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a b s t r a c t

There are several similar, but not identical, definitions of control dependence in the
literature. These definitions are given in terms of control flow graphs which have had extra
restrictions imposed (for example, end-reachability).

We define two new generalisations of non-termination insensitive and non-
termination sensitive control dependence calledweak and strong control-closure. These are
defined for all finite directed graphs, not just control flow graphs and are hence allow
control dependence to be applied to a wider class of program structures than before.

We investigate all previous formsof control dependence in the literature andprove that,
for the restricted graphs for which each is defined, vertex sets are closed under each if and
only if they are either weakly or strongly control-closed. Low polynomial-time algorithms
for producing minimal weakly and strongly control-closed sets over generalised control
flow graphs are given.

This paper is the first to define an underlying semantics for control dependence: we
define two relations between graphs calledweak and strong projections, and prove that the
graph induced by a set of vertices is a weak/strong projection of the original if and only if
the set is weakly/strongly control-closed. Thus, all previous forms of control dependence
also satisfy our semantics. Weak and strong projections, therefore, precisely capture the
essence of control dependence in our generalisations and all the previous, more restricted
forms. More fundamentally, these semantics can be thought of as correctness criteria for
future definitions of control dependence.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Control dependence is the relationship that exists between two vertices of a control flow graph (cfg) representing a
program when one vertex determines whether or not the other can be executed. Informally, vertex v is said to control
vertex w if v computes a value which determines whether w is executed or avoided. This fundamental concept in program
analysis has been studied since the 1970s [15] and yet still produces new and surprising results. For example, recently
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[3,28,29], it was demonstrated that standard definitions of control dependence [16], in use for over two decades, were
unsuitable for capturing control dependence in a wide class of reactive systems.

Control dependence is central to many program analysis and transformation techniques. For instance, it underpins work
on program slicing [14,18,21,32], goto elimination [27] and compiler optimisations [16]. This paper focuses on the use of
control dependence in program slicing [10,20,31], though the definitions and results concerning control dependence that
the paper introduces also apply to other applications. The aim of program slicing is, given a chosen set of variables and
chosen points in the program, to find a set of all statements which may affect the values of the variables at those points.

Slicing algorithms conventionally use two relations between statements in a program, or, more precisely, vertices in its
control flow graph (cfg). These are data dependence and control dependence. Statement s is data dependent on statement t if
t assigns a value to a variable v, say, which is referenced in s and there is a path from t to swith no intervening assignments
to v.

Control dependence in program slicing can be understood by considering the program fragment represented by graph
G1(a) in Fig. 1. Suppose we are interested in finding out which program statements contribute to the final values of variables
x and y. The set of vertices of interest is therefore {g, h} because these are the only vertices that correspond to statements
that change the values of x and y. The vertices {start, end} are also added since these are traditionally required in a cfg. This
gives a starting set {g, h, start, end}.

We now see that predicates p2 and p3 both control which of g and h are executed, and in turn p1 controls which of
p2 and p3 is executed. To compute the vertices which control {g, h}, we thus build up a closure to finally arrive at the set
{start, g, h, p2, p3, p1, end} which is closed under control dependence. These vertices are then reconnected to produce the
slice G1(c). Vertices p4 and k have been ‘sliced away’ and a new edge from p2 to g has appeared.

Control dependence has a long history, throughout which authors have sought to capture the property for certain classes
of program graphs of interest. The first authors to consider control dependence are widely regarded to be Denning and
Denning in their seminal work on secure information flow [15], a topic which remains highly relevant to this day.

Weiser [33], was the first to express the Dennings’ concept graph-theoretically in order to support slice construction.
Subsequently, Ottenstein and Ottenstein [25] showed how Weiser’s slicing could be captured as a graph reachability
problem. Ferrante et al. [16] further developed these notions into a formal characterisation of the program dependence
graph.1

In the 1990s, a generalisation of control dependencewas defined by Bilardi and Pingali [6]. This generalisation is achieved
by abstracting the notion of dominance to any set of paths. Generalised control dependence is thus ‘parameterised’ by this
set. Instantiating different sets of paths yields different forms of control dependence. This, in effect, provides a framework
for expressing different forms of control dependence. The value of the framework was demonstrated by using it to express
those forms of control dependence known at the time including the weak control dependence of Podgurski and Clarke [26].

The program dependence graph, later extended to handle procedures as the System Dependence Graph [22], has formed
the basis of many analyses, such as program slicing, since its introduction in the 1980s. However, more recently, building
on the work of Podgurski and Clarke [26], Ranganath et al. [28,29] and Amtoft [3] developed new notions of control
dependence for reactive systems. Ranganath et al. [29] showed that the definitions used up until then were inadequate
to handle (increasingly prevalent) reactive systems, in which programs react to inputs continuously without termination.
Such reactive programs are deliberately written to non-terminate. These programs, thus, have graphs that contain vertices
from which end is not reachable.

The wide range of applications of control dependence and its fundamental nature make it attractive to seek a simple,
general characterisation that captures all previous definitions and which is also readily understood and from which it is
easy to prove results for application areas. This paper introduces semantic definitions of control dependence, using a simple
graph theoretic formulation, unhindered by specific restrictions on graph properties, such as constraints on the connectivity
of the graph or presence or absence of certain structural features, such as special vertices.

1.1. Contributions of this paper

In this paper we develop a coherent theory of control dependence. There are four main contributions:
(1) We give two semantics for non-termination insensitive and non-termination sensitive control dependence by defining

properties which must exist between graphs and graphs induced by subsets closed under control dependence in its
different forms. We call these properties weak and strong projection.

(2) We introduce the notions of weak and strong control-closure and prove that graphs induced by sets satisfy our weak or
strong semantics if and only if the sets are weakly or strongly control-closed respectively. Unlike conventional control
dependence, weak and strong control-closure is defined not just for traditional control flow graphs but for all finite
directed graphs.

(3) In program slicing, we require slices to be as small as possible. With this in mind, we give low order polynomial
worst-case time complexity algorithms for computing the unique minimal weak and strong control-closed sets. These
algorithms are functionally equivalent to previous ones but more generally applicable.

1 Similar ideas are mentioned in [2,24,30,34].
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p1 : a == b

(a) To slice G1(a) with respect to {start, h, g, end} . . . .
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p3 : (y > z)

p1 : a == b

(b) . . . first, the statements (vertices) in the slice are computed: p2 and p3 are added because they control h and g and then p1 is
added because it controls p2 and p3 . This gives the set {start, p1, p2, p3, h, g, end} which is closed under control dependence.
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g : x = x + 1

h : y = y + 1

k : z = 3
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p4 : (y > z)

p2 : (x > y)

p3 : (y > z)

p1 : a == b

(c) These statements are then rewired to produce the slice G1(c) above. Vertices p4 and k have been ‘sliced away’ and a new edge
from p2 to g has appeared.

Fig. 1. The use of control dependence in program slicing.

(4) Webelieve thatweak and strong projections capture the essence of control dependence.Wedemonstrate this by proving
that the vertex sets closed under each form of control dependence in the literature induce graphs which are either weak
or strong projections of the original. In so doing we provide a classification of all previous forms of control dependence
into just two: weak and strong. Our algorithms can, thus, be used to compute sets closed under control dependence for
a larger class of program structures.

1.2. Overview of the paper structure and results

This section provides an overview of the technical contributions of the paper and the structure within which they are
presented in the remainder of the paper.

In Section 2, we define a generalised form of cfg upon which the rest of our theory is built. Our cfgs are finite, directed,
labelled graphs. They are simple in the sense that we do not need variables, assignments and expressions (these are only
needed for data-dependence). The edges are labelledwith subsets of {T, F}. Our cfgs are deterministic in the sense that edges
from the same vertex must be disjointly labelled. Many of the definitions of control dependence in the literature impose
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Weak Control Dependence Strong Control Dependence

W-controls
−−−−−→ [33]
F-controls
−−−−−→ [16]

WOD
−−→ [3]

PC-weak
−−−−→ [26]

NTSCD
−−−→ and

DOD
−−→ [29]

Fig. 2. Table showing the different forms of weak and strong control dependence.

constraints upon the types of graph for which they are defined. Our graphs encompass all those previously considered
in the literature. They need not have a special end vertex which, when reached, represents successful termination. If it
exists, the end vertex need not be reachable from all vertices. We allow all vertices to have out-degree zero and we allow
predicates to have out-degree one. Leaving such ‘incomplete’ vertices corresponds to our program failing which we think
of as reaching a state of silent non-termination. Intuitively, this can be thought of as the program appearing to do nothing
but never returning to the operating system prompt. Incomplete vertices give rise to finite yet ‘non-terminating’ paths.
Using the language of process algebra [23], we imagine the program infinitely engaging in (silent) τ -actions after reaching
an incomplete vertex. It will be shown that graphs with incomplete vertices arise naturally in constructing minimal strong
projections from deliberately non-terminating cfgs. Finally, our cfgs do not require a special start vertex.

We define a number of useful graph-theoretic concepts including V ′-intervals and V ′-paths, where V ′ is a set of vertices.
A V ′-interval is a path whose initial and final elements are both in V ′ but the intermediate ones are not. A V ′-path is a path
of length at least two whose final element lies in V ′, its first element may be in V ′, but none of its intermediate elements are
in V ′.

In Section 3, we describe the ‘rewiring’ problem: given a cfg G and a subset V ′ of the vertices of G (representing the
statements in the slice of G), how do we connect the elements of V ′ and relabel the new edges in a ‘sensible’ way? We call
this the graph induced by V ′ from G. Rewiring is achieved by connecting vertices v1 and v2 in G′ if and only if there is a
V ′-interval connecting them2 in G. Edge labels are formed by taking the union of ‘corresponding’ edges in the original.

In Section 4, we define weak and strong projections. These are semantic relations which exist between graphs and the
graphs induced from them by subsets of vertices closed under termination insensitive and termination sensitive control
dependence respectively. These projections are defined in terms of walks. A walk is very similar to a path, but elements
which are predicates also include the boolean value in {T, F} representing the ‘choice’ that was taken at that predicate. A
weak projection is a graph where every walk of the original, when restricted to the vertices of the projection, is a walk of
the projection. This is analogous to the situation that arises in conventional slicing where if the original executes n times a
statement that is also in the slice then the slice, when executed from the same initial state, also executes the statement n
times. As is well known, in conventional slicing we may execute this statement more times in the slice than in the original
programbecause, for example, non-terminating loopsmayhavebeen sliced away. This is also the casewithweakprojections.

The graph induced from a cfg G by V ′ is not necessarily, itself, a cfg. In general, it may contain non-predicate vertices
of out-degree greater than one, predicates of out-degree greater than two, or non-disjoint edge labellings. We prove
(Proposition 20) that being a weak projection is no more than a by-product resulting from ensuring that the induced graph
is indeed a cfg. In other words, if the induced graph from a cfg is a cfg then it must be a weak projection of the original too.

Weak projection captures the behaviour of slices produced using the weak forms of control dependence (see Fig. 2.) A
stronger semantics is, however, required for slices produced using the strong forms of control dependence. With this aim, in
Section 4.3,we define a strong projection. In the case of strong projection, everymaximalwalk of the original,when restricted
to the vertices of the projection, gives rise to amaximalwalk of the projection. Moreover, every walk of the projection arises
in this way. For strong projection the number of times a walk passes through a vertex in the projection must be equal to the
number of times the corresponding walk in the original passes though the vertex.

In Section 4.4, we observe that both weak and strong projections either may or may not preserve the termination
conditions of the original. This is also true of the so-called non-termination sensitive control dependence of Ranganath
et al. [29]. Termination andwalk preservation are orthogonal conditions. Theweak projection of a cfgGmay terminatewhen
G does not. Strong projections, on the other hand, are always non-termination preserving. If a weak or strong projection of
a cfg contains end then it termination preserving. Strong projections containing end of a cfg G, thus, perfectly preserve the
termination and non-termination of G.

In Section 5, we develop a theory of weak and strong control-closure, generalisations of non-termination sensitive and
insensitive control dependence. We prove that these are properties of vertex sets which are necessary and sufficient to
induce graphs which are weak and strong projections. Weak and strong control-closure are used both in the production of
algorithms for producing minimal weak and strong projections and also in the proofs that classify the previous forms of
control dependence as either weak or strong.

2 This is not the first paper to define rewiring in this way. Earlier work [1,19] uses very similar definitions.
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In Sections 5.1 and 5.2, we define weakly and strongly control-closure. In Section 5.3, we investigate graphs induced by
weakly control-closed sets. The main result of Section 5.3 is Theorem 45 which states that the following three statements
are all equivalent:

• The graph induced by V ′ from G is a cfg.
• V ′ is weakly control-closed in G.
• The graph induced by V ′ from G is a weak projection of G.

In Section 5.4, we investigate graphs induced by strongly control-closed sets. Themain result of Section 5.4 is Theorem49
which states that the graph induced by V ′ from G is a strong projection if and only if V ′ is strongly control-closed in G.

In Section 5.5, we prove Theorems 54 and 58 which state that given any set V ′ of vertices in a cfg, there are unique
minimal weakly and strongly control-closed sets containing V ′. These are the sets that are closed under control dependence
which are required for slicing. This proves that for any vertex subset V ′ of cfgG, uniqueminimalweak and strong projections
(slices) containing V ′ exist.

In Section 6, algorithms for computing minimal weak and strongly control-closed sets containing V ′ are defined
and proved correct. This demonstrates that minimal weak and strong projections (slices) containing V ′ are computable.
Furthermore, we show that these algorithms have worst-case time complexity O(|V |

3), and O(|V |
4) respectively where

|V | is the number of vertices of G. This is of a very similar order to the worst-case time complexity of the algorithms for
computing the new control dependences of Ranganath et al. which is O(|V |

4 log |V |). It is likely that the efficiency of these
algorithms can be improved, but this is a topic for future work and is beyond the scope of this paper.

In Section 7, we categorise the weak forms of control dependence in the literature.
They are:

•
W-controls
−−−−−→: the control dependence of Weiser [33],

•
F-controls
−−−−−→: the control dependence of Ferrante et al. [16] and

•
WOD
−−→: the weak order dependence of Amtoft [3].

The results of this section give the relationship between sets closed under the weak forms of control dependence
mentioned above and weakly control-closed sets.

From these, we prove our main result, Theorem 67, which states that, indeed, all weak forms of control dependence in
the literature induce weak projections.

In Section 8, we categorise the strong forms of control dependence in the literature. We call them strong because, as we
show in this section, vertex sets closed under them induce strong projections. They are:

• the combination of
NTSCD
−−−→ and

DOD
−−→ of Ranganath et al. [29].

•
PC-weak
−−−−→, the weak control dependence of Podgurski and Clarke [26].

The results of this section give the relationship between sets closed under the strong forms of control dependence
mentioned above and strongly control-closed sets. From these, we can prove our main result of this section, Theorem 86,
which shows that, indeed, both strong forms of control dependence in the literature induce strong projections. Sections 7
and 8, as well as semantically characterising current forms of control dependence, justify our claim that weak and strong
projections capture the essence of control dependence.

In Section 9, we conclude and give directions for future work. Section 10 is a glossary of all the main definitions and
results of the paper. We encourage readers to refer to this whilst reading the paper.

2. Generalised CFGs for control dependence

Our graphs, since we are exploring only control dependence, do not need the variables, assignments and expressions
which would be required for data-dependence. We can therefore have a very simple definition of a cfg. Our cfgs are finite
directed graphs whose vertices are either predicates or non-predicates. Non-predicates have out-degree of at most one and
predicates of out-degree of at most two. The edges emerging from predicates are labelled with subsets of {T, F}. This allows
for a predicate with one edge labelled {T, F} to represent a predicate where both branches go to the same destination. The
labellings of the edges from each predicate must be disjoint. In other words, our cfgs are deterministic.

There is atmost one special non-predicate vertex called end of out-degree zero. Reaching end corresponds to termination.
Unlike conventional cfgs, we allow other non-predicates to have out-degree zero and predicates (incomplete) to have edges
whose union of labels is not {T, F}. Reaching such vertices corresponds to a program silently non-terminating. We imagine
programs which reach such vertices apparently not performing any actions but also not returning to the ‘operating system
prompt’. This situation arises naturally when slicing away infinite loops when preserving termination properties. Unlike,
conventional cfgs we do not insist on a special start vertex.
Definition 1 (CFGs). A control flow graph (cfg) is a triple G = (V , E, β)where (V , E) is a finite directed graph and the vertex
set V is partitioned as V = P ∪ N (predicates and non-predicates) with P ∩ N = ∅, and β : E → P ({T, F}) is the edge
labelling function.
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{T}

{T, F}
{F}

endh

k

m

start p0 p1

(a) G3(a): a cfg with a complete predicate p0 of out-degree 1.

