
Vol.:(0123456789)1 3

Journal of Plant Growth Regulation 
https://doi.org/10.1007/s00344-019-09950-9

Ethylene-Nitric Oxide Interplay During Selenium-induced Lateral Root 
Emergence in Arabidopsis

Gábor Feigl1 · Edit Horváth1 · Árpád Molnár1 · Dóra Oláh1 · Péter Poór1 · Zsuzsanna Kolbert1 

Received: 28 November 2018 / Accepted: 12 February 2019 
© The Author(s) 2019

Abstract
Selenium (Se) results in primary root shortening and the concomitant induction of lateral roots (LRs) (stress-induced mor-
phogenic response, SIMR). Both ethylene (ET) and nitric oxide (NO) are gasotransmitters interacting with each other during 
plant growth regulation; however, their involvement and interplay in LR growth have not been examined so far. This study 
investigates the effect of Se on ET and NO levels and interaction in wild-type (WT) and ET insensitive etr1-1 Arabidopsis. 
In WT, Se at 15 µM concentration triggered LR emergence  (LRem) and slight ET level elevation but in etr1-1 Se-induced LR 
inhibition was accompanied by four-fold ET level increase which can be associated with the increased expression of ACS2 
and ACS8. Treatment with ACC + Se decreased  LRem and NO level in WT, whereas AVG + Se in the etr1-1 plants resulted in 
enhanced  LRem and increased NO level indicating that ET may inhibit both NO formation and LR emergence in Se-stressed 
Arabidopsis. The expression of NO-associated genes (NR1, NR2, GSNOR1, GLB1, GLB2), however, did not correlate with 
NO levels. Application of GSNO together with Se resulted in enhanced LR outgrowth both in WT and in etr1-1, whereas 
this effect could be reversed by a NO scavenger which indicates the positive regulatory role of NO during LR emergence. 
Moreover, GSNO has a clear inhibitory and cPTIO has an inducing effect on ET levels. These data indicate for the first time 
that the antagonistic interplay between ET and NO regulates the emergence of lateral roots in Arabidopsis under Se stress.
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Introduction

Selenium (Se) is a naturally occurring non-metal element 
which is taken up by plants as selenate or selenite (Sors 
et al. 2005). Due to the chemical similarities with sulphur 
(S), land plants metabolize Se via S assimilation pathways 
(Sors et al. 2005). Excess Se negatively impacts plants and 
causes general symptoms including chlorosis, withering, 
and stunted shoot and root growth. There are several known 
reasons for Se phytotoxicity like malformation of selenopro-
teins, impaired primary metabolism, oxidative and nitrosa-
tive stress and hormonal imbalance (Kolbert et al. 2016). 

At certain concentrations, Se was shown to induce a mixed 
growth response (stress-induced morphogenic response, 
SIMR, Potters et al. 2007) during which the primary root 
(PR) elongation is inhibited and the lateral root (LR) growth 
is induced (Kolbert 2016).

Of plant hormones, auxin, cytokinins, ethylene (ET) and 
jasmonic acid (JA) have been related to Se stress in previ-
ous studies (Van Hoewyk et al. 2008; Tamaoki et al. 2008; 
Lehotai et al. 2012, 2016). Transcriptomic analyses revealed 
that Se upregulates ET- and JA-associated genes in Arabi-
dopsis and mutants defective in ET or JA signaling exhib-
ited Se sensitivity relative to the wild-type (Van Hoewyk 
et al. 2008). In our previous work, we determined that Se 
increases ET levels and we assumed that ET might positively 
regulate Se tolerance (Lehotai et al. 2012). These suggest a 
relevant role for especially ET in Se tolerance. In addition 
to its stress hormone role, ET also regulates the initiation of 
laterals in the pericycle as well as LR outgrowth and elonga-
tion (Ivanchenko et al. 2008; Negi et al. 2008).

Depending on the plant species, growth conditions and 
concentrations, Se is able to increase or decrease the level 
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of another gasotransmitter, nitric oxide (NO) (Lehotai et al. 
2012, 2016; Chen et al. 2014; Molnár et al. 2018a, b; Kolbert 
et al. 2018). At low concentration, NO is believed to act as a 
signal regulating stress responses or growth often being asso-
ciated with hormonal signalling pathways. There are several 
reports indicating NO-ET interplay during diverse growth 
responses and the nature of their interaction proved to be 
mutually negative (reviewed by Freschi 2013). However, we 
have no knowledge about ET and NO being involved in Se-
influenced LR development and their possible interaction is 
also unclear. Therefore, we aimed to examine the supposed 
contribution and the putative interplay of ET and NO to the 
regulation of Se-modified LR growth in Arabidopsis.

