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Here we report the evaluation of the antiretroviral effect of two flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2),
together with quercetin (3), a well-studied flavonol. Antiviral activity of the flavonoids was assessed by analyzing HIV-1 p24
core protein levels in the supernatants of HIV-1 infected MT-4 and MT-2 cell cultures. The compounds showed mild to weak
cytotoxic activities on the host cells; herbacitrin was the strongest in this regard (CC

50
=27.8 and 63.64 𝜇MonMT-4 andMT-2 cells,

respectively). In nontoxic concentrations, herbacitrin and quercetin reducedHIV-1 replication, whereas gossypitrin was ineffective.
Herbacitrin was found to inhibit reverse transcriptase at 21.5 𝜇M, while it was a more potent integrase inhibitor already active at
2.15 𝜇M.Therefore, our observations suggest that herbacitrin exerts antiretroviral activity through simultaneously acting on these
two targets of HIV-1 and that integrase inhibition might play a major role in this activity.

1. Introduction

Human immunodeficiency virus type 1 (HIV-1) is the
causative agent of acquired immune deficiency syndrome
(AIDS). There are approximately 37 million people currently
infected with HIV worldwide. In the last decades, more
than two-dozen new drugs were approved for clinical use
against HIV. Combination antiretroviral therapy (cART)
uses different classes of drugs that act in concert to curb
HIV replication. The major classes are protease inhibitors
(PIs), nucleoside and nonnucleoside reverse transcriptase
inhibitors (NRTIs/NNRTIs), entry inhibitors (CCR5 core-
ceptor antagonists, fusion inhibitors, and postattachment
inhibitors), and integrase inhibitors (INIs) [1–3]. In 1996,
the combination of antiretroviral drugs was introduced
as a highly active antiretroviral therapy (HAART), which
transformed HIV/AIDS from a life-threatening condition to
a manageable disease [4]. However, the need for lifelong

treatment, the severe side effects, and the presently unknown
long-term effects of this therapy still represent serious prob-
lems. In addition to this, drug resistance can also emerge
due to the low genetic barrier allowing related mutations
of the virus [5]. Consequently, there is still a need for
the development of novel drugs for efficient antiretroviral
therapy.

It should also be noted that even though only limited evi-
dence supports this practice, complementary and alternative
medicine is used worldwide to treat HIV [6–8]. Traditional
herbal medicine is particularly popular in this regard in
the African continent, where it frequently appears as the
sole therapeutic approach in rural communities [9]. While
ineffective, non-evidence-based treatment of HIV represents
a serious healthcare problem and a risk to all the surround-
ing community, plant secondary metabolites undoubtedly
deserve much attention when searching for new therapeutic
approaches.
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Figure 1: Structures of herbacitrin (1), gossypitrin (2), and quercetin (3).

Natural products offer a great pool of promising can-
didates for finding new lead compounds against HIV, and
flavonoids appear to be particularly promising in this regard:
they can inhibit a wide variety of viral and cellular enzymes
participating in the life cycle of HIV, such as reverse
transcriptase (RT), integrase (IN), viral protease (PR), and
casein kinase II, a cAMP-, cGMP-, and Ca2+/phospholipid-
independent serine/threonine protein kinase [10, 11].

Previous studies showed that different types of flavonoids,
especially certain flavonols, flavones, isoflavones, catechin
derivatives, and chalcones, can act as multitarget agents
through simultaneously inhibiting crucial enzymes of HIV-
1 (RT, IN, and PR) and also interfering with different steps
of the virus’ life cycle [11]. In this regard, the most studied
flavonoid is quercetin that was reported to exert significant
anti-HIV activity by inhibiting HIV replication and to reduce
virus infectivity in normal peripheral blood mononuclear
cells (PBMC) [12]. Inhibition of syncytium formation and
protection of HIV-1 induced cytopathic effects by quercetin
in C8166 cells has also been reported with EC

50
values of

42.55 and 23.2𝜇g/ml, respectively. Quercetin showed antivi-
ral effect with IC

50
values between 29.76-88.98 𝜇M when

tested on TZM-bl cell plus HIV-1 BaL and H9, and PBMC
plus HIV-1 MN [13].

In 1994, Fesen et al. reported the screening and SAR
study of 48 flavonoids, including hydroxyl- and methoxy-
substituted flavones and flavonols, and some glycosides,
together with kinetic studies on the relative inhibition of
the processing and strand transfer steps [14]. Several further,
related studies were performed concerning the IN inhibitory
activity of flavonoids as well, and considerable efforts were
put into the development of predictive in silico screening tools
[15]. In such a study, quercetagetin (6-hydroxyquercetin)
was identified as a strong inhibitor of viral cleavage and
integration [16].