{T}

{T}
{F}

endh

k

m

start p0 p1

(b) G3(b): a cfg with an incomplete predicate p0 .

{T}

{T}
{F}

{F}

end

g

h

k

m

start p0

p1

(c) G3(c): a cfg with a final non-end, non-predicate vertex g .

Fig. 3. Examples of cfgs: In Fig. 3(a) the predicate p0 , although of out-degree 1 is complete. Its successor is independent of evaluating p0 . In Fig. 3(b) the
predicates are {p0, p1}. Vertex p0 is incomplete since the union of the labels of its branches is not {T, F}. If predicate p0 evaluates to F, a state representing
silent non-termination is reached. In Fig. 3(c) the predicates are {p0, p1} and both are complete. The other non-end vertices are non-predicates and have
out-degree 1 except for g which is a final non-end vertex. After executing g , again all programs represented by G3(c) are deemed to silently non-terminate.

(1) • If x ∈ P then the out-degree of x is at most 2.
• If x ∈ N then the out-degree of x is at most 1.
• There is at most one end vertex. It has out-degree 0. (end ∈ N is the only vertex which represents normal

termination.)
(2) The edges are labelled by β where:

• If x ∈ P and (x, y) ∈ E then β(x, y) ≠ ∅.
• If x ∈ N and (x, y) ∈ E then β(x, y) = ∅.

(For clarity we omit the label ∅ from our diagrams.)
(3) Let p be a predicate. If (p, y) ∈ E and (p, z) ∈ E with y ≠ z then β(p, y) ∩ β(p, z) = ∅. (In other words, our cfgs are

deterministic.)

See Fig. 3 for examples of cfgs.

Definition 2 (Complete Predicates of a CFG). A predicate is complete if and only if the union of the labels of its outgoing
edges is {T, F}.

Definition 3 (Complete CFGs). A cfg is complete if and only if all its predicates are complete.

Definition 4 (Final Vertices of a CFG). A final vertex is either a non-predicate vertex of out-degree 0 or an incomplete
predicate.

2.1. Specialised classes of graphs and CFGs

The previous forms of control dependence variously make references to a unique start or end of the program or cfg. The
following definition gives notation for the required classes of specialised graphs and cfgs.

Definition 5 ({start, end}-CFGs and Graphs). Let G = (V , E) be a finite directed graph.
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(1) If G has a unique distinguished vertex start ∈ V and every v ∈ V is reachable from start then G is a {start}-graph.
(2) If G has a unique distinguished vertex end ∈ V that is reachable from every vertex v ∈ V then G is an {end}-graph.
(3) If G is a {start}-graph and G is also an {end}-graph then G is a {start, end}-graph.

If G = (V , E, β) is a cfg and the graph (V , E) is a {start}-graph then we call G a {start}-cfg, etc.

2.2. Useful graph-theoretic definitions

Definition 6 (Paths of a Graph). Apath in a graphG = (V , E) is a sequence of vertices v1, . . . , vi, vi+1, . . .with (vi, vi+1) ∈ E
for all i.

Definition 7 (Proper Paths). A path is proper if its initial and final vertices are distinct.

Definition 8 (Prefixes). A prefix of a path π is a path ρ such that there exists a path σ with π = ρσ (the concatenation of
ρ and σ ). Note π is a prefix of itself. Write ρ ⊑ π . If ρ ⊑ π and ρ ≠ π , ρ is called a ‘proper’ prefix of π .

Definition 9 (V ′-intervals and V ′-paths). Let G = (V , E) be a graph and let V ′
⊆ V .

• A V ′-interval is a finite path of length > 1 in Gwhere only the first and last elements are in V ′.
• An [l,m] V ′-interval is a V ′-interval that starts at l ∈ V ′ and ends atm ∈ V ′.
• A V ′-path [17] is a finite path v1 . . . vm in Gwhere m > 1, vm ∈ V ′ and 1 < i < m ⇒ vi /∈ V ′.

A V ′-path is a path whose last element is in V ′ and whose first element may be in V ′ but none of the other elements are
in V ′. A V ′-interval is a V ′-path but not necessarily the converse.3

Definition 10 (Complete Paths of a CFG). A complete path is either an infinite path or a finite path whose last vertex is final.

Definition 11 (Terminating Paths of a CFG). A terminating path is a finite path whose last vertex is end.

Definition 12 (Non-terminating Paths of a CFG). Anon-terminating path is a complete pathwhich is either infinite orwhose
last vertex is not end.

2.3. Examples

In Fig. 3(c) the only terminating paths are those whose final vertex is end. The complete paths ending at g although finite
are considered non-terminating because g ≠ end. Complete paths through k are infinite and hence non-terminating.

G4(a) in Fig. 4(a) is an example of a cfg where a predicate (p1) is incomplete. Therefore p1 is a final vertex and there are
complete paths of G4(a) which end at p1. These complete paths correspond to the situation where the predicate expression
at p1 evaluates to T.

G4(b) in Fig. 4(b) is an example of a cfg without an end vertex. All complete paths of G4(b), including the finite ones, are
thus non-terminating.

G4(c) in Fig. 4(c) is not a cfg. If p0 evaluates to T there is a choice of which edge to follow.

3. The induced graph

Given a programand a slicing criterion, a slicing algorithmproduces a subset of the statements of the program, containing
the slicing criterion. Normally, the slice produced is a valid and executable program. For a cfg G = (V , E, β) the slicing
criterion is a set C ⊆ V of the vertices and a slicing algorithm will produce a possibly larger subset C ⊆ V ′

⊆ V . The
problem now is to make a valid cfg from V ′ and G.

In this section we show how to define a graph on such a subset by ‘rewiring’ the edges of the original cfg— this is called
the induced graph.

For any cfg G = (V , E, β) and V ′
⊆ V , we can construct a new graph on V ′ by connecting x ∈ V ′ to y ∈ V ′ if and

only if there is a [x, y] V ′-interval (Definition 9). The new edge (x, y) ∈ E ′ is labelled by the union of the labels of the edges
(x, x′) ∈ E where x′ is a successor of x from which there is a path in G to y.

Definition 13 (The Induced Graph). Let G = (V , E, β) be a cfg and let V ′
⊆ V . The graph induced by V ′ from G has edge set

E ′
⊆ V ′

× V ′ where (x, y) ∈ E ′ if and only if there is a V ′-interval x, . . . , y in G. In the graph induced by V ′ from G ,

β ′(x, y) =


x′∈K

β(x, x′)

where K = {x′
∈ V | (x, x′, . . . , y) is a V ′-interval}.

The predicates and non-predicates of the graph induced by V ′ from G are deemed to be V ′
∩ P and V ′

∩ N , where P and N
are the predicates and non-predicates of G respectively.
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{T} {F}

{F}
endg

k

start p0

p1

(a) G4(a): Predicate p1 is not complete.

{T}
{T, F}

{F}

h

k

m

start p0 p1

(b) G4(b): A cfg without end.
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{T}
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end
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start p0
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(c) G4(c): Not a cfg (non-deterministic).

Fig. 4. (a) and (b) are cfgs but (c) is not. In (a) the final vertices are p1 and end. In (b) the only final vertex is m and the absence of end means that all
complete paths are non-terminating.

Fig. 5 gives three examples of induced graphs, one of which is a cfg and two of which are not. Fig. 5(c) shows the graph
induced by {start, h, g} from G5. It has an edge (start, h) because there is a {start, h}-interval, startp0p1h, in G5. Similarly, it
has an edge (start, g). In general, the induced graph is not a cfg because the rewiringmay increase the out-degree of vertices,
and may destroy the necessary disjointness property of edge labels in a cfg. Clearly the graph induced by {start, h, g} from
G5 is not a cfg as it has a non-predicate vertex start of out-degree greater than 1. Similarly, the graph induced by {p0, h, g, k}
from G5 is not a cfg because it has a predicate vertex p0 with non-disjoint edge labels.

In the next section we will show that for the graph induced by V ′ from G to be a cfg, V ′ must be weakly control-closed
in G.

4. Weak and strong projections: a semantics of control dependence

In this section, we defineweak and strong projections; properties that are preserved between graphs and graphs induced
by sets closed under control dependence. The concepts of weak and strong projections are a semantics of non-termination
insensitive and non-termination sensitive control dependence respectively. Later, in Sections 7 and 8, we demonstrate
this by showing that all forms of control dependence in the literature are special cases of weak and strong projections.
This provides strong evidence for our belief that these projections capture the underlying intention and essence of control
dependence.

The semantic relationship between programs and their slices has been well studied [5,7–9,11–13]. Weak projection
expresses a property analogous to the property of conventional slicing where if the program executes statement s n times
then the slice, when executed from the same initial state, also executes s at least n times (if, of course, s is in the slice).
In conventional slicing, s may execute more times in the slice than in the original program because, for example, non-
terminating loops that prevent s being reached may have been sliced away. This is also true of weak projections. Strong
projections, on the other hand, are analogous to the form of slice where for all initial states, s will execute exactly the same
number of times in the slice as in the original.

We define weak and strong projections in terms of walks and give necessary and sufficient conditions for subsets of
vertices of a cfg to induce weak and strong projections respectively. It turns out that the graph induced by V ′ from G is a
weak projection of V ′ if and only if V ′ is weakly control-closed in G (Theorem 45). We go on to define a stronger condition,
Strongly control-closed sets, and prove an analogous result, Theorem 49, for strong projections.

3 Ranganath et al. [29] define a similar concept: the first observable elements from v, written obs1may(v) is the set of first elements at the end of a V ′-path
from v.
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(a) cfg G5 .
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(b) The graph induced by {start, p0, h, g} from G5 is a cfg.
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start p0
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(c) The graph induced by {start, h, g} from G5 is not a cfg because it has a non-predicate vertex of out-degree greater
than one.

{T}

{T}

{T}

{T}
{F}

{F}

end

g

h

k

m

start p0

p1

(d) The graph induced by {p0, h, g, k} from G5 is not a cfg because it has a predicate vertex with non-disjoint edge labels.

Fig. 5. Inducing graphs from G5 and different sets of vertices (Definition 13). Dotted edges and vertices represent those that are removed in producing the
induced graph. Solid edges and labels represent those that remain in the induced graph.

4.1. Walks of a cfg

Conventional semantic slices are defined in terms of program executions, sowe first define an analogous concept for cfgs
using walks. A walk of a cfg is similar to a graph-theoretic path of a cfg, except that predicate vertices are replaced with a
pair (p,B) where B ∈ {T, F} to represent evaluation of p. Notice, our paths and walks can start at any vertex in the graph.

Definition 14 (Elements). Let G = (V , E, β) be a cfg. An element w is either a vertex v ∈ N ⊆ V , or a pair (p,B) where
p ∈ P ⊆ V and B ∈ {T, F}. Write w̄ for the vertex component of an element and ¯̄w for the second (boolean) component of
the pair when it exists.

Definition 15 (Walks). Let G = (V , E, β) be a cfg. A walk ω in G is a sequence w1, w2, . . . , wi, . . . of elements where:

(1) ω̄ = w̄1, w̄2, . . . , w̄i, . . . is a path in G; and
(2) if wi, wi+1 are consecutive elements of ω and w̄i is a predicate vertex then ¯̄wi ∈ β(w̄i, w̄i+1).
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For example the cfg G4(b) in Fig. 4 has a path π1 = p0, p1, h,m and there are two walks:

ω1 = (p0, T), (p1, T), h,m
and ω2 = (p0, F), (p1, T), h,m

which give rise to path π1.
Observe that start, (p0, F) is a walk of G3(b) in Fig. 3 although p0 does not have a false branch. This walk cannot go any

further. It is an example of a finite maximal walk caused by incomplete predicates.

Definition 16 (
−→
G ). Let G be a cfg.

−→
G is the set of all walks in G.

4.2. Weak projections of a cfg

Restricting a path to a set of vertices means removing all the vertices not in the set.
Definition 17 (Path Restriction). Let G = (V , E) be a graph, let V ′

⊆ V , and let π be a path in G. π↓V ′ is the subsequence of
π obtained by removing all vertices v of π where v /∈ V ′. We say π↓V ′ is the restriction of π to V ′.

Analogously, restricting a walk to a set of vertices means removing all the elements whose vertex component is not in
the set.
Definition 18 (Walk Restriction). Let G = (V , E, β) be a cfg, let V ′

⊆ V , and let ω be a walk in G. Define ω↓V ′ to be the
subsequence of ω obtained by removing all elements ωi of ω where ω̄i /∈ V ′. We say ω↓V ′ is the restriction of ω to V ′.

Note that ω↓V ′ = ω̄↓V ′.
Definition 19 (Weak Projections). Given a cfg G = (V , E, β), a cfg G′

= (V ′, E ′, β ′) (V ′
⊆ V ) is aweak projection of G if and

only if and every walk of G when restricted to V ′, is a walk of G′. i.e.,

ω ∈
−→
G =⇒ ω↓V ′

∈
−→
G′ .

Fig. 6 gives some examples of weak projections. Here G6(b) is a weak projection of G6(a). The walks of G6(a) are all the
segments4 of the three walks:

start, (p0, T), (p1, F), k, end
start, (p0, T), (p1, T), h,m, end
start, (p0, F), g, end

and the walks of G6(b) are all the segments of the two walks:

start, (p0, T), h
start, (p0, F), g.

Everywalk ofG6(a) when restricted to the vertices {start, p0, h, g} ofG6(b) is awalk ofG6(b). Similarly,G6(c) is aweak projection
of G6(a).
Proposition 20. Let G = (V , E, β) be a cfg and V ′

⊆ V . If the graph induced by V ′ from G is a cfg then the graph induced by
V ′ from G is a weak projection of G.
Proof. Let

ω = ω1, . . . , ωi, ωi+1, . . . be a walk of G

and write ω↓V ′
= ωn1 , . . . , ωni , ωni+1 , . . .

where 1 ⩽ n1 < n2 < · · · . Then
ω̄ni , ω̄ni+1, . . . , ω̄ni+1

is a V ′-interval, and hence by Definition 13
ω̄n1 , . . . , ω̄ni , ω̄ni+1 , . . .

is a path in the graph induced by V ′ from G. Finally, again by Definition 13 we have β(ω̄ni , ω̄ni+1) ⊆ β ′(ω̄ni , ω̄ni+1) and so
ω↓V ′ is a walk of the graph induced by V ′ from G. �

This shows that the mere act of ensuring that the induced graph is well-formed will also ensure it satisfies the semantic
property of being a weak projection.

4.3. Strong projections of a cfg

A strong projection is a weak projection where also maximal walks project onto maximal walks.

4 A segment of a sequence is contiguous sequence of elements in the sequence. For example the sequence {u, v, w} has segments
{u, v, w}, {u, v}, {v, w}, {u}, {v}, and {w} but not {u, w}.
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(a) G6(a) .

{T}

{T}

{T}

{F}

{F}

end

g

h

k

m
start p0

p1

(b) G6(b) is a weak projection of G6(a) .
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start p0
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(c) G6(c) is also a weak projection of G6(a) .

Fig. 6. Two weak projections. Any walk of G6(a) when restricted to the vertices of G6(b) is a walk in G6(b) . Ditto G6(c) .
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{F}

{F}

end

g
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m

start p0

p1

Fig. 7. G7 has thirteen maximal walks (Definition 21): three of them end at g , four of them end with an infinite sequence of ks, and six of them end at end.

Definition 21 (Maximal Walks). A maximal walk of G is a walk which is not a proper prefix of a walk of G.

For example the cfg G7 in Fig. 7 has thirteen maximal walks. There are nine finite maximal walks:

start, (p0, F), g
(p0, F), g
g
start, (p0, T), (p1, T), h,m, end
(p0, T), (p1, T), h,m, end
(p1, T), h,m, end
h,m, end
m, end
end

and four infinite maximal walks:
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start, (p0, T), (p1, F), k, k, . . .
(p0, T), (p1, F), k, k, . . .
(p1, F), k, k, . . .
k, k, . . ..

The six walks ending with end correspond to executions which terminate normally. The other walks correspond to non-
terminating programs, the finite ones to ‘silently’ non-terminating executions.

