 

transgenic LQT models may have more relevance to humans, since rabbits and humans have 

similar cardiac ventricular action potential waveforms and potassium channel expression 

patterns (Figs. 3-5). The function and gating of different types of potassium channels are 

similar in rabbits and humans (Figs. 3-5), with the exception of Ito. Kv1.4 channels are 

responsible for Ito in rabbits that have slower recovery from inactivation than Kv4.3 channels 

expressed in human ventricle (Wang et al, 1999; and own unpublished results). These 

differences may lead to yet unexplored differences in Phase 1 repolarization and arrhythmia 

susceptibility between rabbits and humans. 

In rabbits, IKs and IKr show higher current densities (Fig. 3) with similar gating kinetics 

(Fig. 4) compared to those in human. Also, the repolarization capacity of rabbits (Fig. 5) and 

dogs (Jost et al, 2013) due to higher IK1 current densities is most likely more robust than that 

in human. In contrast to rabbits, guinea pigs lack Ito (Findlay, 2003), and express very strong 

IKs with slow deactivation kinetics compared to rabbit and human ventricles (Lu et al, 2001). 

As the main phase 3 repolarizing current, IKr, is very similar in rabbits and humans, and as the 

other considerations above suggest, rabbits are more useful than rats, mice or guinea pigs for 

electrophysiological, pharmacological antiarrhythmic and pro-arrhythmic investigations. 

 

3. Electrical remodeling in cardiovascular and metabolic diseases: implications for 
arrhythmia susceptibility 

A brief discussion of electrical remodeling associated with cardiovascular diseases is 

necessary to appreciate why it leads to increased sensitivity to arrhythmias and why it is not 

satisfactory to use only healthy animals and tissues for the assessment of TdP liability. During 

the course of a number of cardiovascular diseases (e.g. heart failure, atrial fibrillation, 

myocardial infarction, etc.), in order to maintain intracellular homeostasis and cardiac 

function, characteristic adaptive changes appear in the structure and electrophysiology of the 

heart. These changes are referred to as structural and electrical remodeling, respectively, and 

the longer they persist, the higher the chance for further deterioration of cardiac function and 
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arrhythmia development. Here we discuss the effects of electrical remodeling on 

repolarization in three chosen clinical entities with repolarization disturbances: congestive 

heart failure, hypertrophic cardiomyopathy and diabetes mellitus. 

In congestive heart failure, cardiac hypertrophy is accompanied by profound electrical 

remodeling and it is consistently found that the Ito (Kaab et al., 1996; Beuckelmann et al., 

1999), the IKs (Li et al, 2004; Li et al, 2002; Tsuji et al, 2000) and IK1 (Li et al, 2004; Rose et 

al, 2005) repolarizing currents are downregulated, while most investigations find that the IKr 

expression does not change (Li et al, 2004; Li et al, 2002; Tsuji et al, 2000). In addition, 

increased slowly inactivating, late sodium current (INa,late) has been shown to contribute to 

APD prolongation and arrhythmias in HF (Valdivia et al, 2005). Therefore, the repolarization 

capacity of failing cardiomyocytes is markedly reduced, leading to the slowing of phase 3 

repolarization and prolongation of the AP and QT intervals (Nuss et al, 1999; Janse, 2004), to 

early afterdepolarization (EAD) formation (Janse, 2004) and to Torsades de Pointes (El-Sherif 

and Turitto, 1999). Accordingly, increased risk of acquired repolarization prolongation was 

found in patients with congestive heart failure (Lehmann et al, 1996). In a rabbit model of HF, 

increased Na+/Ca2+ exchanger (NCX) and decreased IK1 expression have been shown to be 

important contributors to afterdepolarizations and arrhythmias (Pogwizd et al, 2001). The 

hyperpolarization-activated, cyclic nucleotide-gated pacemaker “funny current” (If), normally 

playing a key role in pacemaking in the sinus node (Biel et al, 2002) is upregulated in 

ventricular myocardium in human HF, providing arrhythmogenic triggers (Stillitano et al, 

2008). Based on the above, it is not surprising that approximately 50% of HF patients are lost 

due to SCD resulting from ventricular fibrillation (Kjekshus, 1990), and that compounds with 

mild or moderate ion channel modulating effects can precipitate serious ventricular 

arrhythmias unexpectedly. 

