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Abstract

Introduction

While progressive MRI brain changes characterize advanced Parkinson’s disease

(PD), little has been discovered about structural alterations in the earliest phase of the dis-

ease, i.e. in patients with motor symptoms and with normal cognition. Our study aimed to

detect grey matter (GM) and white matter (WM) changes in PD patients without cognitive

impairment.

Methods

Twenty PD patients and twenty-one healthy controls (HC) were tested for attention, exec-

utive function, working memory, and visuospatial and language domains. High-resolution

T1-weighted and 60 directional diffusion-weighted 3T MRI images were acquired. The

cortical, deep GM and WM volumes and density, as well as the diffusion properties of

WM, were calculated. Analyses were repeated on data flipped to the side of the disease

origin.

Results

PD patients did not show any significant differences from HC in cognitive functioning or in

brain volumes. Decreased GM intensity was found in the left superior parietal lobe in the

right (p<0.02) and left (p<0.01) flipped data. The analysis of original, un-flipped data dem-

onstrated elevated axial diffusivity (p<0.01) in the superior and anterior corona radiata,

internal capsule, and external capsule in the left hemisphere of PD relative to HC, while

higher mean and radial diffusivity were discovered in the right (p<0.02 and p<0.03, respec-

tively) and left (p<0.02 and p<0.02, respectively) in the fronto-temporal WM utilizing flipped

data.
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Conclusions

PD patients without cognitive impairment and GM atrophy demonstrated widespread alter-

ations of WM microstructure. Thus, WM impairment in PD might be a sensitive sign preced-

ing the neuronal loss in associated GM regions.

Introduction

Parkinson’s disease (PD) is associated with alterations of motor functions and a spectrum of

cognitive impairments. Distinct levels of cognitive deficits are defined in PD, including mild

cognitive impairment (PD-MCI) and PD dementia (PDD), although careful psychological test-

ing could reveal a restricted deficit of certain cognitive functions even in the earliest stages of

PD [1–3].

While PD-MCI and PDD are generally associated with certain level of structural

impairment of both white matter (WM) and cortical grey matter (GM) (for review, see [4]),

studies evaluating cognitively unimpaired PD patients have postulated contradictory conclu-

sions. Some studies detected minor [5] or no WM changes [6]; others demonstrated extensive

[7, 8] WM alterations with a critical relationship between WM changes and cognitive perfor-

mance. The diversity of the results may be influenced by the fact that the studied cohorts were

often defined as non-demented patients, including patients with both normal and slightly

impaired cognition. We studied PD patients with no clinical cognitive impairment (PD-NCI),

i.e. patients with cognition that was not significantly different from that of normal subjects.

Melzer et al. [5] observed that PD with normal cognition is associated with a spatially restricted

loss of microstructural WM integrity, and these alterations increase with cognitive dysfunc-

tion; Hattori et al. [6] did not observe any WM alterations in PD-NCI compared with control

subjects. A similar contradiction in PD-NCI was reported for cortical alterations. A joint anal-

ysis of both GM and WM profiles in a PD cohort found extensive WM abnormalities in sub-

jects with PD-MCI and PDD, whereas cortical atrophy was only evident in the PDD group [9].

While most studies in the PD-MCI depicted certain level of GM atrophy [10, 11], few reported

absence of cortical GM atrophy in PD-MCI [12, 13], leading to the assumption that GM reduc-

tion occurs later in the disease and might be not present in PD-NCI.

Previous studies [14, 15] challenged the classical view that WM degeneration, with a loss of

axons and myelin, occurs secondary to GM pathology. They also raised the intriguing possibil-

ity that WM alterations in PD might be a sensitive marker preceding the neuronal loss in asso-

ciated GM regions [4]. These reports motivated our interest in WM and GM analysis in

PD-NCI to answer the question of whether a WM alteration is present in early PD indepen-

dent of the GM alteration. The previous studies focused on cortical GM; we studied both the

cortical and subcortical (basal ganglia, thalamus) GM. To our knowledge, this is the first study

comparing the hemispheric WM with the cortical as well as subcortical GM volumes.

