
Modeling Network-Level Impacts of P2P Flows

Márk Jelasity
University of Szeged and HAS

jelasity@inf.u-szeged.hu

Vilmos Bilicki, Miklós Kasza
University of Szeged

bilickiv,kaszam@inf.u-szeged.hu

Abstract—It has been clear for a long time that P2P
applications represent a large proportion of the load on the
network infrastructure. This is why significant research efforts
have been devoted to reducing this load, in the form of ISP
friendly P2P solutions. These solutions focus on the volume of
the traffic as opposed to the number of network flows. At the
same time, we are witnessing a great demand for more and
more intelligence in the network such as flow based monitoring
and application recognition, which have an overhead that
depends on the number of flows and not on the volume of
the traffic. Besides, the implementation of this intelligence is
moving from the access layer towards the distribution and core
layers. We show through measurements that the typical devices
serving in the different layers of the infrastructure are not
sufficiently scalable in terms of the number of flows, and, most
importantly, the combined effect of an increase in the access
layer bandwidth together with an increase in the P2P (e.g.,
BitTorrent) population will practically disable the intelligent
networking capabilities. Our conclusion is that a novel focus
needs to be incorporated into P2P research that concentrates
on reducing the number of network flows generated by P2P
applications.

I. INTRODUCTION

It has been clear for a long time that P2P applications
represent a large proportion of the load on the network
infrastructure. This is not only true in terms of traffic
volume, but also in terms of the number of flows. According
to a recent study P2P traffic has now surpassed web traffic
in both senses [1].

Accordingly, the network community has devoted a great
effort to dealing with this problem. One approach is to try
to filter P2P traffic (e.g., [2], [3]). However, P2P technology
can support legitimate applications as well, so an alternative
approach is to modify P2P clients so that they respect
the interests of the ISP and the network infrastructure in
general, without sacrificing performance. Many such ISP-
friendly algorithms have been proposed, most of which rely
on localization techniques, where the common goal is that
traffic should cross fewer links, preferably staying inside a
single ISP (e.g., [4], [5]).

These ISP-friendly solutions focus on traffic volume and
do not consider the problem of the number of flows. How-
ever, the number of flows is an increasingly important factor.
The network is becoming ever more intelligent, providing
context-based services, while the applications and the under-
lying layers are becoming increasingly infrastructure-aware.
The main active device vendors are now opening the black
boxes and they are starting to provide environments for
running third party applications on their active devices [6].
This will make the intelligent or active network possible [7].

The smooth functioning of intelligent services on network
devices is, to a large extent, the function of the number
of flows. A NAT service or a monitoring service are clear
examples. In fact, monitoring all the flows in the backbone
has never really been feasible, so sampling techniques need
to be applied [8]. However, sampling is not an option for
implementing a NAT or a firewall service, or when rare but
important traffic needs to be identified such as P2P botnet
control traffic [9].

Our contribution is twofold. First, we measure the per-
formance of several stateful services on network devices of
different capabilities, and approximate the maximal number
of flows that the given device is able to handle. Second, we
argue that current P2P protocols, esp. BitTorrent overlays,
can easily generate enough flows to render the intelligent
network services within a typical autonomous system (AS)
unusable at all levels. We also argue that localization
approaches do not provide a satisfactory solution to this
problem. Instead, P2P protocols need to reduce the number
of flows they generate to be able to scale further.

II. METHODOLOGY

To tackle the problem outlined above, we need to study
two, rather independent, issues. First, we need to understand
how many flows are generated by a typical BitTorrent
network, and how many of these traverse network devices
at different layers of the network. Second, we need to
understand how these devices respond to an increasing
number of flows, if certain intelligent services—such as
NAT, firewall, or monitoring—are operational.

These two problems are rather complex in themselves, and
their combination is more so. We had to make a compromise,
and we opted for introducing several simplifications that still
allow us to make valid, although approximate, conclusions
on the scalability of the entire network. Below we give a
bird’s-eye view of the overall methodology, the details of
which can be found in the respective sections.

For the measurement problem, we selected three devices
that can be considered typical in the access, distribution, and
core layers, respectively. These are Cisco routers of models
2811, 7200 and 6500. All of these devices support NAT,
firewall (reflexive ACL), and flow monitoring (NetFlow).
Using the setup shown in Figure 1 (see Section III for
details), we generated a varying number of flows (spoofing
the headers of the packets to simulate a large network)
and monitored the packet loss rate and CPU utilization as
measures of performance.