Materials and Methods

Plant Material and Growth Conditions

Seven-day-old wild-type (Col-0, WT), etr1-1 mutant 
(AT1G66340, NASC ID: N237; Chang et al. 1993) and 
ACS8::GUS/GFP (NASC ID: N31385; Tsuchisaka and The-
ologis 2004) Arabidopsis thaliana L. seedlings were used. 
The seeds were surface sterilized with 70% (v/v) ethanol 
and 5% (v/v) sodium hypochlorite and transferred to half-
strength Murashige and Skoog medium (1% (w/v) sucrose 
and 0.8% (w/v) agar) supplemented with 0 (control), 5, 10, 
15 or 20 µM sodium selenite  (Na2SeO3). For root morphol-
ogy observations and staining methods, 25–30 plants per 
plate, for PCR method approx. 60 plants per plate, while for 
ET quantification 120 plants per plate were cultivated. The 
Petri dishes were kept vertically in a greenhouse at a photo 
flux density of 150 µmol  m−2  s−1 (12/12 day/night period) 
at a relative humidity of 55–60% and 25 ± 2 °C for 7 days.

Chemicals and Treatments

Endogenous ET levels were increased by the addition of 
1-aminocyclopropanecarboxylic acid (ACC, 5 nM) and ET 
synthesis was inhibited by aminoethoxyvinyl glycine (AVG, 
1.5  µM). As a NO donor, 250  µM S-nitrosoglutathione 
(GSNO) and as a NO scavenger 800 µM 2-(4-carboxyphenyl)-
4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) were 
used. Stock solutions of ACC or AVG (in water) were added 
through sterile filters to the medium cooled to 50 °C (7-day-
long treatments). Stock solutions of GSNO or cPTIO (in 
DMSO) were added on the surface of the media containing 
the root system of 4-day-old seedlings through sterile filters 
(3-day-long treatments). The effective concentrations were 
chosen in pilot experiments and water or DMSO was added 
to the medium as controls. Chemicals were purchased from 
Sigma–Aldrich (Merck, St. Louis, MO, USA).

Root Morphological Observations

Lateral roots within the primary root (smaller than stage VII) 
were considered as lateral root primordia  (LRprim), whereas 
visible laterals which have already grown outside the PR 
were considered as emerged LRs  (LRem, larger than stage 
VII, Fig S1, Malamy and Benfey 1997). In each experiment, 
the root systems of at least 20 plants were observed under 
a Zeiss Axiovert 200M microscope (Carl Zeiss Inc., Jena, 
Germany).

Gas Chromatographic Measurement of ET 
Production

Arabidopsis seedlings (500 mg, 350–360 seedlings) were 
incubated in 0.5 ml distilled water for 60 min in gas-tight 
flasks fitted with a rubber serum stopper under darkness. A 
sample (2.5 ml) of the gas was removed from the flasks with 
a gas-tight syringe and injected to a Hewlett–Packard 5890 
Series II gas chromatograph equipped with a flame ioniza-
tion detector (Poór et al. 2015). Five parallel samples per 
experiment were measured and the experiment was repeated 
twice.

GUS Histochemical Staining

In the GUS-tagged Arabidopsis line (ACS8::GUS/GFP), 
β-glucuronidase activity was visualized according to Zhong 
et al. (2014). In each experiment, at least 10 seedlings were 
stained and representative images were selected.

Fluorescence Microscopy

Nitric oxide levels in Arabidopsis root tips were analysed 
by 4-amino-5-methylamino-2′,7′-difluorofluorescein diac-
etate (DAF-FM DA) according to Feigl et al. (2013). In each 
experiment, at least 10 seedlings were stained and repre-
sentative images were selected.