Proposition 22. Let G be a cfg. If ω is a maximal walk of G then ω̄ is a complete path of G.

Proof. If ω is infinite then ω̄ is infinite and thus is complete. If ω is finite then suppose that ω̄ is not complete. Let ω̄ end
at v, say, and since ω̄ is not complete there exists an edge (v, w) ∈ E. But then ω can be extended to w, contradicting the
maximality of ω. �

The converse is true only for cfgs where all predicates are complete.

Proposition 23. Let G be a cfg and let ω be a walk in G. If ω̄ is complete and all predicates in G are complete then ω is maximal.

Proof. If ω̄ is infinite then ω is infinite and thus is maximal. If ω̄ is finite then it ends at a final vertex. Now, all predicate
vertices are complete, therefore all final vertices in G must have out-degree 0, and not 1. Thus ω̄ cannot be a prefix of any
extending path and hence ω is maximal. �

The converse of Proposition 22 is not true for cfgs that contain incomplete predicates. For example in G4(a) in Fig. 4(a)
the two walks

ω1 = (p0, T), (p1, T)
ω2 = (p0, T), (p1, F)

have ω̄1 = ω̄2 = p0, p1 which is complete because it ends at the final vertex p1. However, ω1 is maximal but ω2 is not.
Nevertheless, as this example implies, for every complete path π there exists a maximal walk ω with ω̄ = π .

Proposition 24. Let G be a cfg. If π is a complete path of G then there exists a maximal walk ω of G such that ω̄ = π .

Proof. Follows immediately from the definitions of maximal walks and complete paths. �

Theremay exist more than onemaximal walk with the same complete path, for example where an edge is labelled {T, F}.

Definition 25 (Strong projections). Let G = (V , E, β) be a cfg and V ′
⊆ V . A cfg G′

= (V ′, E ′, β ′) is a strong projection of
cfg if and only if all maximal walks of G when restricted to V ′ give maximal walks of G′. i.e.,

ω ∈
−→
G is maximal =⇒ ω↓V ′

∈
−→
G′ and is maximal.

So, for every walk in a strong projection, the number of times we visit a vertex in the projection is identical to the
number of timeswe visit it in the correspondingwalk in the original. It follows that strong projections have another pleasing
property: everywalk in a strong projection is the restriction of a walk of the original.

Lemma 26. A strong projection is a weak projection.

Proof. This follows immediately from the fact that every walk is the prefix of a maximal walk. �

Lemma 27. Let the cfg G′
= (V ′, E ′, β ′) be a strong projection of the cfg G = (V , E, β). For all (x, y) ∈ E ′ there exists an [x, y]

V ′-interval in G.

Proof. Assume that (x, y) ∈ E ′.

(1) If x is a predicate then without loss of generality we can assume that T ∈ β ′(x, y). Let w be a maximal walk of G starting
from (x, T).

Since G′ is a strong projection of G, w↓V ′ is maximal in G′. The walk w will reach V ′ after (x, T), because otherwise
w↓V ′ is just (x, T), which cannot be maximal since T ∈ β ′(x, y). (This is where the proof would break down for weak
projections.) Therefore let v′ be the first V ′ vertex after (x, T) in w. Since w↓V ′ is a walk of G′, there must be an edge
(x, v′) ∈ E ′ with T ∈ β ′(x, v′). Since G′ is a cfgwemust have y = v′. Hence there is an [x, y] V ′-interval in G as required.

Moreover, it follows that if G′ contains a walk with first element (x, T) and with second element having vertex
component y, then G contains a walk with first element (x, T), with a later element having vertex component y, and
with no intermediate element having a vertex component in V ′. Similarly with F instead of T. (This stronger result is
needed in order to use Lemma 27 for Proposition 28.)

(2) If x is a non-predicate then as above, let w be a maximal walk of G starting from x. Using the same argument as above,
w will reach V ′ after x and by the uniqueness of the next element of non-predicate vertices we must have that y is the
unique next element after x in w↓V ′. Hence there is an [x, y] V ′-interval in G as required. �

Proposition 28. Let the cfg G′
= (V ′, E ′, β ′) be a strong projection of the cfg G = (V , E, β). For all walks ω′ of G′ there exists

a walk ω of G such that ω↓V ′
= ω′.
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Proof. Follows from Lemma 27 by induction on the length of a finite prefix of a walk. �

In fact every path in a strong projection arises as the slice of a path in the original, i.e., ‘the path of the strong projection
is (exactly) the slice of the path’.

Corollary 29. Let the cfg G′
= (V ′, E ′, β ′) be a strong projection of the cfg G = (V , E, β). For all complete paths π ′ of G′ there

exists a complete path π of G such that π↓V ′
= π ′.

Proof. If π ′ is a complete path of G′ then by Proposition 24 there is amaximal walkω′
∈

−→
G′ with ω̄′

= π ′. By Proposition 28
there exists ω ∈

−→
G with ω↓V ′

= ω′ If ω is not maximal then simply take any maximal walk µ extending ω. G′ is a strong
projection therefore µ̄↓G′

= π ′ for otherwise π ′ is not maximal. �

4.4. Weak and strong projections and non-termination

Consider the following definitions:

Definition 30 (Terminating Walks of a CFG). Walk ω is a terminating walk if and only if the path ω̄ is a terminating path
(Definition 11).

Definition 31 (Non-terminating Walks of a CFG). Walk ω is a non-terminating walk if and only if the path ω̄ is a non-
terminating path (Definition 12).

4.5. Strong projections preserve non-termination

This result is proved in the following lemma:

Lemma 32. Let G = (V , E, β) and G′
= (V ′, E ′, β ′) be cfgs and let G′ be a strong projection of G. If ω is a non-terminating walk

of G then ω↓V ′ is a non-terminating walk of G′.

Proof. Suppose ω↓V ′ is a terminating walk of G′. Then by definition, the final element of ω↓V ′ is end. Now, since V ′
⊆ V

we must have end ∈ V . So end must be an element of ω and hence ω is terminating. Contradiction. �

4.5.1. Weak projections do not necessarily preserve termination
Consider G6(b) which is a weak projection of G6(a) in Fig. 6. The terminating walk start, (p0, F), g, end restricts to the

non-terminating walk start, (p0, F), g . This walk is non-terminating because it ends in a final non-end vertex g in G6(b).

4.5.2. Strong projections do not necessarily preserve termination
ConsiderG8(b) in Fig. 8.G8(b) is a strong projection ofG8(a). The terminating path: start p0 p1 hm end in the original restricts

to the path: start p0 p1 h in the induced graph. This path is non-terminating since it ends at a non-end final vertex, namely
a non-predicate of out-degree zero.5

4.5.3. Weak projections do not necessarily preserve non-termination
The weak projection of a cfg G may terminate when G does not. To see this, consider Fig. 10. G10(b) is a weak projection

of G10(a) but it does not preserve non-termination. Predicate vertex p1, which can lead to non-termination in G10(a), does not
exist in G10(b). The non-terminating path [start, p0, p1, k, k, . . .] of G10(a) restricts to the path [start, p0] in G10(b). The path
[start, p0] is neither terminating nor non-terminating in G10(b). It is clearly not the prefix of any non-terminating path of
G10(b).

If aweak or strong projection contains end then it cannot introduce non-termination. This is stated formally in Lemma33.

Lemma 33. Let G = (V , E, β) and G′
= (V ′, E ′, β ′) be cfgs containing {end} and let G′ be a weak projection of G. If ω is a

terminating walk of G then ω↓V ′ is a terminating walk of G′.

Proof. This follows immediately from the fact the end ∈ V ′. �

Since a strong projection is a weak projection, Lemmas 32 and 33 guarantee that strong projections containing end of a
cfg, g , preserve the termination conditions of g . See Fig. 9 for an example.

5 In this example the smallest set containing {start, g, h} closed under
NTSCD
−−−→ and

DOD
−−→ of Ranganath et al. (defined later) is also {start, g, h, p0} inducing

G8(b) , showing that their so called ‘non-termination sensitive control dependence’ does not always preserve termination conditions either.



Author's personal copy

6822 S. Danicic et al. / Theoretical Computer Science 412 (2011) 6809–6842

{T}

{T} {F}

{F}

end

g

h

k

m

start p0

p1

(a) G8(a) .

{T}

{T} {F}

{F}

end

g

h

k

m

start p0

p1

(b) G8(b) .

Fig. 8. Strong projections not containing end do not necessarily preserve termination conditions: G8(b) (removed vertices and edges shown dotted) is a
strong projection of G8(a) The terminating complete path: start p0 p1 h m end in the original induces the path: start p0 p1 h in the induced graph. This path
is non-terminating since it ends at a non-end non-predicate of out-degree zero.
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(b) G9(b) .

Fig. 9. Termination behaviour is preserved only when end is included in the strong projection. G9(b) is a strong projection of G9(a) . Both have the same
termination conditions.

5. Weak and strong control-closure: a generalisation of non-termination sensitive and non-termination insensitive
control dependence

In this section we develop a theory of weak and strong control-closure. These are properties of vertex sets which are
necessary and sufficient to induce graphs which are weak and strong projections. Weakly and strongly control-closed sets
are used both in the production of algorithms for producingminimal weak and strong projections and also in the proofs that
classify the previous forms of control dependence as eitherweak or strong. An advantage of weak and strong control-closure
is that they are defined for any directed graph not just cfgs.

5.1. Weakly control-closed sets

Informally, at this stage, a set is weakly control-closed if and only if it is closed under non-termination sensitive control
dependence. Before we can define weakly control-closed sets, we need a preliminary definition:

Definition 34 (V ′-weakly Committing Vertices). Let G be a directed graph. A vertex v is V ′-weakly committing in G if all
V ′-paths from v have the same end point. In other words, there is at most one element of V ′ that is ‘first-reachable’ from v.

For example, in Fig. 5 the predicate p1 is {start, h, g}-weakly committing in G5 since the only first-reachable vertex in
{start, h, g} from p1 is h. Vertex p0, on the other hand, is not {start, h, g}-weakly committing in G5 since both h and g are first
reachable from p0.
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Fig. 10. G10(b) is a weak projection of G10(a) but it does not preserve non-termination. Predicate vertex p1 , which can lead to non-termination in G10(a) , does
not exist in G10(b) .

Definition 35 (Weakly Control-closed Sets). Let G be a directed graph and let V ′
⊆ V . V ′ is weakly control-closed in G if and

only if all vertices not in V ′ that are reachable from V ′ are V ′-weakly committing in G.

In Fig. 5, {start, h, g} is not weakly control-closed in G5 because p0 is reachable from {start, h, g} but p0 is not {start, h, g}-
weakly committing since h and g are both first reachable from p0. However, {start, p0, h, g} is weakly control-closed in G5
because all of the vertices of G5 that are not in {start, p0, h, g} and are reachable from {start, p0, h, g} are {start, p0, h, g}-
weakly committing. Later, we will show that sets closed under all weak forms of control dependence in the literature are
weakly control-closed.

5.2. Strongly control-closed sets

Informally a set is strongly control-closed if and only if it is closed under non-termination sensitive control dependence.

Definition 36 (V ′-strongly Committing Vertices). Let G = (V , E, β) be a cfg and let V ′
⊆ V . A vertex v is V ′-strongly

committing G if and only if it is V ′-weakly committing in G and all complete paths in G from v contain an element of V ′.

This means that all paths from v re-enter V ′ (and do so at the same vertex) whereas if v is only V ′-weakly committing in
G then some paths from v in Gmay never re-enter V ′.

Definition 37 (V ′-avoiding Vertices). Let G = (V , E, β) be a cfg and let V ′
⊆ V . A vertex v is V ′-avoiding in G if and only if

no vertex in V ′ is reachable in G from v.

Definition 38 (Strongly Control-closed Sets). Let G = (V , E, β) be a cfg and let V ′
⊆ V . V ′ is strongly control-closed in G if

and only if every vertex in V\V ′ that is reachable in G from V ′ is V ′-strongly committing or V ′-avoiding in G.

In Fig. 7, the set {start, g, h, end} is not strongly control-closed in G7 because p1 is reachable from {start, g, h, end} but
is neither {start, g, h, end}-strongly committing or {start, g, h, end}-avoiding. (Similarly p0.)

In Fig. 7, the set {start, p0, p1, h, end} is strongly control-closed inG9(b) because k and g are {start, p0, p1, h, end}-avoiding
and m is {start, p0, p1, h, end}-strongly committing. Later, we will show that sets closed under all strong forms of control
dependence in the literature are strongly control-closed.

5.3. Graphs induced by weakly control-closed sets

We now develop the theory of graphs induced by weakly control-closed sets. We show that for any subset V ′ of the
vertices of a cfg, G, V ′ being weakly control-closed in G is both necessary and sufficient for the induced graph from V ′ not
only to be well formed, but also to be a weak projection.

Lemma 39. Let G = (V , E, β) be a cfg, V ′
⊆ V , and v ∈ V ′. If V ′ is weakly control-closed in G then the out-degree of v in the

graph induced by V ′ from G is at most the out-degree of v in G.
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Proof. Let v1, . . . , vn be all the successors of v in the graph induced by V ′. Thus there are V ′-paths, vγi, in G ending with vi
for each i ⩽ n. Let wi be the first vertex of γi. We must have i ≠ j implies wi ≠ wj, since if wi = wj then either wi /∈ V ′

in which case wi would not be V ′-weakly committing in G although it is reachable from V ′, implying that V ′ is not weakly
control-closed in G, or wi ∈ V ′ and so vi = vj, contrary to our assumption. Thus v has n successors w1, . . . , wn in G, proving
the result. �

Proposition 40. Let G = (V , E, β) be a cfg and V ′
⊆ V . If V ′ is weakly control-closed in G then the graph induced by V ′ from G

is a cfg.

Proof. Let the graph induced by V ′ from G be (V ′, E ′, β ′). By Lemma 39, the graph induced by G on V ′ satisfies conditions (1)
and (2) of Definition 1. Suppose that part (3) of Definition 1 does not hold, then there exist edges (x, y) ∈ E ′ and (x, z) ∈ E ′

with y ≠ z but β ′(x, y)∩β ′(x, z) ≠ ∅. Assume without loss of generality that T ∈ β ′(x, y)∩β ′(x, z). By Definition 13, there
exists y1 and z1 in V such that T ∈ β(x, y1) and T ∈ β(x, z1) and V ′-intervals x, y1 . . . y and x, z1 . . . z. Since G is a cfg, and
hence edges from the same predicatemust be disjointly labelled, wemust have y1 = z1. But the V ′-paths y1 . . . y and z1 . . . z
then contradict the hypothesis that V ′ is weakly control-closed in G. �

Proposition 41. Let G = (V , E, β) be a cfg and V ′
⊆ V . If the graph induced by V ′ from G is a cfg then V ′ is weakly control-

closed in G.

Proof. Suppose not, then there exists v /∈ V ′ reachable from V ′ but not V ′-weakly committing in G. Therefore exists v′
∈ V ′

and V ′-intervals

v′, v′′, . . . , v, . . . , l1 and v′, v′′, . . . , v, . . . , l2

with l1 ≠ ł2. Let the graph induced by V ′ from G be (V ′, E ′, β ′). By Definition 13, the graph induced by V ′ from Gwill contain
the edges {v′, l1} and {v′, l2}. If v′

∈ P (i.e., it is a predicate) then the two edges would not have disjoint labelling, since
β ′(v′, l1)∩β ′(v′, l2) ⊇ β(v′, v′′) ≠ ∅. If v′

∈ N (i.e., it is a non-predicate), then in the induced graph a non-predicate would
have two successors. Both cases contradict the fact that the graph induced by V ′ from G is a cfg. �

The following three straightforward results show when a subset of the vertices includes the necessary distinguished
vertices that the graph induced on that subset again belongs to the same restricted class.

Proposition 42. Let G = (V , E, β) be a {start}-cfg. V ′ is weakly control-closed in G and start ∈ V ′ if and only if the graph
induced by V ′ from G is a {start}-cfg.

Proof. This follows immediately from Propositions 40 and 41, and the fact that if start ∈ V ′, then every vertex in V ′ is
reachable from start in the graph induced by V ′ from G, which is a consequence of Definition 13 and the analogous assertion
in G. �

Proposition 43. Let G = (V , E, β) be an {end}-cfg. V ′ is weakly control-closed in G and end ∈ V ′ if and only if the graph
induced by V ′ from G is an {end}-cfg.