Hypertrophic cardiomyopathy (HCM) is a common hereditary cardiac disease caused 

by different mutations in genes encoding sarcomeric proteins. HCM is characterized by left 

ventricular hypertrophy, myocardial fibrosis and myofiber disarray that may represent an 

arrhythmogenic substrate of the disease (Maron 2002; Gersh et al, 2011). HCM is the most 

common cause of SCD in young individuals (Decker et al, 2009) and in young (<35 years) 

competitive athletes (Maron et al, 2009). Remodeling in HCM is progressive (Olivotto et al, 

2012) and a recently a close correlation was found between the degree of adverse remodeling 

and increased risk for SCD in patients with HCM (Vriesendorp et al, 2014). Although the 

exact elements of ion channel remodeling have not been thoroughly explored in HCM, 



8 
 

increased INa,late and beneficial effects of its inhibition have been described in human HCM 

(Coppini et al, 2013.). 

An increased risk for SCD has been identified in patients with both adult and juvenile 

diabetes mellitus (McNally et al, 1999; Whitsel et al, 2005). Prolongation of the frequency 

corrected QT interval (QTc) along with increased QTc dispersion was found in patients with 

type 1 diabetes (Suys et al, 2002; Veglio et al, 2002). The reasons for repolarization 

prolongation and increased arrhythmia sensitivity in diabetes are poorly understood. Most of 

the earlier investigations in this regard were carried out in diabetic rats (Magyar et al, 1992; 

Rusznák et al, 1996; Shimoni et al, 1994; Shimoni et al, 1995; Xu et al, 1996; Tsuchida et al, 

1997). These rat studies observed a significantly descreased amplitude of Ito, that was later 

attributed to lower expression of Kv4.2 and Kv4.3 (Qin et al, 2001). However, as it was 

described in section 2, rat and human ventricular repolarization are very different. 

Consequently, the results of studies on repolarization in diabetic rats can be misleading in the 

understanding of the mechanisms involved in diabetic patients. Subsequent studies have been 

performed in species with artificially induced diabetes that have ventricular repolarization 

more relevant to human. In diabetic dogs, in addition to reduced Ito amplitude, a decreased IKs 

density was found while ICa,L, IK1 and IKr were unaltered (Lengyel et al, 2007). In a study 

performed in diabetic rabbits, Zhang et al (2007) observed reduced IKr, however, other 

repolarizing currents were not investigated in their study. Lengyel et al. (2008) have found 

that IKs density was significantly reduced, however, Ito, IKr, IK1 and ICa,L were not different 

from control in rabbits with diabetes induced by alloxan administration. 

In summary, the pathological alterations in the expression of ion channels can be 

distinctly different in species most commonly used for arrhythmia studies. The remodeling of 

these repolarizing and depolarizing currents lead to decreased repolarizing capacity that in 

turn creates increased susceptibility to arrhythmia development („substrate”) in pathological 

settings. Altered NCX and If expression can provide triggers for arrhythmia initiation. The 

decreased repoarizing capacity is referred to as reduced repolarization reserve, as detailed in 

the following section. 

 

4. Repolarization reserve 

Dr. Roden suggested the concept of repolarization reserve first (Roden, 1998), that 

emphasizes the redundant nature of myocardial repolarizing capacity. The loss or impaired 

function of one or more repolarizing potassium currents, and/or gain of function of inward 
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currents (e.g. LQT3, Table 1) does not always lead to marked repolarization prolongation on 

the ECG, since other currents can compensate. In these cases, however, the heart will be more 

susceptible to additional (even mild) repolarization inhibition and to the development of 

arrhythmias (Roden and Yang, 2005; Varró and Baczkó, 2011). Repolarization reserve 

enables the heart to withstand additional repolarization challenges, and was experimentally 

demonstrated in different species including rabbit (Varró et al, 2000; Biliczki et al, 2002). 