To estimate the number of flows, we generated an AS
topology using the topology generator IGen [10]. The size

In Proc. 19th PDP, 2011, pp590–594, doi:10.1109/PDP.2011.9

Figure 1. Measurement setup

and topology of this network were set so as to approximate
the parameters of the Hungarian academic network Hun-
garnet. We then simulated different numbers of BitTorrent
swarms (clients downloading a single file). The clients
participating in a particular swarm are distributed at random
over the network. In this setup, based on the parameters
of popular BitTorrent clients, we calculated the number of
flows that each client generates and mapped these onto the
generated physical topology, assuming shortest path routing.
From this mapping it is possible to approximate the flow
load of each device in the network.

Using this methodology, we can extrapolate future Bit-
Torrent popularity and usage by increasing the number of
swarms that are present in the network. After measuring
the scalability of certain devices, we can also extrapolate
the scalability of the network infrastructure in terms of the
feasibility of providing intelligent services such as filtering
or monitoring.

Our methodology seeks to simulate a complex environ-
ment where we are interested in the interaction of a P2P
application and the network infrastructure consisting of
several layers and different devices. Obviously, the level
of realism could be increased at several points, but we
believe that the methodology sketched above is suitable for
providing a ballpark estimate of the effect of the number
of flows. For our purposes this is sufficient, since we are
interested in scalability as opposed to a fine-grained realistic
model of flow dynamics.

III. MEASUREMENTS

As we said, one of our goals was to test the effect of
high density traffic on routers, but with a new aspect in
mind, namely the number of network flows. The concern is
that when the routers have to track connections, maintain
statistics and export them to external collectors, there will
be a considerable overhead that depends on the number of
flows and not on traffic volume.

To the best of our knowledge, such a flow-centric mea-
surement study has not been conducted for the stateful
services that we tackle here. One exception is the NetFlow
protocol, which was studied by Cisco [11].

A network flow can be defined in many ways. The one
we shall adopt here is that it is a unidirectional sequence
of packets sharing each of the following properties: source
IP address and port, destination IP address and port and the
IP protocol. We used IPv4 as the IP protocol, with UDP
packets. In this setting, if we spoof the source IP and port

Model features
6500 SUP-720-3B (SR71000 CPU 600 Mhz, Cisco IOS 12.2(33)SXI2a); WS-

F6700-DFC3B, WS-F6K-PFC3B; 512 MB DRAM;
7206VXR NPE 400 (R7000 CPU 350Mhz, Cisco IOS 12.2(28)SB10); 128 MB DRAM

2811 CPU info not released, Cisco IOS 12.4(22)T; 256 MB DRAM

Table I
DEVICES MEASURED

for each packet, the router’s algorithm will register a new
flow for each combination.

A. Hardware setup

Figure 1 shows the test setup for the simulation: it consists
of a machine used as a traffic generator in a local subnet, and
a Cisco router, a target machine, and a monitoring machine
in a different subnet.

The generator machine had an IP from the network
6.0.0.0/8. The targets of the packets had an IP from the
network 7.0.0.0/8, and they were routed through a PC with
an IP from 9.0.0.0/24. We used a loopback device on this
PC to simulate an entire 7.0.0.0/8 network range. The router
acted as a gateway between these networks, with NAT
enabled or disabled depending on the test case.

The source and target machines and the flow collector
machine were fixed and they all had a 3.0GHz Intel Pen-
tium IV CPU, 1GB RAM and a Realtek Gigabit Ethernet
interface, running Debian Linux 5.0.

The Cisco router was one of the three routers listed in
Table I. The 2811 router is designed for small to medium-
sized businesses (that is, a maximum of 500 employees).
The 7200 model is a more powerful device often used in
the distribution layer. The 6500 router is a modular device
suitable for deployment in the core layer. Most notably, this
is the only device that has TCAM memory (in the PFC3B
extension module).

For the tests we used three FastEthernet (100 Mbps)
interfaces on the routers. The 2811 model has only two
such interfaces: for this reason a switch was added to the
configuration during the NetFlow measurements in front of
the collector and the target PCs.

B. Traffic generator

In order to simulate a high network load involving a high
number of flows, we programmed a traffic generator tool
with the capability of creating and sending specially crafted
UDP packets. The generated packets have spoofed headers to
make the targeted router register a given number of different
flows (to simulate the number of clients they serve).