Proof. Similar to the proof of Proposition 42. �

Proposition 44. Let G = (V , E, β) be a {start, end}-cfg. V ′ is weakly control-closed in G and {start, end} ⊆ V ′ if and only if
the graph induced by V ′ from G is a {start, end}-cfg.

Proof. This is an immediate consequence of Propositions 42 and 43. �

Wehaveproven that ifV ′ isweakly control-closed inG then the graph induced fromV ’ is awell formed cfg and conversely
if the graph induced from V ′

⊆ V is a well-formed cfg then V ′ is weakly control-closed in G. A set being weakly control-
closed in G is thus an equivalent to the graph induced by it from G being a well-formed cfg. In Section 7, we prove that
weakly control-closed sets generalise the property that V ′ is closed under each of the weak forms of control dependence in
the literature.

Theorem 45. Let G = (V , E, β) be a cfg and V ′
⊆ V . The following are equivalent.

(1) The graph induced by V ′ from G is a cfg.
(2) V ′ is weakly control-closed in G.
(3) The graph induced by V ′ from G is a weak projection of G.

Proof. (1) =⇒ (2) by Proposition 41.
(2) =⇒ (1) by Proposition 40.
(1) =⇒ (3) by Proposition 20 and
(3) =⇒ (1) because, by definition, a weak projection is a cfg. �

Wehave thus shown that for any subset V ′ of the vertices of a cfg,G, V ′ beingweakly control-closed inG is both necessary
and sufficient for the induced graph from V ′ not only to be well formed, but also to be a weak projection.

In the next section we define the corresponding relationships to Theorem 45 between strong control-closed sets and
strong projections.
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5.4. Graphs induced by strongly control closed sets

In this section, we investigate graphs induced by strongly control-closed sets. Themain result of this section is that graph
induced by V ′ from G is a strong projection of G if and only if V ′ is strongly control-closed in G.

Lemma 46. If V ′ is strongly control-closed in G then V ′ is weakly control-closed in G.

Proof. Result follows from the fact that a strongly committing vertex is weakly committing (Definition 36) and that a V ′-
avoiding vertex is vacuously V ′-weakly committing. �

An example of strong control-closure in terms of cfgs can be seen in Fig. 8. The smallest strongly control-closed set
containing {start, g, h} is {start, p0, p1, g, h}. Unlike in the weak case (see G6(b) in Fig. 6 ), vertex p1 is included, since k is
avoiding and h is strongly committing.

Proposition 47. Let G = (V , E, β) be a cfg and let V ′
⊆ V . If the graph induced by V ′ from G is a strong projection of G and

hence a cfg, then V ′ is strongly control-closed in G.

Proof. By Proposition 41, V ′ is weakly control-closed in G. Suppose v /∈ V ′ is reachable from V ′ but v is not V ′-avoiding and
v is not V ′-strongly committing. Since v is reachable from V ′ there is a path ρ = v1 . . . vn−1vn (vn = v) from v1 ∈ V ′ to
v with v2, . . . , vn ∈ V\V ′. Since v is not V ′-avoiding in G, there is a V ′-path vµk from v to some vertex k ∈ V ′. Since v is
V ′-weakly committing in G but not V ′-strongly committing in G there exists a V ′-avoiding path vvn+1vn+2 . . . say.

Now,ρvn+1vn+2 . . . is a complete path and so by Proposition 24 there exists amaximalwalkω = ω1ω2 . . .where ω̄i = vi.
However, ω↓V ′

= ω1 and the existence of the V ′-interval ρµk means that by Definition 13 there is an edge (v1, k) in the
graph induced by V ′ from G and if v1 is a predicate then ¯̄ω1 ∈ β(v1, v2) ⊆ β ′(v1, k). Hence ω1 is a prefix of any walk ω1l . . .,
where l̄ = k, i.e., it is not maximal which contradicts that the graph induced by V ′ from G is a strong projection of G. �

Proposition 48. Let G = (V , E, β) be a cfg and V ′
⊆ V . If V ′ is strongly control-closed in G then the graph induced by V ′ from

G is a strong projection of G.

Proof. By Proposition 40 and Lemma 46, the graph induced by V ′ from G is a cfg and then, by Proposition 20, the graph
induced by V ′ from G is a weak projection of G. Suppose it is not a strong projection. Then there exists a maximal walk ω of
G such that ω↓V ′ is a proper prefix of a maximal walk of the graph induced by V ′ from G. This means that ω↓V ′ is finite, so
write

ω↓V ′
= ω1, . . . , ωn.

Since w1 . . . wn is not maximal in the graph induced by V ′ from G, there exists a walk w1 . . . wnw
′ in the graph induced by

V ′ from G. There must exist a predicate p /∈ V ′ on a path between wn and w′ in G from which some paths reach w′
∈ V ′ and

from which at least one path never re-enters V ′, since if all paths in G re-enter V ′ from wn then w cannot be maximal G. By
definition, p is not strongly V ′ avoiding or not strongly committing and hence V ′ is not strongly control-closed in G. �

Theorem 49. Let G = (V , E, β) be a cfg and V ′
⊆ V . The graph induced by V ′ from G is a strong projection of G if and only if V ′

is strongly control-closed in G.

Proof. (⇒) Proposition 47.
(⇐) Proposition 48. �

In Section 4,we definedweak and strong projections and in this sectionwehave given necessary and sufficient conditions
for a subset, V ′, of vertices of a cfg to induce weak and strong projections respectively. The conditions are that V ′ is weakly
control-closed in G and V ′ is strongly control-closed in G respectively. In this section we prove that for any subset of vertices
V ′ of a cfg, there are unique minimal sets V ′′ and V ′′′ containing V ′ such that V ′′ is weakly control-closed in G and V ′′′ is
strongly control-closed in G. This implies that for any subset of vertices V ′ of a cfg, there are unique minimal sets V ′′ and
V ′′′ containing V ′ such that the graphs induced from G by V ′′ and V ′′′ are weak and strong projections of G respectively.

5.5. Existence and uniqueness of minimal weakly control-closed sets

Good slices are small slices. Given a cfg G = (V , E, β) and a slicing criterion V ′
⊆ V we want to find the smallest subset

V ′′ of V containing V ′ such that the graph induced from G by V ′′ is a weak projection of G. By Theorem 45, V ′′ will be the
smallest weakly control-closed set containing V ′. In this subsection, we prove that such a set exists and is unique.

In order to do this we need the concept of aweakly deciding vertex. Informally, a vertex is weakly deciding over a set V ′ if
it decides between any two vertices in V ′. It is called weak because the choice does not guarantee reaching an element in V ′.
Having made the choice, however, there will be at least one path that reaches the vertex in V ′. The choice guarantees that
the other interesting vertex will definitely not be reached first.

Definition 50 (Weakly Deciding Vertices). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . A vertex v ∈ V is V ′-

weakly deciding in G if and only if there exist two finite proper V ′-paths in G that both start at v and have no other common
vertex. We write WDG(V ′) for the set of all V ′-weakly deciding vertices in G.
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Fig. 11. Lemma 53: If l1 ∈ V ′ and l2 ∈ WDG(V ′)\V ′ then there exist paths l2γ1m1 and l2γ2m2 where γ1 and γ2 are disjoint from each other and disjoint
from V ′ . The verticesm1 ≠ m2 are both in V ′ .

It is possible for a vertex to be neither V ′-weakly committing in G, nor V ′-weakly deciding in G. To see this, consider
vertex start of G6(a) in Fig. 6. It is not {start, h, g}-weakly committing in G6(a) since h and g are both first reachable from start,
nor {start, h, g}-weakly deciding in G6(a) since all proper V ′-paths from start contain p0 and are hence not disjoint.

There now follows a lemma which shows that V ′ is weakly control-closed if and only if all V ′-weakly deciding vertices
that are reachable from V ′ are in V ′.

Lemma 51 (Weak Control-closure in Terms of WD). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . V ′ is weakly

control-closed in G if and only if all V ′-weakly deciding vertices in G that are reachable from V ′ are in V ′.

Proof. Suppose that V ′ is weakly control-closed in G and let v ∈ WDG(V ′)\V ′. Since v is V ′-weakly deciding in G there
must exist V ′-paths v...v′ and v...v′′ which share no common vertex after their common initial vertex v. Therefore v is not
V ′-weakly committing and because V ′ is weakly control-closed in G, v cannot be reachable from V ′.

Conversely, let v /∈ V ′ be reachable from V ′ but not V ′-weakly committing, so there exist V ′-paths v...v′ and v...v′′ for
v′

≠ v′′. If w is the last common vertex on these paths then w is reachable from V ′ and w...v′ and w...v′′ share no common
vertex after w and w ≠ v′, w ≠ v′′. Hence w is V ′-weakly deciding in G and w /∈ V ′. �

There now follow a useful result stating that WD is monotonic.

Lemma 52 (WD is Monotonic). Let G = (V , E) be a finite directed graph and V1 ⊆ V2 ⊆ V , then

WDG(V1) ⊆ WDG(V2).

Proof. Suppose there is a vertex v ∈ WDG(V1)\WDG(V2). Clearly there are proper [v,mi] V1-paths γi in G, for vertices
m1,m2 ∈ V1 ⊆ V2, which share only v as a common vertex. Let δi be the prefix of γi ending at the first vertex in V2 for each
i; since v /∈ WDG(V2), each δi is a proper path from v and the δi also share only v as a common vertex. Thus v ∈ WDG(V2),
giving a contradiction. �

We now prove an important property of WDG which we refer to as idempotence. This means that:

WDG(V ′
∪ WDG(V ′)) ⊆ V ′

∪ WDG(V ′).

This is equivalent to saying V ′
∪ WDG(V ′) is closed with respect to WDG i.e., if we take the set of vertices that are weakly

deciding on V ′
∪ WDG(V ′) we will not get any new elements.

Lemma 53 (WDG is Idempotent). Let G be a cfgwith vertex set V and let V ′
⊆ V . ThenWDG(V ′

∪ WDG(V ′)) ⊆ V ′
∪ WDG(V ′).

Proof. Let v ∈ WDG(V ′
∪WDG(V ′)). Thus there are paths vα1l1 and vα2l2 with α1 and α2 disjoint from each other and from

V ′
∪ WDG(V ′) and with each li ∈ V ′

∪ WDG(V ′). We will show that v ∈ WDG(V ′), thus proving the Lemma. We consider
three cases:

(1) If both l1, l2 ∈ V ′ then by definition v ∈ WDG(V ′), as required.
(2) If l1 ∈ V ′ and l2 ∈ WDG(V ′)\V ′ then there exist paths l2γ1m1 and l2γ2m2 where γ1 and γ2 are disjoint from each other

and disjoint from V ′. The vertices m1 ≠ m2 are both in V ′ (see Fig. 11). Either m1 ≠ l1 or m2 ≠ l1. Assume without loss
of generality, thatm1 ≠ l1. If γ1 is disjoint from α1 then v ∈ WDG(V ′), as α1l1 and α2l2γ1m1 are clearly disjoint.

Suppose that γ1 and α1 are not disjoint. Then there exists a vertex q which is the last point along γ1 at which γ1 and
α1 meet. So we can write γ1 = π1qπ2 with π2 disjoint from α1. Similarly, we can write α1 = ρ1qρ2 where ρ2 is chosen
so that it has no occurrence of q in it. Then π2 and ρ2 are disjoint, and l1,m1 ∈ V ′ and hence by definition q ∈ WDG(V ′).
As q lies on γ1, q /∈ V ′

∪ WDG(V ′) giving a contradiction. So γ1 is disjoint from α1, and so v ∈ WDG(V ′) as required.
(3) If both l1, l2 ∈ WDG(V ′)\V ′. Then there exist paths l1γ11m11 and l1γ12m12 where γ11 and γ12 are disjoint from each

other and from V ′ and m11 ≠ m12 are both in V ′. Similarly there exist paths l2γ21m21 and l2γ22m22 where γ21 and γ22
are disjoint from each other and from V ′ and m21 ≠ m22 are both in V ′ (see Fig. 12).

We prove first that α2 and γ11 are disjoint. Suppose not and let w be the last element of α2 which shares an element
with γ11. Therefore w weakly decides between m11 and l2 and hence by Case (2), w ∈ WDG(V ′). This contradicts our
original assumption that α2 is disjoint from V ′

∪WDG(V ′). Therefore α2 and γ11 are disjoint which means that v weakly
decides betweenm11 and l2 and hence, again by Case (2), v ∈ WDG(V ′) as required. �



Author's personal copy

S. Danicic et al. / Theoretical Computer Science 412 (2011) 6809–6842 6827

γ22

γ21

α1

α2

γ12

γ11

l2

l1

m21

m22

m11

m12

v

Fig. 12. Proof of Lemma 53.

Theorem 54. Let G = (V , E) be a finite directed graph and let V ′
⊆ V . There exists a unique minimal weakly control-closed

subset of V that contains V ′.

Proof. Let W be the set of elements of WDG(V ′) that are reachable from V ′. Then V ′
∪ W is the unique minimal weakly

control-closed subset of V that contains V ′. Let v be reachable from V ′
∪ W and v ∈ WDG(V ′

∪ W ). Then by monotonicity
v ∈ WDG(V ′

∪ WDG(V ′)) and then by idempotence (Lemma 53) v ∈ V ′
∪ WDG(V ′). Now, v is reachable from V ′ since all

elements ofW are reachable from V ′. Thus v ∈ V ′
∪ W and so V ′

∪ W is weakly control-closed by Lemma 51.
Let K ⊆ V be such thatW is not a subset of K . So by definition ofW , there exists an element z ∈ WDG(V ′) reachable from

V ′ but not in V ′
∪ K . By monotonicity, (Lemma 52), z ∈ WDG(V ′

∪ K). So by Lemma 51, V ′
∪ K is not weakly control-closed

in G, and so V ′
∪ W is the unique minimal weakly control-closed subset of V that contains V ′. �

5.6. Existence and uniqueness of minimal strongly control-closed sets

We now consider the analogous problem of proving the existence of the minimal strongly control-closed superset of a
given set. We prove this to be well-defined in Lemma 57. In order to do this, we first need to define the function Γ which
gives the set of vertices lying on complete paths not passing through V ′.

Definition 55 (Γ ). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . We define Γ (G, V ′) to be the set of all x ∈ V

that lie on a complete path in G which does not pass through V ′.

We now define Θ(G, V ′, u), the set of first-reachable elements in V ′ from u.

Definition 56 (Θ). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . Let H be the cfg obtained from G by deleting

all edges (v′, v) with v′
∈ V ′. For any u ∈ V , we define Θ(G, V ′, u) to be the set of vertices in V ′ that are reachable in H

from u.

Lemma 57. Let G = (V , E) be a finite directed graph and let V ′
⊆ V . If V ′ is not strongly control-closed then there is an edge

(p, r) in G with:

(1) p ∈ V\V ′.
(2) p is reachable in G from V ′.
(3) |Θ(G, V ′, r)| = 1.
(4) r /∈ Γ (G, V ′).
(5) Either |Θ(G, V ′, p)| ⩾ 2 or p ∈ Γ (G, V ′).

Furthermore, for any edge (p, r) in G satisfying these conditions, the vertex p lies in every strongly control-closed subset of V
containing V ′. From this, we show it follows that there is a unique minimal strongly control-closed superset of V ′.

Proof. Since V ′ is not strongly control-closed, there is a vertex p ∈ V\V ′ that is reachable in G from V ′ that is neither V ′-
strongly committing nor V ′-avoiding in G. Hence there is a path p0 = p, p1 = r, . . . , pm ∈ V ′ in G. Choose p so that m is
minimal. Thus r is V ′-strongly committing and the conditions involving the functionsΘ andΓ follow from this. Now assume
that there is an edge (p, r) in G that satisfies the conditions given, but that there is a strongly control-closed setW ⊇ V ′ not
containing p. Since |Θ(G, V ′, r)| = 1, there is a path p0 = p, p1 = r, . . . , pm ∈ Θ(G, V ′, r) in G, for some m ⩾ 1. From the
condition on p, either of two possibilities may occur.
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• |Θ(G, V ′, p)| ⩾ 2 and so there is also a path q0 = p, q1, . . . , qn ∈ V ′
\{pm} in G for some n ⩾ 1. Since Θ(G, V ′, pi) = {pm}

for each i ⩾ 1, no pi = qj unless i = j = 0. Since {pm, qn} ⊆ V ′
⊆ W , but p = p0 = q0 /∈ W , there exist minimal k, l ⩾ 1

such that pk ∈ W and ql ∈ W , and so p ∈ WDG(W ), and so by Lemma 51,W is not weakly control-closed, and hence not
strongly control-closed, giving a contradiction.