Several repolarizing currents have been implicated in repolarization reserve, however, IKs is 

critical both in experimental animals (Varró et al 2000; Lengyel et al, 2001; Volders et al, 

2003; Abi-Gerges et al, 2006, Lengyel et al, 2007; Johnson et al, 2010) and in humans (Jost et 

al, 2005). A recent study found that IKs densities were lower in human than in rabbit and dogs 

(Jost et al, 2013a), suggesting a weaker repolarization reserve in humans. The kinetics of 

rabbit IKs is more similar to human (Fig. 3) compared to that in guinea-pigs or dogs (Jost et al, 

2013b). The role of IKs in repolarization reserve is well characterized compared to other 

potassium currents. The different IKs density and kinetics data in different species frequently 

used in cardiac electrophysiological studies, however, caution us about the human 

extrapolation of the results. 

Other potassium currents can also be involved in repolarization reserve: Ito may be a 

contributor in dogs (Virág et al, 2011). The IK1 current has been shown to be important in 

dogs (Biliczki et al, 2002), and in patients with LQT7 (Table 1) the loss of function mutations 

in Kir2.1 channels significantly reduce IK1 current and increase pro-arrhythmic risk without 

marked QT prolongation on the ECG (Zhang et al, 2005). However, significant species 

differences exist in the composition of channel subtypes that are eventually responsible for the 

IK1 current (Melnyk et al, 2002; Anumonwo and Lopatin, 2010), leading to different IK1 

current characteristics (Dhamoon et al, 2004). These differences can lead to species dependent 

arrhythmia susceptibilities (Husti et al, 2015) and responses to K+ channel blockers 

(Nerbonne and Kass, 2005). Recently, in line with these differences, dogs and rabbits were 

found to have distinct arrhythmia susceptibilities following the combined pharmacological 

inhibition of IK1, IKs and IKr (Husti et al, 2015). It is likely that due to stronger IK1 and IKs 

found in dogs compared to rabbits and humans, dogs may possess larger repolarization 

reserve than rabbits and humans. In summary, rabbit pro-arrhythmia models with impaired 

repolarization reserve may represent enhanced arrhythmia susceptibility and may be more 

useful than dog models in predicting human electrophysiological changes following 

administration of drugs affecting repolarization. 
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It is important to note that repolarization reserve changes dynamically. Xiao and co-

workers (Xiao et al, 2008) have shown that in cultured adult canine ventricular myocytes a 

one-day incubation with the selective IKr blocker dofetilide, following an expected 

prolongation of the APD at the beginning, led to shortened APD, that is the repolarization 

prolonging effect of dofetilide was blunted. Enhanced IKs was found in dofetilide incubated 

cells compared to control cardiomyocytes, and the results were supported by increased 

KvLQT1 and MinK protein levels, while the mRNA for both of these proteins did not change, 

pointing to the involvement of post-transcriptional regulatory mechanisms. In fact, miR-133a 

and miR-133b expressions were reduced in dofetilide incubated cells. Muscle-specific 

microRNAs repressed IKs-encoding genes without changing the mRNA for KvLQT1 (Luo et 

al, 2007). The results suggest that in case of chronic administration of drugs with cardiac 

potassium channel blocking effects (antibiotics, antipsychotics, antihistamines, NSAIDs, etc.), 

a compensatory IKs upregulation may occur in normal myocardium in an attempt to restore 

normal myocardial repolarization. In case of IKs downregulation (e.g. cardiac hypertrophy) or 

genetic impairment (e.g. LQT1 syndrome), such seemingly harmless compounds may cause 

serious and unexpected repolarization disturbances. The loss of IKs function can be especially 

harmful when sympathetic tone and intracellular cAMP levels are elevated. In this case, the 

IKs mediated repolarization shortening is prevented but APD prolongation by cAMP enhanced 

ICa,L is retained, leading to pro-arrhythmia (Stengl et al, 2006). 

5. In vivo proarrhythmia models with reduced repolarization reserve: role of the rabbit 

Based on the discussion above it is conceivable that in addition to models using 

healthy animals and tissue preparations, models with impaired repolarization reserve are 

needed for more reliable testing of drug-induced arrhythmia liability. As an example 

illustrating the clinical significance of repolarization reserve, we would like to highlight an 

interesting clinical study (Fig. 6), where patients who previously developed TdP („Study 

Group”) due to the administration of QT prolonging compounds responded with a 

significantly more pronounced QTc lengthening to the same test dose of sotalol compared to 

patients without the history of TdP (Kääb et al, 2003). The QTc intervals were similar in both 

groups at baseline, and it is assumed that the markedly different responses to the IKr blocker 

sotalol were due to differences in repolarization reserve in the two groups. 