qRT‑PCR Analysis of NO‑ and ET‑Associated Genes

The expression rate of NO- and ET-associated genes in 
Arabidopsis thaliana was determined by quantitative real-
time reverse transcription-PCR (RT-qPCR). RNA was 
purified from 90 mg plant material by using a NucleoSpin 
RNA Plant mini spin kit (Macherey–Nagel) according to the 
manufacturer’s instruction. An additional DNase digestion 
was applied (Thermo Scientific), and cDNA was synthetized 
using RevertAid reverse transcriptase (Thermo Scientific). 
Primers were designed for the selected coding sequences 
using the Primer3 software; the primers used for RT-qPCR 
are listed in Table S2. The expression rate of the selected 
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genes was monitored by quantitative real-time PCR (qRT-
PCR, Jena Instruments) using SYBR Green PCR Master Mix 
(Thermo Scientific) as described by Gallé et al. (2009). Data 
analysis was performed using qPCRsoft3.2 software (Jena 
instruments). Data were normalized to the transcript levels 
of the control samples; actin2 (At3g18780) and GAPDH2 
(At1g13440) were used as internal controls (Papdi et al. 
2008). Each reaction was carried out in two replicates using 
cDNA synthesized from independently extracted RNAs and 
the experiments were repeated two times.

Statistical Analysis

All experiments were carried out at least two times. Results 
are expressed as mean ± SE. Multiple comparison analyses 
were performed with SigmaStat 12 software using analysis 
of variance (ANOVA, P < 0.05) and Duncan’s test.

Results and Discussion

Selenite was applied at different concentrations and the num-
ber of lateral root primordia and emerged lateral roots were 
counted in wild-type Arabidopsis. The data are presented as 
Fig S2 and Table S1. The 5 µM concentration had no effect 
on LR numbers, and 10 µM Se significantly increased only 
the number of emerged LRs which resulted in unmodified 
total LR number and a decreased LR primordia:emerged 
LR ratio  (LRprim:LRem). The effect of 15 µM Se proved to 
be interesting as it remarkably reduced LR initiation (40% 
reduction) while it induced LR outgrowth (125% induc-
tion) resulting in decreased total LR number and a lower 
 LRprim:LRem ratio (~ 50% decrease) compared to control. 
For further examination 15 µM selenite was chosen. In 
Se-treated plants, the number of visible (emerged) laterals 
increased, which led to a more branched root system. This 
was accompanied by shortening of the primary root (data 
not shown) which can be considered as a symptom of stress-
induced morphogenic response.

Lateral root emergence is known to be regulated by ET 
(Negi et al. 2008; Ivanchenko et al. 2008), thus we suspected 
that ET signalling is involved also in Se-induced LR out-
growth. Therefore, we compared the LR numbers of WT and 
etr1-1 in case of 15 µM selenite treatment (Fig. 1a). During 
control circumstances, etr1-1 can be characterized by the 
higher number of LRs and lower  LRprim:LRem ratio compared 
to the WT (Table S1). The number of LR primordia was WT-
like but the emergence was intensified in control etr1-1 (Negi 
et al. 2008, Fig. 1a). Although Se intensified LR outgrowth of 
the WT (Fig S2 and Fig. 1a), in etr1-1 the number of emerged 
LRs were not increased by Se, instead a significant reduction 
was observed in the number of  LRprim, number of  LRem, total 
LR number and  LRprim:LRem ratio (Table S1 and Fig. 1a). 

These results indicate that LR initiation and emergence of 
ET insensitive etr1-1 are more sensitive to Se compared to 
the wild-type. Furthermore, Se was not able to accelerate LR 
emergence in the absence of ET resistant (ETR) signalling, 
which reflects to the involvement of ETR-dependent ET sig-
nalling in Se-induced LR outgrowth.

Despite the differences in their control root system 
(Fig. 1a), the ET levels were similar in the wild-type and in 
etr1-1 (Fig. 1b). Selenium exerted different degrees of effect 
on ET levels in the plant lines, since Se caused a two-fold 
elevation in ET levels (measured in whole seedlings, Fig. 1b 
and detected in ACS8::GUS/GFP roots, Fig. 1c) in the WT. 
Although, in etr1-1 seedlings, Se resulted in a significant, 
four-fold ET level increase (Fig. 1b).