In one experiment, all the packets have the same con-
stant size, and they are generated as quickly as possible,
without adding delays. We wrote the application using the
C language, for high throughput and speed. When many
source IPs are simulated (which is always the case here),
the spoofed senders of the packets are picked in a regular
fashion, iterating repeatedly over a given range of simulated
source addresses.

C. Test parameters

We tested the routers using flows containing packets of
100, 500, or 1000 bytes. The total number of packets sent
in one test was always 10,000,000. The number of flows we

flows 10,000 flows 100,000 flows 1,000,000 flows
packet size (byte) 100 500 1000 100 500 1000 100 500 1000
6500 - Netflow 100 99.98 100 99.95 99.86 99.93 97.44 96.58 97.00
6500 - Reflexive ACL 99.02 98.98 99.05 86.64 88.07 88.49 5.18 4.97 4.82
6500 - NAT 99.15 99.48 99.54 30.16 30.61 29.90 1.21 1.96 1.13
7200 - Netflow 100 99.00 100 100 100 100 100 100 100
7200 - Reflexive ACL 99.79 99.85 99.93 62.20 59.90 67.07 6.32 5.93 3.14
7200 - NAT 99.93 99.92 100 40.00 10.19 14.88 9.54 1.38 1.68
2811 - Netflow 85.52 96.00 100 99.94 99.90 100 99.90 99.93 100
2811 - Reflexive ACL 96.80 98.83 95.93 87.86 85.44 75.33 11.45 9.85 6.34
2811 - NAT 60.60 70.62 99.44 10.88 8.32 9.93 9.91 1.30 1.24

Table II
MEASUREMENT RESULTS. THE VALUES INDICATE TRANSFERRED

PACKETS OUT OF 10,000,000 (%).

flows 10,000 100,000 1,000,000
packet size (byte) 100 500 1000 100 500 1000 100 500 1000
6500 - Netflow 18 18 9 80 45 40 80 74 70
6500 - Reflexive ACL 2 3 4 33 25 22 99 99 99
6500 - NAT 5 4 5 96 95 95 99 95 98
7200 - Netflow 23 24 16 22 22 17 20 20 17
7200 - Reflexive ACL 30 45 25 97 81 70 100 97 96
7200 - NAT 60 48 28 96 97 93 100 96 93
2811 - Netflow 90 80 60 70 64 53 62 63 51
2811 - Reflexive ACL 99 96 98 99 92 95 99 99 99
2811 - NAT 99 99 99 99 98 99 99 99 99

Table III
MEASUREMENT RESULTS. THE VALUES INDICATE CPU UTILIZATION

DURING THE TEST (%).

discuss in this paper are 10,000, 100,000, and 1,000,000.
This means that, for example, in the case of 1,000,000 flows
each flow had 10 packets during a test.

All the routers support the four modes of operation that
we tested: simple routing, NAT, NetFlow V5 export, and
reflexive ACL (firewall). In all the experiments, all the
routers performed perfectly (practically all packets were
forwarded) for simple routing. In fact, none of the tested
routers reached the maximum utilization during the simple
routing tests. We do not discuss this case further here.

With NAT enabled, the routers have to translate packet
headers and track and maintain basic data about each active
connection. This introduces an extra CPU overhead and
memory usage that increases with the number of flows.

With flow export enabled the routers maintain flow statis-
tics, aggregate this data and export this information in regu-
lar intervals to the flow collector PC. This not only generates
extra CPU overhead and memory consumption, but also
increases the bandwidth consumption when exporting the
NetFlow packets to the collector.

Access control lists (ACLs) implement the rule of a state-
ful firewall. Here, the communication history is important
for decision making. Communication history in most cases
means the state of the flow, so we expect similar scalability
issues to arise as those for NAT.

D. Results

Tables II and III show the packet loss ratios and CPU
utilization for each router and setup combination.

To fully understand the results, the packet arrival rate and
the utilized bandwidth need to be discussed as well. In the
case of the 100 byte experiments, we were able to send at
a bandwidth of around 40-50 Mbps, while for the 1000 byte
packets we could reach 80-90 Mbps. At the same time, for
the larger packets, the packet arrival rate was of course still
slower, despite the higher bandwidth utilization.