We utilized a combined analysis of both T1-weighted and diffusion-weighted images (DWI)

for a comprehensive evaluation of both GM and WM brain structures in PD-NCI. Diffusion

tensor imaging (DTI) provides a comprehensive insight into WM microstructures based on the

assumption that diffusion in brain tissue is not free but rather restricted by macromolecules

and membranes. Fractional anisotropy (FA), as the most common DTI metric, which quantifies

the degree of anisotropy, is influenced by the degree of myelination, axonal packing and size,

and coherence and co-linearity of fibre organization [16]. Mean diffusivity (MD) might be

affected by variances in cellularity, oedema, and necrosis; radial diffusivity (RD) reflects myelin
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changes; and axial diffusivity (AD) parallels axonal abnormalities. However, DTI metrics

remain non-specific and the DTI outcomes should therefore be interpreted with caution [17].

Taken together, our multimodal study aimed to comprehensively test the following

hypotheses:

1) cortical/subcortical GM alterations are not found or are only found in limited extents in

PD-NCI; and 2) widespread WM alterations are found in PD-NCI.

If these hypotheses are correct, the WM alteration in PD would precede the major GM

alterations.

Material and methods

Subjects

We recruited 25 PD patients from the Brno Movement Disorders Centre and 21 age- and gen-

der-matched healthy controls (mean age: 57.9±7.24 years, age range: 41–71 years, 8 male). The

patients that did not present any evident cognitive impairment at clinical examination were

included to the study and were further examined utilizing detailed psychological tests. Five

patients were excluded because of MRI technical problems (movement artefacts, restricted

field of view, claustrophobia), drop-out rate was 20%. Twenty PD patients (mean age: 61.9

±7.63; age range: 48–72 years, 11 male) that have included to the study were in the early stages

of the disease with slight to moderate motor impairment (Hoehn-Yahr stage 1–1.5) and dis-

ease duration up to 5 years. In 10 patients, the right side was predominantly affected. Healthy

individuals had no history of neurologic or psychiatric disease. All participants were right-

handed (Table 1).

The study was approved by ethics committee of St. Anne’s University Hospital. Written

informed consent was obtained from all participants.

Neuropsychological scores

In addition to a neurological examination, comprehensive neuropsychological testing (Mattis
Dementia Rating Scale (MDRS), Tower of London, Stroop Test, Rey-Osterrieth Complex
Figure Test, Wechsler Memory Scale III, Wechsler Adult Intelligence Scale-, Third Edition (WAIS
III) and Verbal Fluency Test) was performed by an experienced psychologist (I.Z.) on the HC

group and the PD patient group after they had taken their regular medication.

For further comparisons, individual Z-scores were calculated for the separate subscales of

the different tests by subtracting the predefined means from the individual raw scores and

then dividing by the predefined standard deviations (Z-score = (raw score—meanSTD) / SDSTD).

The obtained Z-scores of the selected subscales were then averaged to produce cognitive

domain specific (visuospatial, memory, attention, language, and executive) Z-scores. These

cognitive domain scores were used for interaction analyses to evaluate group differences

between the slopes of fitted correlation lines (based on: http://core.ecu.edu/psyc/wuenschk/

docs30/CompareCorrCoeff.pdf).

MRI image acquisition

MRI scans were performed on 3T General Electric Discovery MR750 (GE Healthcare, Milwau-

kee, Wisconsin) using a 12-channel head coil. DWI data were acquired by using a dual spin-

echo, single-shot, echo-planar sequence with 60 non-linear directions, b-value 1000 s/mm2,

one non-diffusion weighted image (b = 0 s/mm2), repetition time: 9100 ms; echo time: mini-

mum; slice thickness: 2 mm; 0 spacing, FOV = 256x256 mm; voxel size 2x2x2 mm was interpo-

lated to 1×1×2 mm.
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T1-weighted images were scanned using 3D FSPGR sequence with the following parameters:

TR = 9.78ms, TE = 4.3ms, TI = 450ms, flip angle = 12˚, voxel size = 1x1x1mm.

Image processing

For each subject, DWI images were converted from DICOM to NIFTI format with MRIcron

(http://people.cas.sc.edu/rorden/mricron/index.html). MRI data were then processed with the

FMRIB Software Library, version 6.0 (FSL; www.fmrib.ox.ac.uk/fsl).

Since the motor symptoms of PD usually start on one side, lateralised volumetric differ-

ences were expected. The literature of lateralised neurological diseases demonstrated impor-

tance of the flipping of the images along the x-axis for pooling the symptoms virtually to one

side [18]. So, as first step flipped analyses were performed to examine connections between

GM/WM alterations and the side of the symptom onset. Three different versions of the same

analysis were carried out: 1) images of patients with symptoms that started on the left side

were mirrored about the x-axis (as if all the patients had symptoms that started on the right

side—RightMirr); 2) images of patients with symptoms that started on the right side were mir-

rored about the x-axis (as if all the patients had symptoms that started on the left side—Left-
Mirr); and 3) non-mirrored images were used (symptoms started on the left and right sided

mixed—OrigSided).