• p ∈ Γ (G, V ′) and so there is a complete path q0 = p, q1, . . . in G such that every qj /∈ V ′, and since r = p1 /∈ Γ (G, V ′), no
pi = qj unless i = j = 0. Let k ⩾ 1 be minimal such that pk ∈ W . If every qi /∈ W , then p is not W -strongly committing,
giving a contradiction, and if qk ∈ W for minimal l ⩾ 1, then there is a [p, pk] W -path and a [p, ql] W -path in G, and so
W is not weakly control-closed, and hence not strongly control-closed, giving a contradiction.

Thus we have shown if an edge (p, r) in V satisfies conditions (1)–(5), then p lies in every strongly control-closed superset
of V ′. �
Theorem 58. Let G = (V , E) be a finite directed graph and let V ′

⊆ V . There exists a unique minimal strongly control-closed
superset of V ′ in G.
Proof. We now prove the uniqueness of minimal strongly control-closed supersets of V ′ by induction on |V | − |V ′

|. We
may assume that V ′ is not strongly control-closed, hence there is an edge (p, r) in V that satisfies conditions (1)–(5) of
Lemma 57, and such that p lies in every strongly control-closed superset of V ′. If V ′

∪{p} is strongly control-closed, then the
uniqueness result follows immediately. Otherwise, by the inductive hypothesis, there is a unique minimal strongly control-
closed superset of V ′

∪ {p}, and since every strongly control-closed superset of V ′ must contain p, the result follows. �
In this section we have proved that for any subset of vertices V ′ of a cfg, there are unique minimal weak and strongly

control closed sets containing V ′ and hence uniqueminimal weak and strong projections containing V ′. In Section 6, we give
low polynomial algorithms for computing these sets.

6. Algorithms for computing minimal weakly and strongly control-closed sets

Given a cfg G = (V , E, β) and a subset V ′
⊆ V , we wish to compute the minimal superset of V ′ which is weakly control-

closed and the minimal superset of V ′ which is strongly control-closed. In this section we define algorithms for computing
each of these. (We showed that these sets exist in the previous section.) Since weakly and strongly control-closure is a
necessary and sufficient condition for the induced graph to be a weak/strong projection, in effect, we have algorithms for
producing minimal weak/strong projections (slices).

Our algorithms have worst-case time complexity O(|V |
3) and O(|V |

4) respectively. This is an improvement over worst-
case time complexity of the algorithms for computing the new control dependences of Ranganath et al. which they give
as O(|V |

3
× lg(|V |) ×

∑
Tn) = O(|V |

4
× lg(|V |)). (Since they define Tn to be the number of successors of vertex, n so

O(
∑

Tn) = O|V |)). The authors believe that more efficient algorithms exist. This will be the subject of future work.
Definition 59. Let G = (V , E) be a graph. We define |G| = |V | + |E|.

The computation of Θ(G, V ′, u) (Definition 56) has time complexity O(|G|), since removing the appropriate edges from
G to obtain H takes linear time, and the subsequent reachability problem can be computed by depth-first search and thus
has time complexity O(|V | + |E|).

For cfgs, since themaximumout-degree for each vertex is two,we haveO(|G|) = O(|V |). The computation ofΘ(G, V ′, u),
thus has time complexity O(|V |).

6.1. An algorithm to compute the minimal weakly control-closed superset of V ′ in G

Let G = (V , E, β) be a cfg and let V ′
⊆ V . We require an algorithm for computing the minimal weakly control-closed

superset of V ′ in G. Before we give our algorithm, we state and prove the following result:
Lemma 60. Let G = (V , E) be a finite directed graph and let V ′

⊆ V . Suppose that V ′ is not weakly control-closed in G. Then
there is an edge (p, r) in G such that
(1) |Θ(G, V ′, r)| = 1 and
(2) |Θ(G, V ′, p)| ⩾ 2 and
(3) p is reachable in G from V ′.

Furthermore, for any edge (p, r) satisfying (1)–(3), the vertex p lies in every weakly control-closed subset of V containing V ′.
Proof. Since V ′ is not weakly control-closed, there is a vertex p ∈ V\V ′ that is reachable in G from V ′ and is not V ′-weakly
committing. Hence there is a path p0 = p, p1 = r, . . . , pm ∈ V ′ in G. Choose p so that m is minimal. Thus r is V ′-weakly
committing and |Θ(G, V ′, r)| = 1 and |Θ(G, V ′, p)| ⩾ 2 follow from this. Now assume that an edge (p, r) is inG and satisfies
the conditions given, but there is a weakly control-closed set W ⊇ V ′ not containing p. Since |Θ(G, V ′, r)| = 1, there is a
path p0 = p, p1 = r, . . . , pm ∈ Θ(G, V ′, r) in G, for some m ⩾ 1. In addition, |Θ(G, V ′, p)| ⩾ 2 and so there is also a path
q0 = p, q1, . . . , qn ∈ V ′

\{pm} in G for some n ⩾ 1. Since Θ(G, V ′, pi) = {pm} for each i ⩾ 1, no pi = qj unless i = j = 0. Thus
p ∈ WDG(V ′) ⊆ WDG(W ) by Lemma 52, and soW is not weakly control-closed, by Lemma 51, giving a contradiction.

Thus we have shown if an edge (p, r) in V satisfies (1)–(3) above, then p lies in every weakly control-closed superset of
V ′. �
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Our algorithm is indicated by Lemma 60, which gives a condition stated in terms of the function Θ on vertices that must
be added to the set V ′ in order to obtain a weakly control-closed set. We now give an algorithm for computing the minimal
weakly control-closed superset of V ′ in G which we prove has time-complexity O(|V |

3). Let G = (V , E, β) be a cfg and let
V ′

⊆ V . To compute the minimal weakly control-closed superset of V ′ in G proceed as follows:
Algorithm 61. (1) Assign X = V ′.
(2) Choose any edge (p, v) in G with p reachable from V ′ and such that |Θ(G, X, v)| = 1 and |Θ(G, X, p)| ⩾ 2 hold, and

assign X = X ∪ {p}. If no such edge (p, v) exists then STOP.
(3) GOTO 2.
Theorem 62. Algorithm 61 has time complexity O(|V |

3), and the value of the set X when STOP is reached is the minimal weakly
control-closed superset of V ′ in G.
Proof. Step (2) cannot execute twicewith the same value of p and is therefore executed atmost |V | times. For each execution
of (2), not more than |G| = |V | edges are tested, and for each testing, the time taken to compute Θ and is of O(|V |), proving
the total O(|V |

3) time complexity. By Lemma 60, X is the unique smallest weakly control-closed set in G containing V ′ when
STOP is reached. �

Later in the paper we will prove that weak control-closure subsumes all the previous definitions of weak control
dependence in the literature. In other words, the problem of computing the set of vertices that transitively control a
set of vertices (whichever definition in the literature we use) can be reduced to computing weakly control-closed sets.
Furthermore weak control-closure is more general, in the sense that it is defined for graphs for which previous definitions
of control dependence are not defined.

6.2. An algorithm to compute the minimal strongly control-closed superset of V ′ in G

We now consider the analogous problem of computing the minimal strongly control-closed superset of a given set. First
we need an algorithm for computing Γ (G, V ′) (Definition 55): the set of all x ∈ V that lie on a complete path in G which
does not pass through V ′.
Algorithm 63 (Algorithm for Computing Γ (G, V ′)).

(1) Assign X = V ′.
(2) Choose any edge (y, x) in Gwith x ∈ X , y /∈ X . If no such edge exists, then STOP.
(3) Delete the edge (y, x) from G.
(4) If there is another edge (y, z) with z ≠ x, then convert y to a non-predicate and GOTO (2).
(5) If y is a non-predicate then assign X = X ∪ {y}.
(6) GOTO (2).
Theorem 64. In Algorithm 63, the final value of V\X is precisely Γ (G, V ′), and the algorithm has time complexity O(|G|

2) =

O(|V |
2).

Proof. Each execution of (3) except the last deletes an edge from G, hence the number of iterations is bounded by O(|G|).
Also finding an edge with property (2) is O(|G|). Steps (3)–(6) are all constant, proving the total time complexity bound
O(|G|

2) = O(|V |
2). For any execution of (2) and for the current value of X just before this execution, the edges deleted from

G and the vertices added to X are not used in any complete path using only the vertices in V\X . Thus the set of all such
complete paths does not change throughout the whole execution, even as X changes. Since at the end of the execution there
are no edges from V\X to X , the set Γ (G, V ′) of vertices occurring on these paths is V\X , proving the theorem. �
Let G = (V , E) be a finite directed graph and let V ′

⊆ V . To compute the minimal strongly control-closed superset of V ′,
now proceed as follows:
Algorithm 65. (1) Assign X = V ′.
(2) Find an edge (p, r) in G such that p is reachable in G from X and satisfying:

(a) |Θ(G, X, r)| = 1 and
(b) r /∈ Γ (G, X) and
(c) |Θ(G, X, p)| ⩾ 2 or p ∈ Γ (G, X).
If no such edge exists, then STOP, else assign X = X ∪ {p}.

(3) GOTO (2).
Theorem 66. Algorithm 65 computes unique minimal strongly control-closed superset of V ′ and has worst-case time complexity
O(|V |

4).
Proof. The proof that Theorem Algorithm 65 computes unique minimal strongly control-closed superset of V ′ is analogous
to the proof of the corresponding weak case in Theorem 62 with Lemma 57 used in place of Lemma 60.

The proof Algorithm 65 has worst-case time complexity O(|V |
4) is as follows: The main loop of Algorithm 65 is executed

O(|G|) = O(|V |) times. Computing Step (a) i.e., computing Θ(G, X, r) is also O(|V |). In computing Step (b) we first compute
Γ (G, X). This is O(|V |

2) by Theorem 64. Each time Γ (G, X) is recomputed we need to find an r /∈ Γ (G, X) satisfying (3).
This search for r adds one to the order of magnitude for step (2) giving O(|V |

3). Step (2) dominates the other steps in time
complexity giving a total worst-case time complexity of O(|V |

4) since step (2) is executed O(|V |) times. �
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7. The weak forms of control dependence

7.1. Summary

In the literature, there are three distinct forms of control dependence which we call weak because, as we show in this
section, vertex sets closed under them induce weak projections. They are:

•
W-controls
−−−−−→: the control dependence of Weiser [33],

•
F-controls
−−−−−→: the control dependence of Ferrante et al. [16], and

•
WOD
−−→: Amtoft’s weak order dependence [3].

There is also Podgurski and Clarke’s’ strong control dependence [26], but this is merely a paraphrasing of Weiser’s.
The main results of this section give the relationship between sets closed under the weak forms of control dependence

mentioned above and weakly control-closed sets. These can be summarised as follows:

Lemma 80 Let G = (V , E) be an {end}-graph. V ′ is closed under
F-controls
−−−−−→ if and only if V ′ is closed under

W-controls
−−−−−→.

Lemma 81 Let G = (V , E) be a {start, end}-graph with {start, end} ⊆ V ′
⊆ V . If V ′ is weakly control-closed in G then V ′ is

closed under
W-controls
−−−−−→.

Lemma 83 Let G = (V , E) be an {end}-graph with V ′
⊆ V . If V ′ is closed under

W-controls
−−−−−→ then V ′ is weakly control-closed

in G.

Lemma 84 Let G = (V , E) be a finite directed graph with V ′
⊆ V . If V ′ is closed under

WOD
−−→ then V ′ is weakly control-

closed in G.

Lemma 85 Let G = (V , E) be a {start}-graphwith start ∈ V ′
⊆ V . If V ′ is weakly control-closed in G then V ′ is closed under

WOD
−−→.

From these,we canprove ourmain resultwhich shows that, indeed, allweak forms of control dependence in the literature
induce weak projections. These forms of control dependence have thus been semantically characterised for the first time.
The characterisation is as follows:
Theorem 67 (Main Theorem for Weak Control Dependence).

(1) If G is a {start, end}-cfgwith {start, end} ⊆ V ′, then V ′ is closed under
W-controls
−−−−−→ if and only if the induced graph induced by

V ′ from G is a weak projection of G.
(2) If G is a {start, end}-cfg with {start, end} ⊆ V ′, then V ′ is closed under

F-controls
−−−−−→ if and only if the induced graph induced by

V ′ from G is a weak projection of G.
(3) If G is a {start}-cfg with start ∈ V ′ then V ′ is closed under

WOD
−−→ if and only if the induced graph induced by V ′ from G is a

weak projection of G.
Proof. (1) follows from Lemmas 81 and 83 and Theorem 45. (2) follows from (1) and Lemma 80 and, (3) follows from
Lemmas 84 and 85 together with Theorem 45. �

It can be seen from Theorem 67, that each form of weak control dependence requires a restriction to the cfg for it to
be characterised by a weak projection. As Theorem 45 showed, weak control closure, on the other hand, requires no such
restriction and can thus be more generally applied.

7.2. Weiser’s control dependence

In order to define Weiser’s control dependence, we first need forward domination.
Definition 68 (Forward Domination). Let G = (V , E) be an {end}-graph and let v, w ∈ V . If every path from v to end passes
through w then w forward dominates v.
Note, v forward dominates itself. Forward domination is the terminology of Podgurski and Clarke. Weiser calls it inverse
domination. Ferrante et al. [16] call it post domination.

It is well known [26, Theorem 1] that if v ≠ end is a vertex in a cfg, then the set of all vertices that forward dominate v
always occur in the same order on any path from v to end.
Definition 69 (Nearest Forward Dominator). We call the first such vertex apart from v the nearest forward dominator of v.
Note, v cannot be its own nearest forward dominator.
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end
v1

v2

v

w1

w2

Fig. 13. Ferrante et al. control dependence is not transitive: v
F-controls
−−−−−→ v1 and v1

F-controls
−−−−−→ w1 but v

F-controls
−−−−−→ w1 is false.

Definition 70 (ND). Let G = (V , E) be an {end}-graph and v ∈ V . ND(v) is the set of vertices which lie on a path from v to
its nearest forward dominator b, excluding v and b themselves.

Implicit in this is Weiser’s definition of control dependence:

Definition 71 (
W-controls
−−−−−→). Let G = (V , E) be an {end}-graph and v, w ∈ V , then v

W-controls
−−−−−→ w if and only if w ∈ ND(v).

Note that in v cannot control itself using Weiser’s definition.

7.3. The control dependence of Ferrante et al.

In defining the program dependence graph, control dependence was once again redefined [16].

Definition 72 (
F-controls
−−−−−→). Let G = (V , E) be an {end}-graph, then v

F-controls
−−−−−→ w if and only if v is not forward dominated by

w, and there exists a path π from v to w such that for all vertices z occurring on π apart from v are forward dominated by
w.

Ferrante et al. control dependence is not transitive, as is demonstrated by the example in Fig. 13 where v
F-controls
−−−−−→ v1

and v1
F-controls
−−−−−→ w1 but v does not control w1. Also note that a vertex cannot control itself using this definition. This follows

because every vertex forward dominates itself.
Lemma 73, in effect, allows an alternative definition of Ferrante et al. control dependence, which is often used:

Lemma 73. Let G = (V , E) be an {end}-graph and v, w ∈ V withw ≠ v. The vertex v
F-controls
−−−−−→ w if and only if v has immediate

successors v1, v2 such that w forward dominates v1 but not v2.

Proof. Suppose that w is Ferrante control dependent on v. Then there is a path π from v to w on which all vertices except
v are forward dominated by w, and there is a path vµend which does not pass through w. Let v1 be the second vertex of π
then vµend also does not pass through v1 because w forward dominates v1. Therefore the first vertex of µ must be some
v2 ≠ v1 and so v has immediate successors v1, v2 with w forward dominating v1 but not v2, as required.

Conversely, let v have immediate successors v1, v2 such that w forward dominates v1 but not v2. Since w forward
dominates v1, and end is reachable from v1, there is a path v1ρend onwhichw occurs, andwhich hence has a prefix v1νw on
which w does not occur except at the end. Thus every vertex on v1ν is forward dominated by w. However since w does not
forward dominate v2, and there is an edge (v, v2) and w ≠ v, w does not forward dominate v either, and thus v

F-controls
−−−−−→ w

as required. �

7.4. Amtoft’s weak-order dependence

Amtoft [3,29] observes that the traditional cfg is not well adapted to handle modern programming constructs which
may intentionally fail to terminate, e.g., reactive systems. Amtoft addresses this problem by define weak order dependence
(
WOD
−−→) as an extension of Ferrante et al. control dependence to handle cfgs which are not necessarily {end}-graphs.