The first large animal experimental proarrhythmia model with impaired repolarization 

reserve was the dog model with chronic and complete atrioventricular block (Chezalviel et al, 

1995; Vos et al, 1995). This model features bradycardia, eccentric ventricular hypertrophy 
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(Vos et al, 1998), and a marked electrical remodeling with reduced IKs density that contributes 

to increased suceptibility to TdP arrhythmias (Volders et al, 1999; Thomsen et al, 2004). The 

advantages of this model include a stable stage of compensated myocardial hypertrophy 

without deteriorating into heart failure (Schoenmakers et al, 2003), high proarrhythmia 

reproducibility in the same animal (Verduyn et al, 2001). A number of studies used this model 

for the assessment of proarrhythmic side affects of drugs (Chiba et al, 2000; Sugiyama et al, 

2002; Thomsen et al, 2003; Takahara et al, 2006). The disadvantages of this model are related 

to its high cost, a need for special expertise in performing AV ablation, and duration of the 

experiments since several months are needed for the ventricular hypertrophy to develop, 

which is a prerequisite for the increased arrhythmia susceptibility in dogs with AV block (Vos 

et al, 1998). In this model, marked QTc prolongation following amiodarone administration 

did not cause a significant increase in TdP incidence, similarly to observations in humans (van 

Opstal et al, 2001). 

 The first rabbit pro-arrhythmia model investigating the development of TdP in in vivo 

settings was established at the beginning of the nineties by Carlsson and co-workers. One of 

the main aspects of this model is the i.v. administration of the α1-adrenergic agonist 

methoxamine, that is essential for the model’s vulnerability towards ventricular arrhythmias 

(Carlsson et al, 1990; Carlsson et al, 1993). Therefore, it is important to note that test 

compounds with α-adrenergic blocking properties may register as false negative drugs in this 

model. The exact mechanism responsible for methoxamine-induced arrhythmia susceptibility 

is not established, however, α1-adrenergic receptor mediated increase in [Ca2+]i definitely 

plays a role, probably leading to increased triggered activity (Carlsson et al, 1996; Volders et 

al, 2000). The relation of this model to repolarization reserve is not clear, however, the short-

term variability of the QT interval (STVQT), a suggested surrogate biomarker for the 

prediction of ventricular arrhythmias (Berger et al, 1997; Hondeghem et al, 2001; for a 

comprehensive review see Varkevisser et al, 2012), was elevated and showed correlation with 

subsequent arrhythmia development in this model (Jacobson et al, 2011) similarly to other 

rabbit models with impaired repolarization reserve (Lengyel et al, 2007; Major et al, 2016, 

submitted). Also, extensive work has been carried out by Farkas et al. in Langendorff-

perfused rabbit hearts to assess the value of different biomarkers for the prediction of pro-

arrhythmic activities of drugs with special attention to beat-to-beat variability, also influenced 

by intrinsic heart rate changes, termed „absolute beat-to-beat variability (Orosz et al, 2014; 

Sarusi et al, 2014). 
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 Since in the chronic AV-block dog model IKs was shown to be downregulated and 

additional IKr block resulted in high incidence of TdP arrhythmias, it was hypothesized that 

pharmacological inhibition of IKs could similarly prime the heart to arrhythmias by drugs 

exerting additional repolarization inhibition. Indeed, in anesthetized rabbits (and in conscious 

dogs as well) this study showed an increased incidence of TdP when IKs (by HMR1556) and 

IKr (by dofetilide) were inhibited in combination, and the increased incidence of TdP was 

associated with elevated beat-to-beat variability of the QT interval (Lengyel et al, 2007).  In 

contrast to the chronic AV-block canine model, where chronic loss of IKs function is present 

due to IKs downregulation, this rabbit pro-arrhythmia model could refer to a clinical situation 

where compounds with different potassium channel blocking profiles are administered 

concomitantly. The acute i.v. administration of drug combinations in an anesthetized rabbit 

present far fewer technical challenges to investigators compared to the dog model described 

above (Thomsen, 2007). In this model with pharmacologically induced impairment of 

repolarization reserve, the non-steroidal antiinflammatory drug diclofenac increased TdP 

incidence, while it did not alter repolarization in normal rabbit heart tissue and did not cause 

arrhythmias in animals with intact repolarization reserve (Kristóf et al, 2012). In the same 

study diclofenac inhibited IKs and IKr and did not influence Ito and IK1 (Kristóf et al, 2012). 