While the flipping method can only be used if there is no laterality in the investigated

parameters, previous studies showed subtle differences between the left and the right side of

the brain even in healthy subjects [19, 20]. Such asymmetry can profoundly affect the results of

flipping analyses and thus challenges data interpretation. For this reason, a second method

(tbss_sym) was also used to investigate the normal and altered asymmetry of the white matter

diffusion parameters (see details below).

Tract-based spatial statistics. The diffusion data were corrected for eddy currents and

movement distortions using eddy_correct tool in FSL [21]. Non-brain parts were removed

from all images using the Brain Extraction Tool (BET, [22]). Diffusion tensors at each voxel

were fitted by the algorithm included in the Diffusion Toolbox (FDT) of the FMRIB Software

Library (FSL v. 4.0, www.fmrib.ox.ac.uk/fsl; [23]). Fractional anisotropy (FA), mean diffusivity

(MD), and diffusivity parallel (AD, axial, λ1) and perpendicular (RD, radial, (λ2+λ3)/2) to the

principal diffusion direction were computed for the whole brain.

The Tract-Based Spatial Statistics (TBSS [24]) tool was used to perform a voxel-wise statisti-

cal analysis of the diffusion tensor maps (“OrigSided”). All of the subjects’ FA maps were

aligned into a standard space by co-registration to the most “typical” subject, which was the

Table 1. Demographic data and cognitive scores.

Demographic data Control PD patients Significance (p<)

N (male) 21 (8) 20 (11) 0.28
Age (years ± SD) 57.9 (7.24) 61.9 (7.63) 0.09

Handedness (L/R) 0/21 0/20 -

Side of symptom onset (L/R) - 10/10 -

Education (years ± SD) 12.24 (3.52) 12.25 (2.92) 0.99
Cognitive domains Z- - -scores

Attention (range) - - -0.56- - -0.57 - - -1.85–0.46 0.53
Executive (range) - - -1.04- - -0.92 - - -2.22- - -0.75 0.76
Language (range) - - -0.95- - -1.69 - - -0.98- - -1.55 0.94
Memory (range) - - -1.27- - -0.92 - - -1.33- - -0.75 0.83

Visuospatial (range) - - -1.59- - -0.92 - - -1.54- - -0.75 0.71

https://doi.org/10.1371/journal.pone.0187939.t001
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best target from all FA images based on the least number of transformations to the FA of all

other subjects with non-linear registration. This option was chosen in order to achieve a better

alignment of WM tracts in our population. A mean FA skeleton was created, representing the

cores of all tracts common to the group. Each individual’s FA data were then projected onto

this skeleton and thresholded at 0.2 FA. Voxel-wise cross-subject statistics analysis was per-

formed using 5000 permutations, testing with the Threshold-Free Cluster Enhancement

(TFCE) approach [25] adjusted for age and gender.

Analyses were repeated on data flipped to the side where the symptoms were observed at

first [18] (“RightMirr” patients, “LeftMirr” patients).

Symmetry in diffusion characteristics was analysed using tbss_sym util with age and gender

as covariates on original data without flipping. Three analyses were performed: (A.) symmetry

analysis was conducted in healthy controls to depict the normal asymmetry; (B.) symmetry

analysis in PD groups: all PD patients (PD_all), patients with right side (PD_right) and patients

with left side (PD_left) symptom onset. (C.) 3-group comparison: healthy controls, PD_left
and PD_all. Obviously, this analysis is restricted to only those parts of the white matter tracts

that are already sufficiently close to being symmetric—i.e. where there is reasonable corre-

spondence in general tract structure between left and right in the brain.

The Johns Hopkins University white-matter atlas was used to identify the anatomical loca-

tions of altered regions.

Brain volumetry. Total brain volume was estimated with SIENAX [26], part of FSL. SIE-

NAX starts by extracting brain and skull images from the single whole-head input data. Next,

tissue-type segmentation with partial volume estimation is carried out [27] in order to calcu-

late the total volume of brain tissue. The volumetric comparison was performed using the Sta-

tistical Package for Social Sciences (SPSS 22.0 for OS X, SPSS Inc., http://www.spss.com) with

age and gender as covariates, corrected for multiple comparisons.