Definition 74 (
WOD
−−→). Let G = (V , E) be a finite directed graph with v, b, c ∈ V . Then v

WOD
−−→ b, c if and only if:

(1) There is a path from v to b not containing c .
(2) There is a path from v to c not containing b.
(3) v has an immediate successor a such that either

• b is reachable from a, and all paths from a to c contain b; or
• c is reachable from a, and all paths from a to b contain c.

7.5. The relationship between controlling predicates and weakly deciding predicates

There is a strong connection between sets closed under the different forms of weak control dependence and the sets
closed under WDG, i.e., those sets V ′ for which WDG(V ′) ⊆ V ′.
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7.6. Characterisation of sets closed under different weak forms of control dependence

Definition 75 (The Reflexive Transitive Closure of a Relation). . Given a relation r , the reflexive transitive closure of r , write
r∗ is defined to be the smallest reflexive, transitive relation containing r .

Definition 76 (Closed Sets). . Given a relation r , we define a set S to be closed under r to mean that if s ∈ S and t
r

−→ s, then
t ∈ S.

Lemma 77. Let G = (V , E) be an {end}-graph and let p, v ∈ V with p ≠ v, then p
F-controls∗
−−−−−→ v if and only if p is {v, end}-weakly

deciding in G.

Proof. (=⇒) Suppose that p
F-controls∗
−−−−−→ v. Thus there is a sequence v = p0, . . . , pm = p with m ⩾ 1 such that

pi
F-controls
−−−−−→ pi−1. We prove p ∈ WDG({v, end}) by induction onm.

If m = 1 then p
F-controls
−−−−−→ v. Since end is reachable from every vertex, by Lemma 73, p has immediate successors p1, p2

such that there is a [p1, v] path α1v containing v only at the end and a [p2, end] path, α2end, not containing v, and every
path from p1 (and hence from any vertex in α1) to end passes through v. Thus no vertex occurs on both paths α1v and α2end,
hence p ∈ WDG({v, end}) follows.

If m > 1, the inductive hypothesis gives us

pm−1 ∈ WDG({v, end}),

and since pm
F-controls
−−−−−→ pm−1, we have just shown that

p = pm ∈ WDG({pm−1, end})

follows. Thus by Lemma 52, we may replace {pm−1, end} by its superset

WDG({v, end}) ∪ {v, end}

to get

p ∈ WDG(WDG({v, end}) ∪ {v, end})

⊆ WDG({v, end}) ∪ {v, end}

by Lemma 53. Since clearly p /∈ {v, end}, the result p ∈ WDG({v, end}) follows, as required.
(⇐=) Conversely, suppose that w ∈ WDG({v, end}) then there are paths wα1v and wα2end in V which are disjoint other

than w. We will prove w
F-controls∗
−−−−−→ v by induction on the length of the path α1. If end is not reachable in V\{v} from any

vertex on α1, then w
F-controls
−−−−−→ v is immediate. Thus we may write α1 = µuν where there is a path uρend in V that does not

pass through v. Assume u is the last vertex on α1 from which end is reachable in V\{v}, and so ν has no vertex in common

with α2. Therefore ρ and ν have no common vertex, and so u ∈ WDG({v, end}) and hence by induction u
F-controls∗
−−−−−→ v.

Finally, w ∈ WDG({u, end}) and hence by induction w
F-controls∗
−−−−−→ u and thus w

F-controls∗
−−−−−→ v. �

Lemma 78. Let G = (V , E) be an {end}-graph, then p
W-controls
−−−−−→ v if and only if p ∈ WDG{v, end} and p ≠ v.

Proof. Let u be the nearest forward dominator of p in G. Suppose that v ∈ ND(p). Then v ≠ p by definition. Also there is a
path pµvνu on which u does not occur except at the end, and so v does not forward dominate p, hence there is also a path
vσu not passing through v (see Fig. 14).

We can assume that µvνuτ and σuτ have no repeated elements since if they do then the cycle can simply be removed.
Also we can assume that τ and µ are disjoint since otherwise uwould not be the nearest forward dominator of p.

We prove p ∈ WDG{v, end} by induction on |µ|.
If |µ| = 1 then p ∈ WDG{v, end} by definition. If |µ| > 1, then if µ and σuτ are disjoint then again, by definition,

p ∈ WDG{v, end}. If µ and σuτ are not disjoint, let q be the first vertex along µ which is also in σuτ . Then q must be in σ
since τ and µ are disjoint and q ≠ u.

By the inductive hypothesis, q ∈ WDG{v, end} and also since q ≠ u, p
W-controls
−−−−−→ v, so again by the inductive hypothesis,

p ∈ WDG{q, end}. So, by the idempotence of WD (Lemma 53), we have p ∈ WDG{v, end}, as required.
Conversely, assume p ∈ WDG{v, end} and p ≠ v. Then there are paths pµend and pνv which share only p as a common

vertex. There is also a path vπend. Clearly u occurs on both paths pµend and pνvπend, and the ‘non-sharing’ property
implies that u occurs on πend, proving v ∈ ND(p). �

Lemma 79. Let G = (V , E) be an {end}-graph and let p, v ∈ V with p ≠ v, then p
F-controls∗
−−−−−→ v if and only if p

W-controls
−−−−−→ v.

Proof. By Lemma 77 p
F-controls∗
−−−−−→ v if and only if p is {v, end}-weakly deciding in G. By Lemma 78 p is {v, end}-weakly

deciding in G if and only if p
W-controls
−−−−−→ v. �

From Lemma 79, it now follows immediately that:
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Fig. 14. Lemma 78.

end

v1

v2

v

Fig. 15. Necessity that start ∈ V ′ in Lemma 81: Here v controls both v1 and v2 , so {v1, v2} is not closed under control dependence, but {v1, v2} is weakly
control-closed in G.

start end
w

v

Fig. 16. Necessity that end ∈ V ′ in Lemma 81: Here if V ′
= {start, w} then V ′ is weakly control-closed in G but v controls w, so V ′ is not closed under

control dependence.

Lemma 80. Let G = (V , E) be an {end}-graph and let V ′
⊆ V . V ′ is closed under

F-controls
−−−−−→ if and only if V ′ is closed under

W-controls
−−−−−→.

7.7. Sets closed under weak forms of control dependence and weak control closure

Lemma 81. Let G = (V , E) be a {start, end}-graph and let {start, end} ⊆ V ′
⊆ V . If V ′ is weakly control-closed in G then V ′ is

closed under
F-controls
−−−−−→ (and by Lemma 80,

W-controls
−−−−−→).

Proof. Suppose not, then there are vertices v, w with v ∈ V\V ′ and w ∈ V ′ such that v
F-controls
−−−−−→ w. Thus, by Lemma 73, v

has distinct immediate successors z1, z2 such that there are paths z1ρ1w and z2ρ2end, where w does not occur on either ρi
and end is not reachable in V\{w} from z1. Thus v is {end, w}-weakly deciding in G. By Lemma 52 v is V ′-weakly deciding
in G. But v is reachable from start ∈ V ′ therefore by Lemma 51, V ′ is not weakly control-closed in G. �

Note that the condition that start ∈ V ′ really is necessary, as the example in Fig. 15 shows.
Furthermore, the condition that end ∈ V ′ cannot be dispensed with. In Fig. 16, let V ′

= {start, w}. V ′ is weakly control-
closed in G but v controls w so V ′ is not closed under control dependence.

Lemma 82. Let G = (V , E) be an {end}-graph and let V ′
⊆ V . Suppose thatw ∈ V\V ′

∩WDG(V ′). Then there existsw1 ∈ V\V ′

and v ∈ V ′ such that w1 is {v, end}-weakly deciding in G.

Proof. Since w ∈ WDG(V ′), for i ∈ {1, 2} there are proper V ′-paths wρizi for vertices zi such that no vertex lies on both
paths ρizi. There is also a path z1σend through G which does not pass more than once through z1. By replacing z1 by z2 if
necessary, and using a suffix of σend, we may assume also that σend does not pass through z2. If no vertex on σend also
occurs on ρ2, then the conclusion follows forw1 = w and v = z2 by examining the pathswρ1z1σend andwρ2z2. Otherwise
we may write ρ2 = αw1β and σ = τw1ω, where w1 ∈ V and no vertex occurs on both β and ω, and the conclusion again
follows for v = z2 by examining the paths w1βz2 and w1ωend. �

Lemma 83. Let G = (V , E) be an {end}-graph and let V ′
⊆ V .

If V ′ closed under
F-controls
−−−−−→ then V ′ is weakly control-closed in G.

Proof. Suppose that V ′ is not weakly control-closed in G, then by Lemma 51, V\V ′ contains an element of WDG(V ′). By

Lemma 82, there exists z ∈ V\V ′ and v ∈ V ′ such that z ∈ WDG({v, end}), and hence by Lemma 77 z
F-controls∗
−−−−−→ v. Hence V ′

is not closed under
F-controls
−−−−−→. �

Lemma 84. Let G = (V , E) be a finite directed graph and let V ′
⊆ V .

If V ′ is closed under
WOD
−−→ then V ′ is weakly control-closed in G.

Proof. Suppose not, then there exists y ∈ V\V ′ which is reachable from V ′ and which is not weakly-committing. This
implies there exist proper V ′-paths yα1w1 and yα2w2 for distinct vertices w1 ≠ w2. Let Ω be the set of all vertices from
which w2 is reachable in V\{w1}; thus y ∈ Ω , but w1 /∈ Ω . Thus we may write yα1w1 = βvγw1, where v ∈ Ω and no

vertex in γw1 lies in Ω . Hence v
WOD
−−→ w1, w2 which contradicts that V ′ is closed under weak order dependence. �
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Fig. 17. Lemma 85.

Lemma 85. Let G = (V , E) be a {start}-graph with start ∈ V ′.
If V ′ is weakly control-closed in G then V ′ is closed under

WOD
−−→.

Proof. Suppose that b, c ∈ V ′ and v
WOD
−−→ b, c holds for v ∈ V . Wewill assume that v /∈ V ′ and deduce a contradiction. From

the definition of weak order dependence and by interchanging b and c if necessary, there are paths vβb and vγ c such that
b does not occur on γ c , nor c on βb, and all paths from the first vertex of βb to c pass through b before reaching c , which
implies that no vertex occurs on both βb and γ c . See Fig. 17. So v ∈ WDG(V ′)\V ′. Vertex v is reachable from start ∈ V ′

contradicting the assumption that V ′ is weakly control-closed in G (by Lemma 51). �

Note that the condition that start ∈ V ′ really is necessary: in Fig. 15 v
WOD
−−→ v1, v2 so {v1, v2} is not closed under

WOD
−−→ but

{v1, v2} is weakly control-closed in G.
We have shown that all weak forms of control dependence in the literature are essentially the same: vertex sets closed

under them all induce weak projections. We may call any relation on vertex sets that has this property weak control
dependence. So

W-controls
−−−−−→,

F-controls
−−−−−→ and

WOD
−−→ are all examples of weak control dependence. In the next section, we turn

our attention to the strong forms of control dependence.

8. The strong forms of control dependence

8.1. Summary

In the literature, there are two distinct forms of control dependence which we call strong because, as we show in this
section, vertex sets closed under them induce strong projections. These are:

• the combination of
NTSCD
−−−→ and

DOD
−−→ of Ranganath et al. [29].

•
PC-weak
−−−−→, the weak control dependence of Podgurski and Clarke [26].

The main results of this section give the relationship between sets closed under the strong forms of control dependence
mentioned above and strongly control-closed sets. These can be summarised as follows:

Lemma 93 Let G = (V , E, β) be a complete cfg. If V ′
⊆ V is closed under both

NTSCD
−−−→ and

DOD
−−→ then V ′ is strongly control-

closed in G.

Lemma 94 Let G = (V , E) be {start}-graph and start ∈ V ′
⊆ V . If V ′ is strongly control-closed in G then V ′ is closed under

both
NTSCD
−−−→ and

DOD
−−→.

Lemma 96 Let G = (V , E, β) be a complete {end}-cfg and V ′
⊆ V . If V ′ is closed under

PC-weak
−−−−→ then V ′ is strongly control-

closed in G.

Lemma 97 Let G = (V , E) be a {start, end}-graph with start ∈ V ′
⊆ V . If V ′ is strongly control-closed in G then V ′ is closed

under
PC-weak
−−−−→.

From these,we canprove ourmain resultwhich shows that, indeed, both strong formsof control dependence in the literature
induce strong projections. These forms of control dependence have thus been semantically characterised for the first time.
The characterisation is as follows:
Theorem 86 (Main Theorem for Strong Control Dependence).

(1) If G is a complete {start}-cfgwith start ∈ V ′ then V ′ is closed under
DOD
−−→ and

NTSCD
−−−→ if and only if the induced graph induced

by V ′ from G is a strong projection of G.
(2) If G is a complete {start, end}-cfgwith start ∈ V ′ then V ′ is closed under

PC-weak
−−−−→ if and only if the induced graph induced by

V ′ from G is a strong projection of G.
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u endwv

Fig. 18. Vertex w forward dominates v but does not strongly forward dominate v.

Proof. (1) follows from Lemmas 93, 94 and Theorem 49 and (2) follows from Lemmas 96, 97 and Theorem 49. �

It can be seen from Theorem 86, that each form of strong control dependence requires a restriction to the cfg for it to
be characterised by a strong projection. As Theorem 49 showed, strong control-closure, on the other hand, requires no such
restriction and can thus be more generally applied.

8.2. Ranganath’s non-termination-sensitive control dependence
NTSCD
−−−→

Ranganath et al. [29] observe that, despite being widely used, existing definitions and approaches to calculating control
dependence are difficult to apply directly tomodern program structureswhichmake substantial use of exception processing
and which may deliberately run indefinitely. A major motivation of Ranganath’s work is that traditional forms of control
require the end to be reachable from every vertex. They rightly claim that this is not a suitable restriction for such programs
which are designed to non-terminate. So they, like us, allow cfgs where end is not necessarily reachable from every vertex.

For these sort of programs, they argue that the slice should non-terminate in all initial states when the original does. In
order to compute this strong form of slice, Ranganath et al. define two new control dependence relations:

• Non-termination-sensitive control dependence,
NTSCD
−−−→.

• Decisive order dependence (sometimes referred to as direct order dependence),
DOD
−−→.

In the definitions below, reproduced from their work [29], the term maximal path refers to a path that either is infinite or
ends at end. The definitions still make sense for the more general class of graphs under investigation in this paper where a
maximal path is taken as the path ω̄ of a maximal walkω (see Definitions 15 and 21). By Proposition 23 both of these notions
ofmaximal path coincide in cfgs where all predicates are complete.

Definition 87 (
DOD
−−→). Let G = (V , E) be a finite directed graph, then v

DOD
−−→ b, c if and only if:

(1) All maximal paths from v contain both b and c.
(2) v has an immediate successor from which all maximal paths contain b before any occurrence of c.
(3) v has an immediate successor from which all maximal paths contain c before any occurrence of b.

Definition 88 (
NTSCD
−−−→). Let G = (V , E) be a finite directed graph, then v

NTSCD
−−−→ w if and only if:

(1) v has at least two immediate successors.
(2) w occurs on all maximal paths from one of these immediate successors.
(3) there is a maximal path from another immediate successor which does not contain w.

8.3. Podgurski–Clarke weak control dependence

Definition 89 (Strong Forward Domination). Let G be an {end}-graph. A vertex w strongly forward dominates a vertex v if
and only if w forward dominates v and there exists an n ∈ N such that every path of length n from v contains w.

Strong forward domination is a properly stronger condition than forward domination as can be seen by the diagram in
Fig. 18.

Definition 90 (
PC-weak
−−−−→). Let G = (V , E) be an {end}-graph, then v

PC-weak
−−−−→ u if and only if:

(1) v has at least two immediate successors w1 and w2.
(2) u strongly forward dominates w1 but does not strongly forward dominate w2.