Combined pharmacological inhibition of not only IKs and IKr, but IK1+IKr and IK1+IKs can also 

lead to impaired repolarization reserve and increased TdP incidence, with rabbits showing 

more sensitivity to IK1+IKr and dogs to IK1+IKs inhibition (Husti et al, 2015). This study 

concluded that the dog and rabbit exhibited different repolarization reserve and arrhythmia 

sensitivity profiles, with possible important relevance to human extrapolation of results 

obtained in these species (Husti et al, 2015). 

 Another experimental approach to reduce repolarization reserve is the genetic 

modification of ion channels involved in cardiac repolarization in transgenic animal models. 

These models could have clinical relevance by representing patients with similar mutations in 

affected ion channels, however, the choice of species – mouse versus rabbit - is very 

important for obtaining clinically meaningful results. The first two transgenic LQT rabbit 

models were created by Brunner et al (2008), overexpressing the dominant-negative mutants 

of the pore-forming human KvLQT1 (LQT1) or HERG channels (LQT2), respectively. These 

landmark transgenic rabbit models are expertly discussed in another review of this issue by 

Lang et al (2016, this issue, in press). These rabbit LQT models exhibited a strong phenotype, 

including prolongation of the action potential and QT intervals, and spontaneous SCD in 

LQT2 rabbits (Brunner et al, 2008). In order to achieve a somewhat milder impairment of 
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repolarization reserve, a model would be needed where the incidence of spontanous 

arrhythmias was lower with retained increased susceptibility to arrhythmias. For this purpose, 

targeting the β-regulatory subunit of the IKs channel, minK (encoded by KCNE1) was 

identified. 

Although transgenic mouse models were previously created affecting the IKs channel, 

including KCNE1 knockout (Drici et al, 1998), knock-in (Nishio et al, 2009; Rizi et al, 2008) 

and dominant negative loss-of-function mutation (Demolombe et al, 2001) models, mice have 

approximately 10 times faster heart rates and a number of important differences in their 

cardiac repolarization compared to humans (Nerbonne and Kass, 2005). Therefore, it is not 

surprising that transgenic mouse models can only mimic some aspects of the human LQT 

phenotype (Salama and London, 2007). To create a transgenic rabbit model with milder 

impairment of repolarization reserve, the heart specific overexpression of the human mutant 

KCNE1, carrying a G52R missense mutation was performed in rabbits (Major et al, 2016, in 

press). This mutation was first identified in a Chinese LQT family (Ma et al, 2003). In this 

family, seven individuals were mutation carriers, five of them were clinically affected, on the 

other hand, the ECG was normal in two family members (Ma et al, 2003). A dominant-

negative effect of the mutant G52R-KCNE1 was described, reducing IKs current amplitude by 

50% (Ma et al, 2003). It was shown subsequently that the G52R mutation did not affect 

channel-subunit assembly or channel trafficking, but resulted in KCNE1 to be unable to 

modulate the gating properties of KCNQ1 (Harmer et al, 2010). These G52R-KCNE1 

overexpressing animals were subjected to a marked repolarization challenge by the i.v. 

administration of the IKr blocker dofetilide (Major et al, 2016, in press). At baseline, before 

dofetilide administration, the heart rate corrected QT-index of the LQT5 animals was mildly 

but significantly longer, and had a significantly higher STVQT. A significantly larger number 

of animals developed TdP following dofetilide administration, paralleled by a further increase 

in STVQT. Patch-clamp studies in isolated ventricular myocytes surprisingly did not show 

differences in IKs current amplitude, however, demostrated accelerated IKs and IKr deactivation 

kinetics in LQT5 transgenic rabbits compared to their wild-type littermates (Major et al, 2016, 

in press). It was concluded that LQT5 transgenic rabbits exhibited increased arrhythmia 

susceptibility and may represent a promising model for testing the pro-arrhythmic potential of 

candidate compounds. Further studies are needed to validate this model using drugs with 

proven pro-arrhythmic liability. 