Based on these, it was supposed that the high Se-induced 
ET levels may be responsible for the inhibition of LR out-
growth in etr1-1. The effects of ACC and AVG treatments on 
ET levels were determined by GUS staining in differentially 
developed LRs and PR tips of ACS8::GUS/GFP (Fig. 1c). 
The ACC treatment increased the ACS8::GUS signal, 
whereas in AVG-treated roots, the activity of ACS8::GUS 
decreased (Fig. 1c) indicating that the applied concentra-
tions of ACC and AVG could effectively modulate ET levels 
in Arabidopsis roots. As shown in Fig. 1d, ACC applied 
together with Se inhibited LR outgrowth in WT plants, 
which suggests that increased ET (ACC) has a negative 
impact on Se-induced LR outgrowth (Fig. 1d). Moreover, the 
reduction of high ET levels of Se-stressed etr1-1 led to the 
induction of LR outgrowth (Fig. 1e) which clearly indicates 
the inhibitory effect of ET in LR emergence as the effect 
of Se. Regarding the mechanism of ET action, an interplay 
between ET and auxin can possibly lead to decreased LR 
emergence in the presence of Se. In response to Se-increased 
ET levels, auxin transport may be enhanced through the root 
which limits the auxin that remains in the root locally to 
stimulate lateral root outgrowth (Negi et al. 2008).

We further investigated the Se-induced alterations in 
the expression of selected ET synthesis and signalling 
genes (ACS2, ACS6, ACS8, ACO4, ERS1, ERS2, CTR1, 
Fig. 2). All the examined ACS genes are expressed in the 
roots (Dugardeyn et al. 2008). Without Se application, 
1-aminocyclopropane-1-carboxylic acid (ACC) synthase 
(ACS2 and ACS8) genes were upregulated in etr1-1 com-
pared to the WT, whereas ACC oxidase (ACO4) and eth-
ylene response sensor (ERS1 and ERS2) genes were down-
regulated. In WT, Se reduced ACS2 and ACS6 expression; 
however, of the ET signal components only the expression 
of ERS2 proved to be Se responsive. In etr1-1, Se highly 
upregulated ACS2 and ACS8 genes and the expressions 
of ET signalling genes were not influenced by Se. Simi-
larly, the expression of ACS2 was induced by cadmium 
and proved to have a key role in ET synthesis in Arabi-
dopsis (Schellingen et al. 2014). The results show that Se 
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differentially regulates ACS gene expression in the WT and 
in etr1-1, which may contribute to the observed differences 
in ET levels evolved by Se (Fig. 1b). At the same time, in 
control etr1-1 plants, ACS2 and ACS8 genes were highly 

expressed similarly to the results of Peng et al. (2005). 
The level of ET in unstressed etr1-1, however, was WT-
like (Fig. 1b) suggesting that mechanisms other than the 
expression of ET biosynthetic genes control endogenous 

Fig. 1  a Number of lateral root (LR) primordia and emerged LRs in 
7-day-old wild-type (WT) and etr1-1 Arabidopsis grown in the pres-
ence or absence of 15  µM selenite. b Ethylene concentration (nL g 
fresh  weight−1 h−1) in 7-day-old wild-type and etr1-1 seedlings treated 
with 0 or 15 µM selenite. c Primary roots and differentially developed 
LRs of X-Gluc-stained ACS8::GUS/GFP Arabidopsis grown on agar 
medium supplemented with 0 or 15 µM selenite with or without 5 nM 
ACC and 1.5  µM AVG. Bars = 500  µm. d Number of LR primor-

dia and emerged LRs in 7-day-old wild-type and etr1-1 Arabidopsis 
grown in the presence or absence of 15 µM selenite with or without 
5 nM ACC. e Number of LR primordia and emerged LRs in 7-day-old 
wild-type and etr1-1 Arabidopsis grown in the presence or absence of 
15 µM selenite with or without 1.5 µM AVG. Different letters indicate 
significant differences according to Duncan’s test (n = 20, P ≤ 0.05)
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ET levels in etr1-1 (e.g. posttranslational modifications of 
ACS activities, Wang et al. 2002).

Nitric oxide is known to be involved in LR development 
and interacts with ET in several processes of plant growth. 
As shown in Fig. 3, Se treatment resulted in 1.8-fold NO 

Fig. 2  Relative expression of selected ET-related genes in 7-day-old 
wild-type and etr1-1 Arabidopsis grown in the presence or absence 
of 15  µM selenite. Different letters indicate significant differences 
according to Duncan’s test (n = 2, P ≤ 0.05). Data were normalized 

using the A. thaliana actin2 and GAPDH2 genes as internal controls. 
The relative transcript level in WT control samples was arbitrarily 
considered to be 1 for each gene