Voxel-based morphometry. Local GM changes were detected by an “optimised” voxel-

based-style protocol (VBM) [28] using FSL [22]. After brain extraction, tissue-type segmenta-

tion was carried out by the FAST algorithm [27]. The resulting GM partial volume images

were registered to a standard space (MNI152) using linear transformation [29] followed by a

non-linear registration [30]. The resulting images were averaged to create a study-specific tem-

plate, to which the native GM images were then non-linearly re-registered. The registered par-

tial volume images were then corrected for local expansion or contraction by dividing by the

Jacobian of the warp field. The modulated segmented images were then smoothed with an iso-

tropic Gaussian kernel with a sigma of 3 mm. Final statistical steps with TFCE were the same

as described with TBSS.

Volumetry of deep brain grey matter structures. We used FIRST, a model-based seg-

mentation/registration tool for volume comparison of the subcortical structures of the two

groups [31]. This approach uses deformable surface meshes specific to subcortical structures,

namely the amygdala, caudate nucleus, hippocampus, pallidum, putamen, and thalamus.

Given the observed intensities in a T1-weighted image, FIRST searches through linear combi-

nations of shape modes of variation for the most probable shape instance based on learned

models. We decided not to include the nucleus accumbens due to inappropriate segmentation.

Results

Neuropsychological scores and clinical data

Table 1 summarizes the basic demographic data and clinical and neuropsychological scores.

Patients and controls were matched for age, gender, and years of education. No statistically sig-

nificant group difference was found in the neuropsychological tests. Hoehn-Yahr stage, age

Widespread white matter pathology in Parkinson’s disease without cognitive decline
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and gender were compared for subgroups of patients (PD_left, PD_right) and no differences

were found (p>0.95).

TBSS

The OrigSidedAD in the PD group was significantly higher in the superior and anterior corona

radiata, internal capsule, and external capsule on the left side than in the HC group (p<0.009,

corrected). No other DTI parameter showed significant changes, although a slight trend was

detected for MD and RD. Increased MD (p<0.059, corrected, in the left sided: superior corona

radiata, superior longitudinal fascicle, external capsule, internal capsule, temporal WM, and

prefrontal WM) and increased RD (p<0.090, corrected, in the left sided: cortico-spinal tract,

superior corona radiata, body of corpus callosum, and prefrontal WM) was found in PD

compared to HC (Fig 1/A). These results became significant in the LeftMirr (Fig 1/B) (MD:

Fig 1. Significant group differences (p< 0.05, corrected) in the white matter revealed by tract-based spatial statistics. A) without flipping, B) after

flipping to the left and C) to the right side. Color code: red = increased, blue = decreased diffusion parameters in the Parkinson patients compared to

the healthy subjects; green = skeleton of the white matter tracts. AD = axial, MD = mean and RD = radial diffusion. MNI coordinates of the voxel

showing the highest significance is provided on the figure.

https://doi.org/10.1371/journal.pone.0187939.g001
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p<0.021 and RD: p<0.024, corrected) and in the RightMirr (Fig 1/C) (MD: p<0.016 and RD:

p<0.029, corrected) comparisons. (For diffusivity parameters see S1 Fig, S1 and S2 Tables).

Hemispheric comparison in healthy individuals showed a rightward shift of AD, MD and

RD dominance (p<0.05, corrected) in the frontal, parietal and temporal white matter, and a

rightward shift of FA dominance along the superior longitudinal fasciculus. (The leftward shift

in dominance of these parameters is the reverse of the above findings). Hemispheric compari-

son in PD patients revealed a slight anterior-ward shift of the above parameters, mainly affect-

ing the secondary and primary somatosensory and primary somato-motor areas (S2 Fig). In

case of the 3-group comparison (S3 Fig), in PD_right, the asymmetry of in RD values was

detected in the left hemisphere (RD was higher in the temporal and parietal lobe), and FA was

lower in the left temporal lobe compared to the controls (p<0.05, corrected). In PD_left, the

analysis revealed a trend for the same results, but only in the temporal lobe (p<0.07, cor-

rected). After plotting the subject-wise diffusion data under the ROIs of the 3-group compari-

son result (S4 Fig), the disappearing of the normal asymmetry of the RD and FA parameters

could be seen in PD patients.