It has to be mentioned that the anesthetic protocol used in the rabbit in vivo pro-

arrhytmia studies can have profound effects on the development of arrhythmias (Odening et 
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al, 2008; Vincze et al, 2008). In this regard, xylazine/ketamine-anaesthesia can be 

recommended, since it does not seem to affect repolarizing currents (Odening et al, 2008). 

As described in section 3, hypertrophic cardiomyopathy is associated with increased 

incidence of SCD, and the assessment of SCD risk is incomplete since established SCD risk 

factors demonstrated only a low positive predictive value (McKeown and Muir, 2013). 

Therefore, for estimation of HCM associated arrhythmia risk, an animal model of HCM in a 

species that has similar repolarization and repolarization reserve profile to humans would be 

very useful.  Interestingly, transgenic rabbit models of HCM were described as early as 1999 

(Marian et al, 1999). However, few studies investigating arrhythmia mechanisms in 

transgenic HCM rabbits can be found in the literature, mainly concentrating on pathological 

aspects of conduction in this model (Ripplinger et al, 2007; Lombardi et al, 2009). A recent 

clinical study from our group found increased short-term variability of the QT interval that 

highly correlated with indices of left ventricular hypertrophy in patients with HCM (Orosz et 

al, 2015). Therefore, it is recommended that further studies are performed in transgenic 

rabbits with HCM regarding repolarization abnormalities and sensitivity of the animals to 

drug-induced arrhythmias. 

 

6. Conclusions 

Current guidelines for pre-clinical and clinical testing of drug-induced arrhythmia liability 

mostly utilize healthy animals or individuals and concentrate on whether the test compound 

prolongs ventricular repolarization, or blocks the hERG current in cellular expression 

systems. Significantly less attention is paid to key issues of phase 3 repolarization 

disturbances such as AP triangulation, reverse use dependence of AP prolongation and spatial 

dispersion and temporal instability of repolarization. Also, in addition to K+ current 

disturbances, alterations (increases and reductions) in inward currents can also destabilize 

repolarization and provoke TdP (Hondeghem et al, 2010). For pre-clinical testing, several 

animal species are used. In this review, we have discussed important species differences in 

cardiac ventricular repolarizing currents, as well as the substantial structural and electrical 

remodeling associated with chronic cardiovascular diseases, leading to very different cardiac 

ion channel and/or transporter expression in pathological settings and to reduction of the 

repolarizing capacity of the heart, i.e. impairment of repolarization reserve. Remarkably, these 

pathological expression changes can also show differences among species used in pre-clinical 

safety studies. 
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 Therefore, the choice of species markedly influences experimental outcome and 

extrapolation of results to human clinical settings. We argue that based on cellular ventricular 

electrophysiology, the rabbit should be a useful species for electrophysiological, 

pharmacological antiarrhythmic and pro-arrhythmic investigations. In particular, the 

repolarization reserve of the rabbit resembles human repolarization reserve similarly as that 

found in dogs. 

However, for practical reasons, advantages of rabbit models should be mentioned 

compared to canine models, these include reduced cost (breeding, animal keeping), the 

already existing and proven technology for the creation of transgenic animals and favorable 

ethical considerations (the rabbit is not a pet animal), in spite of the fact that the size of the 

heart and heart rates of the dog are similar to those in humans. 

In conclusion, in cardiac safety testing, although the investigations on healthy animals 

and individuals are still important, the addition of models recapitulating human disease are 

definitely needed. These additions are justified in order to test compounds in models that 

more closely resemble patient subpopulations with increased vulnerability to ventricular 

arrhythmias and sudden cardiac death, such as congestive heart failure, hypertrophic 

cardiomyopathy, congenital LQT syndromes and diabetes mellitus. 
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Figure 1. Illustration of the main transmembrane ionic currents and electrogenic pumps 

shaping the ventricular cardiac action potential. Specific blockers are also included. The 

transmembrane currents shown are not proportional to the actual current densities. Channel 

proteins that mediate these currents are also indicated. Reproduced from Varró and Baczkó, 

2011, with permission. 