Taking this into account, we can explain why there is
an improving tendency in CPU utilization as we increase
packet size, and sometimes even in the packet loss rate
(e.g., in the case of 10,000 flows with the 2811 model): the
packet arrival rate decreases with the size of the packets. It
should be mentioned here that most of the flows generated
by P2P traffic contain very small packets carrying control
information.

The 7200 router appears to have a somewhat lower
package loss performance with firewalling than the 2811
router. This could be due to the fact that the 2811 router we
tested had twice as much DRAM memory.

There are other indications that memory is the key factor
in the failure of routers. For example, the 6500 router
displays a sudden increase in CPU utilization with NetFlow,
at around 100,000 flows and a packet size of 100 bytes
(recall that for larger packets the packet arrival rate is lower).
At the same point, firewall and NAT performance drops as
well. This is very likely due to the TCAM memory being
used up.

Overall, there are clear “breaking points” for all the
devices. The 2811 router becomes unreliable at 10,000 flows
already, when NAT is turned on, while the other two devices
start to show unstable behavior at around 100,000 flows. At
1,000,000 flows both the firewall and NAT services become
practically unusable.

surprisingly, the flow export service is stable irrespective
of the number of flows, showing a constant CPU utilization
as well. This could be due to the fact that for NetFlow a
much faster memory is used instead of DRAM.

Finally, it should be stressed that the loss of performance
is not due to saturating the links of the devices. The
actual load we generate is well below 100 Mbps, while,
for example, the 6500 router is capable of handling 10
Gbps (as backplane bandwidth) without problems when only
routing is used. In each case the failure is due to the
inherent requirement of deeper processing and more memory
associated with maintaining and filtering flow state.

IV. P2P TRAFFIC

To approximate the number of flows that BitTorrent
swarms generate at different points of the network, we first
synthesized a physical network topology and subsequently
we added different BitTorrent overlay networks.

A. Synthesizing the topology

We modeled the topology after the Hungarnet network.
In Hungarnet there are around 700,000 endpoints [12]
accessing the Internet through three network layers: core,
distribution and access. The core and distribution layers
were generated by IGen, a heuristic topology generator [10].
During network generation we used statistical data available
on Hungarnet: we generated 600 nodes in the two upper
layers, 60 of them in the core layer.

The generation of the access layer is not supported by
IGen, so we attached access layer nodes to the nodes in the
distribution layer. The number of access nodes attached to
a distribution node was heuristically generated as a random
number between 30 and 64. The endpoints communicating
with each other constitute the fourth layer. We attached 28

nodes to each access node. This way the number of end-
points estimates the 700,000 nodes available in Hungarnet.

B. Modeling BitTorrent swarms

To add a swarm overlay, we assumed that each BitTorrent
peer in each swarm has 80 neighbors (which is a typical
setting). Connections to neighbors are undirected (bidirec-
tional). Peers maintain a TCP connection to their neighbors,
so each peer maintains 80 flows in a swarm. These flows
carry only control traffic most of the time. The amount of
this traffic is small per flow, but it can be considerable, when
hundreds of flows are maintained due to participating in
many swarms. According to our own measurements with
the Vuze (formerly Azureus) BitTorrent client, each flow
generates 1.6 control messages per second on average. This
translates to a bandwidth of around 30 to 100 bps per flow.

We also assumed that swarms that coexist in the network
are independent. That is, if a peer participates in more than
one swarm, then it has 80 neighbors in each swarm that are
selected and managed independently.

Swarms are usually much smaller than the total number
of 700,000 endpoints in our network. We assumed that the
participants of a swarm are assigned to random endpoints,
independently for each swarm.

Neighbor selection is a very important component of a
swarm model. We used two kinds of neighbor selection
methods. The first is random selection, where the neighbors
of a peer are selected completely at random from the entire
swarm. This is the “naive” approach when no optimization
is done to minimize the network load.

We also considered a localized model, to take into ac-
count possible ISP-friendly techniques that also have a side-
effect of reducing the number of flows (although their main
purpose is reducing traffic that crosses ISP boundaries, or
optimizing latency, etc). In this model, after assigning the
swarm participants to endpoints, we assign the neighbors
to each peer via iterating through the swarm members in
increasing distance (hop count) and always picking the first
one that has free slots.

C. Experiments

The main goal of the experiments is to measure the
number of flows on the various network devices as a function
of BitTorrent utilization in the network. We assume that
a flow follows a shortest path between its source and
destination endpoint, incrementing the flow count on all
devices it crosses. To define “BitTorrent utilization”, we can
either assume a single swarm, the size of which is varied,
or multiple swarms, where the size of swarms follows a
realistic distribution.