In {end}-graphs
PC-weak
−−−−→ and

NTSCD
−−−→ are equivalent. Ranganath et al. [29] prove a similar result (Theorem 3 (Coincidence

Properties, II)).We shall show in Lemma91 that
NTSCD
−−−→ (by itself) is equivalent to Podgurski–Clarkeweak control dependence

in {end}-graphs.

Lemma 91. Let G = (V , E) be an {end}-graph. Then for all u, v ∈ V , v
PC-weak
−−−−→ u if and only if v

NTSCD
−−−→ u.

Proof. Observe that since end is reachable from every vertex in V , a path in G is maximal if and only if it is either infinite or
reaches end.
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{T}
start endp0

(a) G19(a) .

start end

(b) G19(b) .

Fig. 19. The smallest set closed under
NTSCD
−−−→ and

DOD
−−→ in G19(a) containing {start, end} is {start, end} but the induced graph, G19(b) , is not a strong projection

of G19(a) because the maximal walk, start, (p0, F), of G19(a) restricts to the walk start of G19(b) which is not maximal in G19(b) . Alternatively, we can see that
{start, end} is not strongly control closed in G19(a) since p0 is reachable from {start, end} in G19(a) but p0 is neither {start, end}-strongly committing nor
{start, end}-avoiding in G19(a) .

We prove that for u, w ∈ V , u strongly forward dominates w if and only if every maximal path from w passes through u.
With this equivalence part 2 of Definition 88 becomes equivalent to the condition of w1 in Definition 90. The contra-

positive form of this equivalence makes part 3 of Definition 88 equivalent to the condition on w2 in Definition 90.
Suppose that u strongly forward dominates v. Then for some n ⩾ 0 every path from v of length n contains u. Now let vµ

be amaximal path. If vµ is infinite then it has a prefix of length nwhich contains u as required. If vµ is finite then it contains
end and since strong forward domination implies forward domination, vµ again contains u.

Conversely, assume that every maximal path from w passes through u. Clearly u forward dominates w, but in addition
every pathwρ of length |V |+1must pass through u, sincewρ must passmore than once through at least one vertex, and so
ifwρ does not pass through u, then an infinite path fromw exists which also does not pass through u, giving a contradiction,
hence u strongly forward dominates w. �

Lemma 92. Let G = (V , E) be a finite directed graph and let v ∈ V . Let d1, . . . , dn ∈ V be all the immediate successors of v,
and assume that n ⩾ 2. Let e1, . . . , en ∈ V and assume that for each i ⩽ n, all maximal paths from di pass through ei, and do so
before passing through any ej for j ≠ i. Then either there exist ek, el such that v

DOD
−−→ ek, el or there exists el such that v

NTSCD
−−−→ el.

Proof. If every vertex ei occurs on every maximal path starting at any of the vertices dj, then v
DOD
−−→ ei, ej for every i ≠ j

follows. Otherwise, there exist i, j such that ei does not occur on every maximal path starting at dj, whereas necessarily ei
occurs on every maximal path starting at di. Hence v

NTSCD
−−−→ ei follows. �

8.4. The relationship between strongly control-closed sets and sets closed under both
NTSCD
−−−→ and

DOD
−−→

Lemma 93. Let G = (V , E, β) be a complete cfg. If V ′ is closed under both
NTSCD
−−−→ and

DOD
−−→ then V ′ is strongly control-closed in

G.

Proof. For any x ∈ V\V ′, we first define Sx to be the set of all vertices in V\V ′ which are reachable from x via a path which
only contains vertices in V\V ′. Observe that if (x, y) is an edge with x, y ∈ V\V ′, then Sx ⊇ Sy, with strict inclusion if there
is no maximal path starting at x and not passing through V ′, since in that case x ∈ Sx\Sy.

Suppose that V ′ is not strongly control-closed in G. Then there is a vertex v ∈ V\V ′ which is not V ′-avoiding and is
not strongly committing. Choose v satisfying this condition such that |Sv| is minimal, and among all such v, such that the
minimal length of any path from v to V ′ isminimal. This implies that v has two immediate successors d1, d2. Wemay assume
that d1 is closer to V ′ than v is.

Clearly d1 is not V ′-avoiding, and hence by the minimality assumption on v, the observation above on the sets Sx and
the condition on d1, d1 is strongly committing and so every maximal path starting at d1 passes through V ′, and enters V ′

at a single vertex e1. Suppose the vertex d2 is the initial vertex of a maximal path that does not pass through V ′; then
v

NTSCD
−−−→ e1 holds, hence V ′ is not closed under

NTSCD
−−−→. Thus we may suppose instead that every maximal path starting at

d2 (and hence v) passes through V ′. If all maximal paths starting at d2 always enter V ′ at e1, hence since G is complete, v is
strongly committing, giving a contradiction. Thus there is a maximal path starting at d2 that enters V ′ at a vertex e2 ≠ e1.
If all such maximal paths enter V ′ at e2, then the conclusion follows from Lemma 92. Otherwise, d2 would not be either
V ′-avoiding or V ′ strongly committing, contradicting the minimality condition on v. �

Fig. 19 gives an example where the graph has incomplete predicates. V ′ is closed under both
NTSCD
−−−→ and

DOD
−−→ but V ′ is

not strongly control-closed in G and hence the induced graph is not a strong projection. This shows that we cannot drop the
‘complete predicates’ condition of Theorem 93.

Lemma 94. Let G = (V , E) be start-graph and start ∈ V ′. If V ′ is strongly control-closed in G then V ′ is closed under both
NTSCD
−−−→

and
DOD
−−→.

Proof. We consider two cases.
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• First assume thatV ′ is not closed under
DOD
−−→. Then v

DOD
−−→ b1, b2 for some b1, b2 ∈ V ′ and v ∈ V\V ′. Thus v has immediate

successors x1, x2 such that for each i, all maximal paths from xi contain bi before b3−i. By definition of
DOD
−−→, there are paths

xiνi on which b3−i does not occur, and on which bi occurs at the end, but not before; and by conditions (2) and (3) of the
DOD
−−→ definition, no vertex occurs on both paths. Hence each path xiνi has a prefix τiai which is a V ′-path for distinct
ai ∈ V ′, and so v ∈ WDG(V ′). Now, v is reachable from start ∈ V ′, so by Lemma 51 V ′ is not weakly control-closed, and
hence not strongly control-closed.

• Suppose instead that V ′ is not closed under
NTSCD
−−−→. Thus v

NTSCD
−−−→ w holds for some w ∈ V ′ and v ∈ V\V ′. Hence v has

immediate successors x1, x2 such that all maximal paths from x1 contain w, but there is a maximal and hence complete
path x2µ not passing through w. Thus v is not strongly committing. Since v is clearly not V ′-avoiding, and is reachable
from start, V ′ is not strongly control-closed. �

8.5. The relationship between strongly control-closed sets and sets closed under Podgurski–Clarke weak control dependence

Let G = (V , E, β) be a {start, end}-cfg and V ′
⊆ V . In this section we prove that V ′ is strongly control-closed in G if and

only if V ′ is closed under Podgurski–Clarke weak control dependence.
Theorems 96 and 97 show that closure under

PC-weak
−−−−→ is equivalent to strong control-closure for vertex sets containing

start, provided that end is reachable from all vertices.

Lemma 95. Let G = (V , E) be an {end}-cfg, then for all v, b, c ∈ V , v
DOD
−−→ b, c never holds.

Proof. Suppose that v
DOD
−−→ b, c holds. After interchanging b and c if necessary, there is a path bρend which does not

pass through c. From condition (2) of Definition 87 there is a path vσb which also does not pass through c. However this
contradicts condition (1) of Definition 87. �

Lemma 96. Let G = (V , E) be a complete {end}-cfg and V ′
⊆ V . If V ′ is closed under

PC-weak
−−−−→ then V ′ is strongly control-closed

in G.

Proof. This follows immediately from Lemmas 95, 91 and 93. �

Lemma 97. Let G = (V , E) be a {start, end}-graph and let start ∈ V ′
⊆ V . If V ′ is strongly control-closed in G then V ′ is closed

under
PC-weak
−−−−→.

Proof. Suppose V ′ is not closed under
PC-weak
−−−−→. Thus for some u ∈ V ′ and v ∈ V\V ′, v

PC-weak
−−−−→ u holds. Thus by Lemma 91

and the fact that end is reachable from u, for vertices wi there is a path vw1ρ1u and a maximal and hence complete path
vw2ρ2 which does not pass through u, and every maximal path starting at a vertex on w1ρ1u passes through u. Clearly v is
not V ′-avoiding. Let x1 be first element of V ′ to occur on vw1ρ1. If vw2ρ2 does not pass through V ′, then v is not V ′-strongly
committing. On the other hand, suppose that x2 is the first element of V ′ to occur on vw2ρ2, then x1 ≠ x2, since otherwise
there would be a maximal path from x1 not passing through u. Again, we have shown that v is not V ′-strongly committing.
Thus, since start ∈ V ′, V ′ is not strongly control-closed, proving the theorem. �

We have shown that both strong forms of control dependence in the literature are essentially the same: vertex sets
closed under them all induce strong projections. Wemay call any relation on vertex sets that has the property strong control
dependence. So

PC-weak
−−−−→ and the combination of

NTSCD
−−−→ and

DOD
−−→ are both examples of strong control dependence.

9. Conclusions and future work

Authors have previously expressed control dependence as a relation between the vertices of a cfg. In an attempt to
capture the intention of control dependence, we, on the other hand, define relations between cfgs and show that all previous
forms of control dependence induce graphs which, indeed, satisfy these relations. Weak and strong projection can, thus,
be thought of as a specification or a semantics of control dependence rather than an implementation. Furthermore, by
introducing weak and strong control-closure, we have generalised control dependence and algorithms which compute sets
closed under its different forms.

We believe these very natural relations can be considered as correctness criteria for future definitions of control
dependence on more general structures and that authors of such new definitions will have a proof obligation based on
them. The work we present here also has practical implications: we have defined reasonably efficient algorithms which
can be used for slicing more general structures than those considered previously. Future research will include the following
work:

(1) We will investigate the applicability of the theory to more general structures. Clearly, since the concept of a walk
generalises to arbitrary finite labelled graphs, so do weak and strong projections. This may be useful, for example, in
defining control dependence in graphs representing non-deterministic programs where non-predicate vertices may
have out-degree greater than one and predicates may have non-disjoint edge labels.
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(2) We will investigate the theoretical validity and practicability of combining the algorithms for the minimal weakly and
strongly control-closed supersets of V ′ in G and described in this paper with data dependence to form weak and strong
semantic slices of arbitrarily unstructured programs.

(3) Improvements to the algorithms for computing theminimal weakly and strongly control-closed supersets of V ′ in Gwill
be investigated. It is believed that better than O(V 3) worst-case time complexity algorithms may exist.

(4) We will investigate the application our generalised notions of control dependence to other structures for example
extended finite state machines [4].

10. Glossary of definitions, results and algorithms

10.1. Definitions

CFGs (Definition 1) A control flow graph (cfg) is a triple G = (V , E, β) where (V , E) is a finite directed graph and the vertex
set V is partitioned as V = P ∪ N (predicates and non-predicates) with P ∩ N = ∅, and β : E → P ({T, F}) is the edge
labelling function.

(1) • If x ∈ P then the out-degree of x is at most 2.
• If x ∈ N then the out-degree of x is at most 1.
• There is at most one end vertex. It has out-degree 0. (end ∈ N is the only vertex which represents normal

termination.)
(2) The edges are labelled by β where:

• If x ∈ P and (x, y) ∈ E then β(x, y) ≠ ∅.
• If x ∈ N and (x, y) ∈ E then β(x, y) = ∅.

(For clarity we omit the label ∅ from our diagrams.)
(3) Let p be a predicate. If (p, y) ∈ E and (p, z) ∈ E with y ≠ z then β(p, y) ∩ β(p, z) = ∅. (In other words, our cfgs are

deterministic.)

Complete Predicates of a CFG (Definition 2) A predicate is complete if and only if the union of the labels of its outgoing
edges is {T, F}.

Complete CFGs (Definition 3) A cfg is complete if and only if all its predicates are complete.

Final Vertices of a CFG (Definition 4) A final vertex is either a non-predicate vertex of out-degree 0 or an incomplete
predicate.

{start, end}-CFGs and Graphs (Definition 5) Let G = (V , E) be a finite directed graph.

(1) If G has a unique distinguished vertex start ∈ V and every v ∈ V is reachable from start then G is a {start}-graph.
(2) If G has a unique distinguished vertex end ∈ V that is reachable from every vertex v ∈ V then G is an {end}-graph.
(3) If G is a {start}-graph and G is also an {end}-graph then G is a {start, end}-graph.

If G = (V , E, β) is a cfg and the graph (V , E) is a {start}-graph then we call G a {start}-cfg, etc.

Paths of a Graph (Definition 6) A path in a graph G = (V , E) is a sequence of vertices v1, . . . , vi, vi+1, . . . with (vi, vi+1) ∈

E for all i.

Note that paths can be empty (of length zero), of length one (consisting of a single vertex), or even infinite.

Proper Paths (Definition 7) A path is proper if its initial and final vertices are distinct.

Prefixes (Definition 8) A prefix of a path π is a path ρ such that there exists a path σ with π = ρσ (the concatenation of
ρ and σ ). Note π is a prefix of itself. Write ρ ⊑ π . If ρ ⊑ π and ρ ≠ π , ρ is called a ‘proper’ prefix of π .

V ′-intervals and V ′-paths (Definition 9) Let G = (V , E) be a graph and let V ′
⊆ V .

• A V ′-interval is a finite path of length > 1 in Gwhere only the first and last elements are in V ′.
• An [l,m] V ′-interval is a V ′-interval that starts at l ∈ V ′ and ends atm ∈ V ′.
• A V ′-path [17] is a finite path v1 . . . vm in G wherem > 1, vm ∈ V ′ and 1 < i < m ⇒ vi /∈ V ′.

Complete Paths of a CFG (Definition 10) A complete path is either an infinite path or a finite pathwhose last vertex is final.

Terminating Paths of a CFG (Definition 11) A terminating path is a finite path whose last vertex is end.

Non-terminating Paths of a CFG (Definition 12) A non-terminating path is a complete path which is either infinite or
whose last vertex is not end.
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The Induced Graph (Definition 13) Let G = (V , E, β) be a cfg and let V ′
⊆ V . The graph induced by V ′ from G has edge

set E ′
⊆ V ′

× V ′ where (x, y) ∈ E ′ if and only if there is a V ′-interval x, . . . , y in G. In the graph induced by V ′ from G ,

β ′(x, y) =


x′∈K

β(x, x′)

where K = {x′
∈ V | (x, x′, . . . , y) is a V ′-interval}.

The predicates and non-predicates of the graph induced by V ′ from G are deemed to be V ′
∩ P and V ′

∩ N , where P and N
are the predicates and non-predicates of G respectively.

Elements (Definition 14) Let G = (V , E, β) be a cfg. An element w is either a vertex v ∈ N ⊆ V , or a pair (p,B) where
p ∈ P ⊆ V and B ∈ {T, F}. Write w̄ for the vertex component of an element and ¯̄w for the second (boolean) component of
the pair when it exists.

Walks (Definition 15) Let G = (V , E, β) be a cfg. A walk ω in G is a sequence w1, w2, . . . , wi, . . . of elements where:

(1) ω̄ = w̄1, w̄2, . . . , w̄i, . . . is a path in G; and
(2) if wi, wi+1 are consecutive elements of ω and w̄i is a predicate vertex then ¯̄wi ∈ β(w̄i, w̄i+1).
−→
G (Definition 16) Let G be a cfg.

−→
G is the set of all walks in G.

Path Restriction (Definition 17) Let G = (V , E) be a graph, let V ′
⊆ V , and let π be a path in G. π↓V ′ is the subsequence

of π obtained by removing all vertices v of π where v /∈ V ′. We say π↓V ′ is the restriction of π to V ′.

Walk Restriction (Definition 18) Let G = (V , E, β) be a cfg, let V ′
⊆ V , and let ω be a walk in G. Define ω↓V ′ to be the

subsequence of ω obtained by removing all elements ωi of ω where ω̄i /∈ V ′. We say ω↓V ′ is the restriction of ω to V ′.

Weak Projections (Definition 19) Given a cfg G = (V , E, β), a cfg G′
= (V ′, E ′, β ′) (V ′

⊆ V ) is a weak projection of G if
and only if and every walk of G when restricted to V ′, is a walk of G′. i.e.,

ω ∈
−→
G =⇒ ω↓V ′

∈
−→
G′ .