Grey matter volumetry and density (SIENAX, VBM, FIRST)

No volumetric differences were found with SIENAX in GM (p<0.086, corrected) or in WM

(p<0.869, corrected) volumes between PD and HC (S3 Table).

A tendency for decreased focal GM intensity was found with VBM in the left superior parie-

tal lobe in OrigSided PD (p<0.059, corrected). It became significant in the RightMirr (Fig 2

(p<0.02, corrected) and (p<0.014, corrected) in the LeftMirr comparison.

No significant differences were found with FIRST in the volumes of subcortical GM struc-

tures between PD and HC (S5 and S6 Figs).

Discussion

In this study, we investigated cortical/subcortical GM and WM changes in PD patients with

normal cognition as compared to healthy individuals. The outcomes revealed limited

Fig 2. Focal decrease of the gray matter density in the Parkinson’s patients revealed by voxel-based-morphometry. The localization was the same in

the comparisons with (flipped to the left side: p<0.014 and to the right: p<0.02, corrected) and without flipping (p<0.059). MNI coordinates of the

voxel showing the highest significance is provided on the figure.

https://doi.org/10.1371/journal.pone.0187939.g002
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differences in GM thickness in the superior parietal cortex and no change in subcortical vol-

umes, with widespread alterations of WM. WM alterations were predominantly located in the

left hemisphere.

Our results revealed early susceptibility of both GM and WM of left hemisphere in early

stages PD-NCI and align with GM outcomes of Claassen and co-workers [32]. They found no

influence of handedness and motor symptom asymmetry on results [32], and the current liter-

ature does not contain sufficient explanation of this phenomenon. On one hand, the analyses

that included the symptom asymmetry strengthen our conclusions of critical vulnerability of

the left hemisphere in early PD, since the results were more pronounced and reached higher

level of significance. On the other hand, the normally existing brain asymmetry might disap-

pear in PD due to on-going pathology in the brain, suggesting that PD might be a disconnec-

tion syndrome as Caminiti and co-workers [33] claimed in recent study. They revealed loss off

functional and structural connection in PD patients’ central nerve system caused by axonal

loss, which hypothesis could also support our findings.

Our findings of left-sided superior parietal atrophy are in agreement with previous studies

with mild posterior atrophy already present in early PD [9, 34]. The superior parietal cortex is

critically involved in attention and visual processing in healthy subjects [35] and was further

investigated in PD. The posterior atrophy in the superior parietal and occipital GM was related

to visual hallucinations in PD [36]. Our data showing reduced parietal thickness aligns with

several studies [37–39] and contradicts others that failed to reveal any GM abnormalities in

early PD [34, 40–43]. In a study by Mak et al. [40], the cortical thickness in PD-NCI did not

differ from that of HC, although a subgroup that subsequently converted to PD-MCI showed

temporal cortex thinning [40].

We detected no global cortical GM and focal subcortical volume change using different

MRI analysis methods. Our results support the conclusions of several studies that did not

detect subcortical volume changes [44–48], suggesting that volumetric alteration of deep brain

GM structures may occur later in the disease course. Indeed, multiple studies described volu-

metric abnormalities of subcortical GM structures (e.g. striatum [49, 50], caudate nucleus [51],

and thalamus [49]) in patients with advanced PD, indicating that subcortical atrophy occurs

later during the disease course.

In contrast to the subtle GM atrophy, we observed a robust impairment of subcortical WM

[36, 52, 53]. WM damage in PD, mostly related to cognitive decline, was reported in several

studies [7, 54–56]; normal or minor changes in non-demented PD patients were also reported

[5]. Limited GM alteration accompanied by widespread WM changes were reported in a few

studies [9, 57]. The critical conflicts between studies might stem from differences in imaging

and analysis protocol or sample size and characteristics [54].

Similarly to some of previous PD studies [54, 58, 59], but contradictory to the others [60,

61], we detected an increase in AD in PD-NCI compared to HC. AD is considered a measure

of axonal consistency with higher values potentially indicating an increase of axonal co-linear-

ity, however axonal loss in co-occurrence of inflammation [62] may provide additional expla-

nation to elevated AD in the PD population. The activation of inflammatory processes related

to activation of microglia caused by alpha-synuclein aggregation may be associated with

WM abnormalities in PD [63]. Studies demonstrated decrease of AD in early stages of axonal

damage [16] that is followed by pseudo-normalization of AD due to clearance of axonal and

myelin debris in the WM [64] and pointed to evolving AD abnormalities during the disease on

course.