 

Figure 2. Representative action potential recordings from different species frequently used in 

cardiac electrophysiological research. (A) The lack of effect of acute administration of the IKr 

blocker dofetilide, and the prolonging effect of 4-aminopyridine (4-AP) (B) on action 

potentials in mice. (C) Lack of effect of the IKr blocker sotalol on the AP in a rat papillary 

muscle preparation. (D) The significant AP prolonging effect of the combined Ito and IKur 

inhibitor AVE0118 in rat. (E) Extended (5 h) application of dofetilide prolonged the AP in 

mice. Sotalol exerts significant AP lengthening effect in (F) humans, (G) dogs, and (H) 

rabbits. Panels A, B and E reproduced from Yang et al, 2014; panel D from Nagy et al, 2009; 

panel F from Jost et al, 2013; panel G from Varró et al, 2000, with permission. Panels C and 

H show unpublished results from our laboratory. 

 
Figure 3. (A) Original recordings of E-4031 sensitive (IKr, left) and L-735.821 (IKs, right) 

rapid and slow delayed rectifier potassium currents in undiseased human (top), and rabbit 

(bottom) ventricular myocytes. Nisoldipine (1 µM) was used to block L-type inward calcium 

current (ICaL) and L-735,821 (100 nM) or E-4031 (1 µM) to block IKr or IKs currents, 

respectively. (B) The peak IKr (left) and IKs (right) tail current-voltage (I-V) relationship in 

undiseased human (triangles) and rabbit (diamonds) ventricular myocytes. IKr and IKs currents 

were examined in isolated human or rabbit ventricular myocytes using test pulses of 1000 ms 

(IKr) or 5000 ms (IKs) in duration to between -20 mV and +50 mV from the holding potential 

of -40 mV. The pulse frequency was 0.05 Hz (IKr) or 0.1 Hz (IKs). Unpublished data from our 

laboratory. 

 
Figure 4. Activation and deactivation kinetics of IKr (A) and IKs (B), in undiseased human 

(left) and rabbit (right) ventricular myocytes. Activation kinetics of IKr and IKs were measured 

as tail currents at -40 mV, after test pulses to +30 mV with duration gradually increasing 

between 10 and 5000 ms. Deactivation kinetics of IKr and IKs outward tail currents were 

measured at -40 mV, after a 1000 ms (for IKs) or 5000 ms (for IKs), respectively, long test 
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pulse to +30 mV. Average IKr and IKs activation and deactivation time constants () 

values±SEM are given in insets. Adapted from Iost et al, 1998; Virag et al, 2001 and Lengyel 

et al, 2001, with permission. 

 
Figure 5. (A) Original recordings of inward rectifier potassium (IK1) currents in undiseased 

human (left), and rabbit (right) ventricular myocytes. IK1 current was studied by measuring the 

steady-state current level at the end of the 400 ms long voltage pulse in the voltage range of -

120 to 0 mV with a pulse frequency of 0.33 Hz. The holding potential was -90 mV. 

Nisoldipine (1 µM) was used to block L-type inward calcium current. (B) Current-voltage 

relationships of IK1 current in human (circle) and rabbit (triangle) ventricular myocytes 

measured after depolarizing voltage steps beetween -80 mV to 0 mV (outward range of IK1 

current). Values represent mean±SEM. Insets show applied voltage protocols on both panels. 

Adapted from Jost et al., 2013, with permission and unpublished data from our laboratory. 

 
Figure 6. Clinical significance of repolarization reserve. Changes in individual QTc intervals 

in control patients (A) and in patients with suspected acquired long QT syndrome (B, Study 

Group) following the i.v. administration of sotalol. The dotted line represents the cut-off value 

of 480 ms that differentiated between the study group and the control group. From Kääb et al, 

2003, with permission. 
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Type Affected gene Affected protein – ionic current Mutation result 

LQT1 KCNQ1 KVLQT1 - IKs loss of function 

LQT2 KCNH2 KV11.1 - IKr loss of function 

LQT3 SCN5A NaV1.5 - INa gain of function 

LQT4 ANKB Ankyrin-B – INCX, INaK loss of function 

LQT5 KCNE1 (minK) MinK - IKs loss of function 

LQT6 KCNE2 (MiRP1) MiRP1 - IKr loss of function 

LQT7 KCNJ2 Kir2.1 - IK1 loss of function 

LQT8 CACNA1c CaV1.2α1 - ICa,L gain of function 

LQT9 CAV3 Caveolin- INa  

LQT10 SCN4B Navβ4- INa gain of function 

LQT11 AKAP9 Yotiao – IKs loss of function 

LQT12 SNTA1 α-syntrophin - INa gain of function 

LQT13 KCNJ5 Kir3.4 - IK,ACh loss of function 

 

Table 1. List of congenital long QT syndromes, affected genes, proteins and ionic currents. 