Maximal Walks (Definition 21) A maximal walk of G is a walk which is not a proper prefix of a walk of G.

Strong Projections (Definition 25) Let G = (V , E, β) be a cfg and V ′
⊆ V . A cfg G′

= (V ′, E ′, β ′) is a strong projection of
cfg if and only if all maximal walks of Gwhen restricted to V ′ give maximal walks of G′. i.e.,

ω ∈
−→
G is maximal =⇒ ω↓V ′

∈
−→
G′ and is maximal.

Terminating Walks of a CFG (Definition 30) Walk ω is a terminating walk if and only if the path ω̄ is a terminating path.

Non-terminating Walks of a CFG (Definition 31) Walk ω is a non-terminating walk if and only if the path ω̄ is a non-
terminating path.

V ′-weakly Committing Vertices (Definition 34) Let G be a directed graph. A vertex v is V ′-weakly committing in G if all
V ′-paths from v have the same end point. In other words, there is at most one element of V ′ that is ‘first-reachable’ from v.

Weakly Control-closed Sets (Definition 35) Let G be a directed graph and let V ′
⊆ V . V ′ is weakly control-closed in G if

and only if all vertices not in V ′ that are reachable from V ′ are V ′-weakly committing in G.

V ′-strongly Committing Vertices (Definition 36) Let G = (V , E, β) be a cfg and let V ′
⊆ V . A vertex v is V ′-strongly

committing G if and only if it is V ′-weakly committing in G and all complete paths in G from v contain an element of V ′.

V ′-avoiding Vertices (Definition 37) Let G = (V , E, β) be a cfg and let V ′
⊆ V . A vertex v is V ′-avoiding in G if and only if

no vertex in V ′ is reachable in G from v.

Strongly Control-closed Sets (Definition 38) Let G = (V , E, β) be a cfg and let V ′
⊆ V . V ′ is strongly control-closed in G

if and only if every vertex in V\V ′ that is reachable in G from V ′ is V ′-strongly committing or V ′-avoiding in G.

Weakly Deciding Vertices (Definition 50) Let G = (V , E) be a finite directed graph and let V ′
⊆ V . A vertex v ∈ V is V ′-

weakly deciding in G if and only if there exist two finite proper V ′-paths in G that both start at v and have no other common
vertex. We write WDG(V ′) for the set of all V ′-weakly deciding vertices in G.

The Set of Vertices Γ (G, V ′) (Definition 55) Let G = (V , E) be a finite directed graph and let V ′
⊆ V . We define Γ (G, V ′)

to be the set of all x ∈ V that lie on a complete path in Gwhich does not pass through V ′.

The Set of Vertices Θ(G, V ′, u) (Definition 56) Let G = (V , E) be a finite directed graph and let V ′
⊆ V . Let H be the cfg

obtained from G by deleting all edges (v′, v) with v′
∈ V ′. For any u ∈ V , we define Θ(G, V ′, u) to be the set of vertices in

V ′ that are reachable in H from u.

Forward Domination (Definition 68) LetG = (V , E) be an {end}-graph and let v, w ∈ V . If every path from v to end passes
through w then w forward dominates v.
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Nearest Forward Dominator (Definition 69) We call the first such vertex apart from v the nearest forward dominator of v.

ND (Definition 70) Let G = (V , E) be an {end}-graph and v ∈ V . ND(v) is the set of vertices which lie on a path from v to
its nearest forward dominator b, excluding v and b themselves.
W-controls
−−−−−→ (Definition 71) Let G = (V , E) be an {end}-graph and v, w ∈ V , then v

W-controls
−−−−−→ w if and only if w ∈ ND(v).

F-controls
−−−−−→ (Definition 72) Let G = (V , E) be an {end}-graph, then v

F-controls
−−−−−→ w if and only if v is not forward dominated by

w, and there exists a path π from v to w such that for all vertices z occurring on π apart from v are forward dominated by
w.
WOD
−−→ (Definition 74) Let G = (V , E) be a finite directed graph with v, b, c ∈ V . Then v

WOD
−−→ b, c if and only if:

(1) There is a path from v to b not containing c.
(2) There is a path from v to c not containing b.
(3) v has an immediate successor a such that either

• b is reachable from a, and all paths from a to c contain b; or
• c is reachable from a, and all paths from a to b contain c.

The Reflexive Transitive Closure of a Relation (Definition 75) Given a relation r , the reflexive transitive closure of r , write
r∗ is defined to be the smallest reflexive, transitive relation containing r .

Closed Sets (Definition 76) Given a relation r , we define a set S to be closed under r to mean that if s ∈ S and t
r

−→ s, then
t ∈ S.
DOD
−−→ (Definition 87) Let G = (V , E) be a finite directed graph, then v

DOD
−−→ b, c if and only if:

(1) All maximal paths from v contain both b and c .
(2) v has an immediate successor from which all maximal paths contain b before any occurrence of c .
(3) v has an immediate successor from which all maximal paths contain c before any occurrence of b.
NTSCD
−−−→ (Definition 88) Let G = (V , E) be a finite directed graph, then v

NTSCD
−−−→ w if and only if:

(1) v has at least two immediate successors.
(2) w occurs on all maximal paths from one of these immediate successors.
(3) there is a maximal path from another immediate successor which does not contain w.

Strong Forward Domination (Definition 89) Let G be an {end}-graph. A vertex w strongly forward dominates a vertex v if
and only if w forward dominates v and there exists an n ∈ N such that every path of length n from v contains w.
PC-weak
−−−−→ (Definition 90) Let G = (V , E) be an {end}-graph, then v

PC-weak
−−−−→ u if and only if:

(1) v has at least two immediate successors w1 and w2.
(2) u strongly forward dominates w1 but does not strongly forward dominate w2.

10.2. Main results

Theorem (45). Let G = (V , E, β) be a cfg and V ′
⊆ V . The following are equivalent.

(1) The graph induced by V ′ from G is a cfg.
(2) V ′ is weakly control-closed in G.
(3) The graph induced by V ′ from G is a weak projection of G.

Theorem (49). Let G = (V , E, β) be a cfg and V ′
⊆ V . The graph induced by V ′ from G is a strong projection of G if and only if

V ′ is strongly control-closed in G.

Theorem (54). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . There exists a unique minimal weakly control-closed

subset of V that contains V ′.

Theorem (58). Let G = (V , E) be a finite directed graph and let V ′
⊆ V . There exists a unique minimal strongly control-closed

superset of V ′ in G.

Theorem (67 Main Theorem for Weak Control Dependence).

(1) If G is a {start, end}-cfgwith {start, end} ⊆ V ′, then V ′ is closed under
W-controls
−−−−−→ if and only if the induced graph induced by

V ′ from G is a weak projection of G.
(2) If G is a {start, end}-cfg with {start, end} ⊆ V ′, then V ′ is closed under

F-controls
−−−−−→ if and only if the induced graph induced by

V ′ from G is a weak projection of G.
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(3) If G is a {start}-cfg with start ∈ V ′ then V ′ is closed under
WOD
−−→ if and only if the induced graph induced by V ′ from G is a

weak projection of G.

Theorem (86 Main Theorem for Strong Control Dependence).

(1) If G is a complete {start}-cfgwith start ∈ V ′ then V ′ is closed under
DOD
−−→ and

NTSCD
−−−→ if and only if the induced graph induced

by V ′ from G is a strong projection of G.

(2) If G is a complete {start, end}-cfgwith start ∈ V ′ then V ′ is closed under
PC-weak
−−−−→ if and only if the induced graph induced by

V ′ from G is a strong projection of G.

10.3. Algorithms

Algorithm (61 To Compute the Minimal Weakly Control-Closed Superset of V ′).

(1) Assign X = V ′.
(2) Choose any edge (p, v) in G with p reachable from V ′ and such that |Θ(G, X, v)| = 1 and |Θ(G, X, p)| ⩾ 2 hold, and

assign X = X ∪ {p}. If no such edge (p, v) exists then STOP.
(3) GOTO 2.

Theorem (62). This algorithm has time complexity O(|V |
3), and the value of the set X when STOP is reached is the minimal

weakly control-closed superset of V ′ in G.

Algorithm (65 To compute the minimal strongly control-closed superset of V ′).

(1) Assign X = V ′.
(2) Find an edge (p, r) in G such that p is reachable in G from X and satisfying:

(a) |Θ(G, X, r)| = 1 and
(b) r /∈ Γ (G, X) and
(c) |Θ(G, X, p)| ⩾ 2 or p ∈ Γ (G, X).
If no such edge exists, then STOP, else assign X = X ∪ {p}.

(3) GOTO (2).

Theorem (66). This algorithm computes unique minimal strongly control-closed superset of V ′ and has worst-case time
complexity O(|V |

4).

Acknowledgements

The authors would like to thank the anonymous referee whose very detailed and insightful suggestions and comments
made a significant contribution to the paper. This work was partly funded by the Engineering and Physical Science Research
Council (grant number EP/E002919/1).

References

[1] A. Abadi, R. Ettinger, Y.A. Feldman, Improving slice accuracy by compression of data and control flowpaths, in: Proceedings of the the 7th JointMeeting
of the European Software Engineering Conference and the ACM SIGSOFT Symposium on the Foundations of Software Engineering, ESEC/FSE’09, ACM,
New York, NY, USA, 2009, URL: http://doi.acm.org/10.1145/1595696.1595729.

[2] J.R. Allen, K. Kennedy, C. Porterfield, J. Warren, Conversion of control dependence to data dependence, in: POPL’83: Proceedings of the 10th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, ACM, New York, NY, USA, 1983.

[3] T. Amtoft, Slicing for modern program structures: a theory for eliminating irrelevant loops, Information Processing Letters 106 (2008) 45–51 (an
abridged version of Technical report 2007-3 (with title: ‘Correctness of Practical Slicing for Modern Program Structures’), Department of Computing
and Information Sciences, Kansas State University, May 2007).

[4] K. Androutsopoulos, D. Clark, M. Harman, Z. Li, L. Tratt, Control dependence for extended finite state machines, in: Fundamental Approaches to
Software Engineering, FASE’09, in: LNCS, vol. 5503, Springer, York, UK, 2009.

[5] R. Barraclough, D. Binkley, S. Danicic,M.Harman, R. Hierons, Ákos Kiss,M. Laurence, A trajectory-based strict semantics for program slicing, Theoretical
Computer Science, 2010. Available online doi:10.1016/j.tcs.2009.10.025.

[6] G. Bilardi, K. Pingali, A framework for generalized control dependence, in: PLDI’96: Proceedings of the ACMSIGPLAN1996 Conference on Programming
Language Design and Implementation, ACM, New York, NY, USA, 1996.

[7] D. Binkley, S. Danicic, T. Gyimóthy, M. Harman, Ákos Kiss, B. Korel, Theoretical foundations of dynamic program slicing, Theoretical Computer Science
360 (1) (2006) 23–41.

[8] D. Binkley, S. Danicic, T. Gyimóthy,M.Harman, A. Kiss, L. Ouarbya, Formalizing executable dynamic and forward slicing, in: 4th InternationalWorkshop
on Source Code Analysis and Manipulation, SCAM 04, IEEE Computer Society Press, Los Alamitos, California, USA, 2004.

[9] D.W. Binkley, S. Danicic, M. Harman, J. Howroyd, L. Ouarbya, A formal relationship between program slicing and partial evaluation, Formal Aspects of
Computing 18 (2) (2006) 103–119.

[10] D.W. Binkley, M. Harman, A survey of empirical results on program slicing, Advances in Computers 62 (2004) 105–178.



Author's personal copy

6842 S. Danicic et al. / Theoretical Computer Science 412 (2011) 6809–6842

[11] S. Danicic, D. Binkley, T. Gyimóthy, M. Harman, Ákos Kiss, B. Korel, Minimal slicing and the relationships between forms of slicing, in: 5th IEEE
International Workshop on Source Code Analysis and Manipulation, SCAM 05, IEEE Computer Society Press, Los Alamitos, California, USA, 2005,
(best paper award winner).

[12] S. Danicic, D. Binkley, T. Gyimóthy, M. Harman, Ákos Kiss, B. Korel, A formalisation of the relationship between forms of program slicing, Science of
Computer Programming 62 (3) (2006) 228–252.

[13] S. Danicic, M. Harman, J. Howroyd, L. Ouarbya, A lazy semantics for program slicing, in: 1st International Workshop on Programming Language
Interference and Dependence, Verona, Italy, 2004. URL: http://profs.sci.univr.it/~mastroen/noninterference.html.

[14] M. Daoudi, S. Danicic, J. Howroyd, M. Harman, C. Fox, L. Ouarbya, M. Ward, ConSUS: a scalable approach to conditioned slicing, in: IEEE Working
Conference on Reverse Engineering, WCRE 2002, IEEE Computer Society Press, Los Alamitos, California, USA, 2002 (invited for special issue of the
Journal of Systems and Software as best paper from WCRE 2002).

[15] D.E. Denning, P.J. Denning, Certification of programs for secure information flow, Communications of the ACM 20 (7) (1977) 504–513.
[16] J. Ferrante, K.J. Ottenstein, J.D. Warren, The program dependence graph and its use in optimization, ACM Transactions on Programming Languages

and Systems 9 (3) (1987) 319–349.
[17] T. Gallai, Maximum-minimum sätze und verallgemeinerte faktoren von graphen, Acta Mathematica Academiae Scientiarum Hungaricae 12 (1961)

131–173.
[18] M. Harman, D.W. Binkley, S. Danicic, Amorphous program slicing, Journal of Systems and Software 68 (1) (2003) 45–64.
[19] M. Harman, S. Danicic, A new algorithm for slicing unstructured programs, Journal of Software Maintenance and Evolution 10 (6) (1998) 415–441.
[20] M. Harman, R.M. Hierons, An overview of program slicing, Software Focus 2 (3) (2001) 85–92.
[21] S. Horwitz, T. Reps, D.W. Binkley, Interprocedural slicing using dependence graphs, in: ACM SIGPLAN Conference on Programming Language Design

and Implementation, Atlanta, Georgia, 1988, SIGPLAN Notices 23 (1988) 35–46.
[22] S. Horwitz, T. Reps, D.W. Binkley, Interprocedural slicing using dependence graphs, ACM Transactions on Programming Languages and Systems 12 (1)

(1990) 26–61.
[23] R. Milner, A Calculus of Communicating Systems, Springer-Verlag, New York, Inc., Secaucus, NJ, USA, 1982.
[24] I.A. Natour, On the control dependence in the program dependence graph, in: CSC’88: Proceedings of the 1988 ACM Sixteenth Annual Conference on

Computer Science, ACM, New York, NY, USA, 1988.
[25] K.J. Ottenstein, L.M. Ottenstein, The programdependence graph in software development environments, in: Proceedings of the ACMSIGSOFT/SIGPLAN

Software Engineering Symposium on Practical Software Development Environmt, SIGPLAN Notices 19 (1984) 177–184.
[26] A. Podgurski, L. Clarke, A formal model of program dependences and its implications for software testing, debugging, and maintenance, IEEE

Transactions on Software Engineering 16 (9) (1990) 965–979.
[27] L. Ramshaw, Eliminating goto’s while preserving program structure, Journal of the ACM 35 (4) (1988) 893–920.
[28] V.P. Ranganath, T. Amtoft, A. Banerjee, M.B. Dwyer, J. Hatcliff, A new foundation for control-dependence and slicing for modern program structures,

in: European Symposium on Programming, 2005.
[29] V.P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, M.B. Dwyer, A new foundation for control dependence and slicing for modern program structures,

ACM Transactions on Programming Languages and Systems 29 (5) (2007).
[30] S. Sinha, M.J. Harrold, G. Rothermel, Interprocedural control dependence, ACM Transactions on Software Engineering and Methodology 10 (2) (2001)

209–254.
[31] F. Tip, A survey of program slicing techniques, Journal of Programming Languages 3 (3) (1995) 121–189.
[32] M. Weiser, Program slices: formal, psychological, and practical investigations of an automatic program abstraction method, Ph.D. thesis, University

of Michigan, Ann Arbor, MI, 1979.
[33] M. Weiser, Program slicing, in: 5th International Conference on Software Engineering, San Diego, CA, 1981.
[34] M.Weiss, The transitive closure of control dependence: the iterated join, ACM Letters on Programming Languages and Systems 1 (2) (1992) 178–190.