While RD quantifies diffusion perpendicular to the axonal axis, with an increase indicating

an abnormally low myelin content [65], the diffusion parameters indirectly reflect changes in

the microstructural tissue. The elevation of RD, which quantifies diffusion perpendicular to

Widespread white matter pathology in Parkinson’s disease without cognitive decline
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the axonal axis and indicates an abnormally low myelin content [17], was congruently detected

in various PD stages [7, 58, 59]. Theilmann et al [55] detected similar co-occurrence of elevated

RD with higher AD and suggested that these changes may reflect early cell loss and gliosis in

PD. It has been reported that PD is primarily caused by a synaptic dysfunction with axonal

transport problems leading to subsequent cell death [66]. Also, AD and RD alterations may

together contribute to increased MD that could refer to loss of tissue density [67] and it is in

agreement with previously published studies [36, 52]. The pathology underlying the loss of

microstructural WM integrity could be explained with immunocytochemical evidence for the

presence of ubiquitin and alpha-synuclein inclusions in the axons of Lewy body disease cases,

which may impair axonal transport before cell body damage [68]. The impairment of WM

might underlie the disturbance of large-scale network connectivity in PD-NCI [69]. While

DTI studies congruently pointed to complex PD-related WM alteration, the interpretation of

actual tissue abnormalities remains challenging due to non-specificity of DTI parameters,

which indirectly refer to microstructural tissue change by calculating the changes in water dif-

fusion per se [65].

WM lesions (WML) observed in structural MRI studies have been associated with cognitive

impairment in PD [70] (for review see: [71]); however, our participants were relatively young

and exhibited only minor WML on anatomical images. WM changes assessed by TBSS were

found in PD but not in HC, with a comparable burden of ischemic WML, indicating that the

DTI-assessed WM changes reflect the initial stages of neurodegeneration [72, 73]. A recent

follow-up DTI study confirmed more pronounced changes in diffusivity parameters during

aging in PD than in HC [74].

Our findings in the PD-NCI cohort expand on the published works of other groups study-

ing WM and GM integrity [40, 57, 75] by adding an analysis of subcortical GM, including the

basal ganglia. Our results of nearly normal cortical GM and normal subcortical GM volume do

not support the hypothesis that WM alterations reflect Wallerian degeneration and are sec-

ondary to early cortical/subcortical GM atrophy [76].

Limitations

The possible limitations of our study should be noted. The small sample size limits power of

the statistical analyses and may cause that we failed to reach statistical significance in certain

measures. The diagnosis of PD lacks histopathological verification. The subjects were assessed

while taking their medication, which could influence cognitive outcomes. The distinct analysis

methods used in our study might have different levels of sensitivity. We cannot exclude the

possibility that there were subtle changes in the GM that were not revealed by the methods we

used. On the other hand, the WM impairment was robust, as in the report by Rae et al.[54].

The interpolation of DTI data makes it possible to see subtle anatomical details, although it

might have potential disadvantages. While high-order interpolations may cause ringing arte-

facts, especially in border areas between compartments with different T2 relaxation times, no

significant interpolation effects were detected on DTI indices [77]. While TBSS requires at

least one diffusion-unweighted scan, averaging of multiple b0 images improves SNR and thus

estimation of diffusion tensor [78]. Lower SNR of b0 scans concerns the Rician noise distribu-

tion and the presence of the rectified noise floor that underestimates mean diffusivity particu-

larly in regions with high anisotropy [79]. However, the potential bias introduced by a limited

number of b0 is common for all participants in the study, thus unlikely caused differences

between patients and healthy individuals. Our findings are preliminary; future prospective lon-

gitudinal studies are needed to assess the long-term progression of WM and cortical and sub-

cortical atrophy.
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Conclusions

Our findings confirmed widespread WM pathology in PD. Given the small extent of GM atro-

phy, the critical WM deficit in PD-NCI challenges the traditional view that WM degeneration,

including loss of axons and myelin, occurs secondary to cortical pathology. And this WM

alteration might lead to structural disconnection with the loss off normal existing brain asym-

metry resulting dysfunctional brain networks. Hence, WM alterations in PD might be a sensi-

tive preceding sign of the neuronal loss in associated GM regions [4].
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Nikoletta Szabó.
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