First, let us make an observation: in our network the
access layer devices are very difficult to overload with flows.
Even if all the endpoints participate in a swarm, the number
of flows is still at most 80 · 28 = 2240. For this reason, we
focus on the remaining two layers.

In the case of random neighbor selection, it is easy to see
that it does not make any difference whether we increase the
number of swarms or we have a single swarm of different
sizes: since each flow is placed between two random points,
the load on any given device depends only on the overall

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 0 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e f

lo
w

nu
m

be
r o

n a
 co

re
 de

vi
ce

swarm size

random neighbors
localized neighbors

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000 2500 3000 3500 4000

av
er

ag
e f

lo
w

nu
m

be
r o

n a
 di

str
ib

ut
io

n d
ev

ice

swarm size

random neighbors
localized neighbors

Figure 2. Average flow-load as a function of swarm size (assuming single
swarm).

number of flows. In addition, on any given device the
expectation of the number of flows scales linearly with the
number of peers.

Figure 2 illustrates the load in the random selection
scenario. The figure shows the average of the number of
flows that have been observed for each relevant device and
over 20 independent experiments. Note that the random
scenario is measured only up to a swarm size of 2000, since
the linear scaling property is analytically evident.

Based on this linear relationship, we reach the critical
100,000 flows (on average) on a core device when the
number of peers that participate in a BitTorrent swarm
reaches 42,136 (either distributed in many swarms or in a
single swarm). This is only 6% of all the endpoints, which
is a moderate participation rate.

Let us now move to the case of localized overlays. Here,
the size of a swarm matters, because the larger the swarm
is, the easier it becomes to find a nearby neighbor. Figure 2
illustrates the scaling of the flow-load as a function of swarm
size, assuming there is only a single swarm in the network. It
is clear that on the core device there is a significant reduction
in the number of flows. However, the distribution layer de-
vice experiences the same load, irrespective of localization.
The reason is that (with the swarm sizes shown on the plot)
there are only a few peers behind each distribution layer
device. For example, for a swarm size of 4000, and for
our 540 distribution layer devices, each device has around
8 peers behind it on average, so most of the flows have to
cross the distribution layer as well.

Now, the question is whether 4000 is indeed a small
swarm or a large one? The distribution of swarm sizes
in current BitTorrent communities are known (e.g., [13]).
The distribution is a power law distribution: P (swarm
size≥ s) ∼ s

−α, where α ≈ 1.1 and the expectation of
swarm size is around 16. Based on these parameters, we get
P (swarm size≥ 4000) ≈ 0.00026. In other words, in each
10,000 randomly selected swarms only two are larger than

4000 peers on average.
The empirical distribution given in [13] describes the

entire Internet, not only a subset of 700,000 endpoints. But
the swarm size distribution is scale free, that is, it can be
expected to be similar to the global one when restricted to
a subset of the Internet. Overall, a swarm of size 4000 can
be considered quite large.

Even with localization, the network core is still eas-
ily overloaded with flows. If we assume that BitTorrent
utilization is modeled as a set of swarms of size 4000,
we underestimate the flow load, because in reality most
of the swarms are smaller allowing for no possibility for
localization. With this assumption, the number of flows is
simply a multiplication of the load induced by a single
swarm, and the number of swarms. This means—based on
the data in Figure 2—that 151,343 peers need to participate
in one of 38 swarms of size 4000 on the 700,000 endpoints
in order to reach the critical 100,000 flows on the core,
which represents around 21% of the endpoints.

D. Discussion

We have seen that core devices experience 100,000 flows
on average with 6%, or 21% of the endpoints participating
with random, or localized peer selection, respectively, and
that the load grows linearly with increasing participation
(that can go beyond 100%, since one endpoint can par-
ticipate in many swarms). Based on our measurements of
the control load mentioned earlier, these 100,000 flows
will occupy a total of around 5 Mbps bandwidth or more,
assuming they carry only control information (overhead).
Of course, our measurements are very optimistic, since they
ignore non-P2P traffic in the network, as well as non-control
P2P flows. What is striking is that the control flows alone
can disable key intelligent stateful services on a core device,
in our case, the Cisco 6500 router.