Fig. 3  a Nitric oxide levels (pixel intensity of DAF-FM) in the roots 
of 7-day-old wild-type and etr1-1 Arabidopsis grown in the presence 
or absence of 15 µM selenite with or without 5 nM ACC or 1.5 µM 
AVG. Different letters indicate significant differences according to 

Duncan’s test (n = 10, P ≤ 0.05). b Representative fluorescent micro-
scopic images of DAF-FM-stained roots of 7-day-old wild-type and 
etr1-1 Arabidopsis. Bars = 500 µm
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levels in WT roots (Fig. 3a), and the increment of NO-
dependent DAF-FM fluorescence was restricted to the 
transition zone of the primary root (Fig. 3b). In contrast, 
ET insensitive etr1-1 roots showed no Se-induced NO 
level increase which implies the possibility that func-
tional ETR signalling is needed for Se-induced NO for-
mation. The expressions of the examined NO-associated 
genes nitrate reductase 1 and 2 (NR1, NR2), S-nitroso-
glutathione reductase (GSNOR), nitrogen regulatory pro-
tein P-II homolog (GLB1), non-symbiotic hemoglobin 2 
(GLB2) were not modified by Se in the WT and in etr1-1 
only GLB2 was upregulated by Se (Fig S3). These results 

indicate that in Se-exposed Arabidopsis, the NO levels 
may not be regulated by the expression of the examined 
genes.

Based on the lack of Se-triggered NO increase in etr1-
1, we can suppose that NO levels can be controlled by 
ET levels in Se-stressed plants. The application of the 
ET biosynthetic inhibitor AVG resulted in the remark-
able induction of NO levels with or without Se (Fig. 3). 
Similarly, an increased NO level was detected in etr1-1 
treated with Se + AVG compared to plants treated with 
Se alone (Fig. 3). The NO generating effect of ET inhi-
bition suggests that elevated ET levels may prevent NO 

Fig. 4  a Number of lateral root (LR) primordia and emerged LRs in 
7-day-old wild-type (WT) and etr1-1 Arabidopsis grown in the pres-
ence or absence of 15  µM selenite with or without 250  µM GSNO 
or 800  µM cPTIO. Different letters indicate significant differences 

according to Duncan’s test (n = 20, P ≤ 0.05). b Primary roots and dif-
ferentially developed LRs of X-Gluc-stained ACS8::GUS/GFP Arabi-
dopsis grown on agar medium supplemented with 0 or 15 µM selenite 
with or without 250 µM GSNO or 800 µM cPTIO. Bars = 500 µm
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level increase in the root system of Se-exposed etr1-1. 
The mechanism by which ET negatively influences NO 
production remains to be elucidated.

The modification of endogenous NO levels in con-
trol and Se-stressed plants could answer the question 
of whether NO influences ET levels or not and can also 
clarify the role of NO in Se-induced LR outgrowth. Treat-
ments with the NO donor GSNO resulted in intense LR 
emergence in control WT plants and a slighter inducing 
effect in Se-stressed plants (Fig. 4a). These effects could 
be reversed by the NO scavenger cPTIO but the rate of the 
effect was not statistically significant in every case. The 
root system of control etr1-1 proved to be NO insensitive, 
because neither GSNO nor cPTIO had a significant effect 
on LR emergence, but in the presence of Se, GSNO was 
able to notably increase  LRem number and cPTIO had a 
slight inhibitory effect (Fig. 4a). Collectively, these data 
mean that the enhancement of endogenous NO levels in 
Se-treated WT and etr1-1 results in enhanced LR out-
growth which reflects the positive regulatory role of NO 
during Se-induced LR emergence. In addition to cPTIO 
inhibiting LR outgrowth it had a clear positive effect on 
ACS::GUS/GFP activity within the root system, whereas 
GSNO remarkably reduced the ET signal both in the PR 
and in the LRs (Fig. 4b) in accordance with previous stud-
ies reporting and explaining the suppressive effect of NO 
on ET synthesis (Eum et al. 2009; Cheng et al. 2009; Lin-
dermayr et al. 2006; Abat and Deswal 2009; Tierney et al. 
2005).

Conclusion

These results collectively indicate that in the Se-stressed 
root system, increased ET levels inhibit NO generation and 
NO negatively influences ET levels. It was shown for the 
first time that the antagonistic interplay between the two 
gasotransmitters in turn regulates the emergence of lateral 
roots in Arabidopsis under Se stress.
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