 

 



29 
 

 

 

 

Figure 1. Illustration of the main transmembrane ionic currents and electrogenic pumps shaping the 
ventricular cardiac action potential. Specific blockers are also included. The transmembrane currents 
shown are not proportional to the actual current densities. Channel proteins that mediate these currents 
are also indicated. Modified from Varró and Baczkó, 2011, with permission. 
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Figure 2. Representative action potential recordings from different species frequently used in cardiac 
electrophysiological research. (A) The lack of effect of acute administration of the IKr blocker 
dofetilide, and the prolonging effect of 4-aminopyridine (4-AP) (B) on action potentials in mice. (C) 
Lack of effect of the IKr blocker sotalol on the AP in a rat papillary muscle preparation. (D) The 
significant AP prolonging effect of the combined Ito and IKur inhibitor AVE0118 in rat. (E) Extended 
(5 h) application of dofetilide prolonged the AP in mice. Sotalol exerts significant AP lengthening 
effect in (F) humans, (G) dogs, and (H) rabbits. Panels A, B and E reproduced from Yang et al, 2014; 
panel D from Nagy et al, 2009; panel F from Jost et al, 2013; panel G from Varró et al, 2000, with 
permission. Panels C and H show unpublished results from our laboratory. 
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Figure 3. (A) Original recordings of E-4031 sensitive (IKr, left) and L-735.821 (IKs, right) rapid and 
slow delayed rectifier potassium currents in undiseased human (top), and rabbit (bottom) ventricular 
myocytes. Nisoldipine (1 µM) was used to block L-type inward calcium current (ICaL) and L-735,821 
(100 nM) or E-4031 (1 µM) to block IKr or IKs currents, respectively. (B) The peak IKr (left) and IKs 
(right) tail current-voltage (I-V) relationship in undiseased human (triangles) and rabbit (diamonds) 
ventricular myocytes. IKr and IKs currents were examined in isolated human or rabbit ventricular 
myocytes using test pulses of 1000 ms (IKr) or 5000 ms (IKs) in duration to between -20 mV and +50 
mV from the holding potential of -40 mV. The pulse frequency was 0.05 Hz (IKr) or 0.1 Hz (IKs). 
Unpublished data from our laboratory. 
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Figure 4. Activation and deactivation kinetics of IKr (A) and IKs (B), in undiseased human (left) and 
rabbit (right) ventricular myocytes. Activation kinetics of IKr and IKs were measured as tail currents at -
40 mV, after test pulses to +30 mV with duration gradually increasing between 10 and 5000 ms. 
Deactivation kinetics of IKr and IKs outward tail currents were measured at -40 mV, after a 1000 ms 
(for IKs) or 5000 ms (for IKs), respectively, long test pulse to +30 mV. Average IKr and IKs activation 
and deactivation time constants () values±SEM are given in insets. Adapted from Iost et al, 1998; 
Virag et al, 2001 and Lengyel et al, 2001, with permission. 
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Figure 5. (A) Original recordings of inward rectifier potassium (IK1) currents in undiseased human 
(left), and rabbit (right) ventricular myocytes. IK1 current was studied by measuring the steady-state 
current level at the end of the 400 ms long voltage pulse in the voltage range of -120 to 0 mV with a 
pulse frequency of 0.33 Hz. The holding potential was -90 mV. Nisoldipine (1 µM) was used to block 
L-type inward calcium current. (B) Current-voltage relationships of IK1 current in human (circle) and 
rabbit (triangle) ventricular myocytes measured after depolarizing voltage steps beetween -80 mV to 0 
mV (outward range of IK1 current). Values represent mean±SEM. Insets show applied voltage 
protocols on both panels. Adapted from Jost et al, 2013, with permission and unpublished data from 
our laboratory. 
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Figure 6. Clinical significance of repolarization reserve. Changes in individual QTc intervals in 
control patients (A) and in patients with suspected acquired long QT syndrome (B, Study Group) 
following the i.v. administration of sotalol. The dotted line represents the cut-off value of 480 ms that 
differentiated between the study group and the control group. From Kääb et al, 2003, with permission. 

 