As for the distribution layer, the observed average number
of flows there is significant as well. Since localization cannot
be fully utilized, the number of flows are almost the same
for random and localized flows for normal swarm sizes. For
these devices, based on the presented data, the 100,000 flow
limit is reached roughly when there are 700,000 peers, that
is, when all the endpoints participate in one flow on average.
This is a large participation, but it is not infeasible, if we
project current trends of P2P utilization in several areas
including streaming media, TV channels, communication,
social networking, and so on.

V. CONCLUSIONS

In this paper we argued that the number of flows is a
foreseeable major problem for current networks, esp. due to
P2P applications, which generate and maintain a very large
number of small control flows. We found that traditional
plain routing is not affected, because of the availability of
specialized hardware, and because of the stateless nature of
the task. However, networking devices are becoming ever
more intelligent, and the overhead of many of the intelligent
stateful services depends on the number of flows. We showed
that this overhead is sufficiently large, so that a realistic P2P
utilization in a network might cause noticeable problems

today, and in future P2P application scenarios it is bound to
grow.

Our main conclusion is that if P2P applications intend to
be ISP friendly, designers will need to pay more attention
to significantly reducing their overhead that is generated by
the number of control flows they maintain and manage.

ACKNOWLEDGMENTS

M. Jelasity was supported by the Bolyai Scholarship of
the Hungarian Academy of Sciences. This work was par-
tially supported by the Future and Emerging Technologies
programme FP7-COSI-ICT of the European Commission
through project QLectives (grant no.: 231200). We thank
Pal Lakatos-Toth for his assistance with the measurements.

REFERENCES

[1] N. Basher, A. Mahanti, A. Mahanti, C. Williamson, and
M. Arlitt, “A comparative analysis of web and peer-to-peer
traffic,” in Proc. 17th Intl. World Wide Web Conf. (WWW’08).
ACM, 2008, pp. 287–296.

[2] J. Erman, A. Mahanti, M. Arlitt, and C. Williamson, “Identi-
fying and discriminating between web and peer-to-peer traffic
in the network core,” in Proc. 16th Intl. World Wide Web Conf.
(WWW’06). ACM, 2007, pp. 883–892.

[3] T. T. T. Nguyen and G. Armitage, “A survey of techniques for
Internet traffic classification using machine learning,” IEEE
Comm. Surveys and Tutorials, vol. 10, no. 4, pp. 56–76, 2008.

[4] V. Aggarwal, A. Feldmann, and C. Scheideler, “Can ISPs and
P2P users cooperate for improved performance?” SIGCOMM
Comp. Comm. Rev., vol. 37, no. 3, p. 40, 2007.

[5] D. Choffnes and F. Bustamante, “Taming the torrent: a
practical approach to reducing cross-isp traffic in peer-to-peer
systems,” SIGCOMM Comp. Comm. Rev., vol. 38, no. 4, pp.
363–374, 2008.

[6] Cisco Systems, “Cisco Application eXtension Platform
Overview,” Product documentation, 2008.

[7] D. L. Tennenhouse and D. J. Wetherall, “Towards an ac-
tive network architecture,” SIGCOMM Comp. Comm. Rev.,
vol. 37, no. 5, pp. 81–94, 2007.

[8] K. C. Claffy, G. C. Polyzos, and H.-W. Braun, “Application of
sampling methodologies to network traffic characterization,”
SIGCOMM Comp. Comm. Rev., vol. 23, no. 4, pp. 194–203,
1993.

[9] W. T. Strayer, D. Lapsely, R. Walsh, and C. Livadas, “Botnet
detection based on network behavior,” in Botnet Detection:
Countering the Largest Security Threat, ser. Advances in
Information Security, W. Lee, C. Wang, and D. Dagon, Eds.
Springer, 2008, vol. 36, pp. 1–24.

[10] B. Quoitin, V. Van den Schrieck, P. François, and O. Bonaven-
ture, “IGen: Generation of router-level internet topologies
through network design heuristics,” in Proc. 21st Intl. Tele-
traffic Conf., 2009.

[11] Cisco Sytems, “Netflow performance analysis,” White Paper,
2007.

[12] Hungarnet, “http://www.hungarnet.hu.”

[13] G. Dán and N. Carlsson, “Dynamic swarm management
for improved BitTorrent performance,” in Proc. 8th Intl.
Workshop on Peer-to-Peer Systems (IPTPS’09), 2009.