In 2002, three IN inhibitor flavonoids were isolated
from themarine organism
alassia testudinum, a Caribbean
Sea grass, namely thalassiolins A-C expressing a unique
flavone 7-𝛽-d-glucopyranosyl-2�耠�耠-sulfate structure. Thalassi-
olin A displayed in vitro antiretroviral activity against the
strand transfer reaction with a submicromolar inhibitory
concentration, and it could inhibit HIV infection of MT-
2 cells with an IC

50
value of ca. 30 𝜇M while exerting no

cytotoxicity at concentrations as high as 800 𝜇M [17].
The above findings suggest that quercetin analogs, and

especially 7-O-glycosylated compounds with an additional
hydroxyl group at their ring A, are worthy of studying as
antiretroviral agents. In pursuing this notion, we selected

two such compounds, herbacitrin (1) and gossypitrin (2)
(Figure 1), constituents of many Asian medicinal plants, for
investigating their in vitro cytotoxicity, anti-HIV-1 activity,
and reverse transcriptase and integrase inhibitory activity.
The data were compared with those of quercetin, which
therefore served as a well-established positive control in our
study presented hereinafter.

2. Results and Discussion

Flavonoid 7-O-glucosides, herbacitrin (1) and gossypitrin (2)
(Figure 1) were investigated for their antiretroviral activity in
comparisonwith quercetin, a well-studied abundant flavonol.
Herbacitrin (1) and gossypitrin (2) have been first isolated
from cotton flowers (Gossypium herbaceum), [18] and later
both compoundswere detected in differentEquisetum species
[19, 20]. Gossypitrin was also identified in yellow petals of
Papaver nudicaule, [21] and flowers of Talipariti elatum [22].

Drosera peltata (shield sundew), a species distributed
in India and Southeast Asia, was found to contain both
herbacitrin and gossypitrin; this plant is used as an antitussive
in the phytotherapy [23]. The antibacterial and antifungal
activities of gossypitrin were recently demonstrated against
a series of microorganisms, [24] but, to the best of our
knowledge, no previous studies are available concerning the
antiviral effect of herbacitrin or gossypitrin.

Before the bioassays, herbacitrin (1) and gossypitrin (2)
were subjected to NMR measurements with the aim of
assessing the purity of the compounds; this was found to
be higher than 90%. Moreover, as a result of our NMR
studies, previously unpublished 1H and 13C chemical shift
assignments were also achieved in CD

3
OD, as listed in the

Materials and Methods section.
To ascertain nontoxic working concentrations of the

flavonoid derivatives, the compounds’ cytotoxicity was deter-
mined on MT-4 and MT-2 cell lines by MTT assay. Herbac-
itrin, gossypitrin, and quercetin decreased the cell viability in
a dose-dependent manner.The 50% cytotoxic concentrations
(CC
50
) of herbacitrin, gossypitrin, and quercetin on theMT-4

and MT-2 cells are presented in Table 1.
The antiviral activity of flavonoid derivatives was eval-

uated by analyzing HIV-1 p24 core protein levels in the
supernatants of HIV-1 infected MT-4 and MT-2 cell cultures
after 5 days of incubation. HIV-1 infected, untreated cells
and HIV-1 infected cells treated with azidothymidine (AZT,
a potent nucleoside reverse transcriptase inhibitor) were
used as controls. In nontoxic concentrations, herbacitrin and
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Table 1: Cytotoxicity of herbacitrin, gossypitrin, and quercetin on MT-4 and MT-2 cells. CC
50
: concentration that causes 50% cytotoxicity,

C.I.: 95% confidence interval for the CC
50
values obtained from the nonlinear curve fitting, n=4.

Compound CC
50
(𝜇M) [95% C.I.]

MT-4 MT-2
Herbacitrin (1) 27.8 [26.79-28.79] 63.64 [57.50-70.41]
Gossypitrin (2) 101.0 [90.83-104.98] 112.56 [100.29-126.35]
Quercetin (3) 107.5 [97.22-118.97] 157.38 [136.75-181.09]
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Figure 2: Effect of noncytotoxic concentrations of herbacitrin (1), gossypitrin (2), and quercetin (3) on HIV-1 replication in MT-4 (a) or
MT-2 (b) cells cultivated in vitro. Compounds 1-3 were applied at 2.1 𝜇M, AZT: azidothymidine (nucleoside reverse transcriptase inhibitor;
positive control at 0.64 𝜇M).Means are given in percentage of the virus control; the error bars show standard error ofmean (SEM); statistically
significant differences were evaluated as compared to the negative control: ∗ and ∗ ∗ ∗: p<0.05 and 0.001, respectively, by means of one-way
ANOVA followed by Bonferroni’s post hoc test, ∗(P): p<0.05 by means of a planned comparison, involving compound 1 and the positive and
negative controls only, by one-way ANOVA and Bonferroni’s post hoc test.

quercetin reducedHIV-1 replication, whereas gossypitrinwas
ineffective (Figure 2).

To determine the potential target of herbacitrin within
the HIV-1 replication cycle, we tested its effect on the
activity of recombinant HIV-1 reverse transcriptase (RT) and
integrase (IN). We observed that herbacitrin, applied at a
relatively high, 21.5 𝜇M concentration, significantly inhibited
the HIV-1 reverse transcriptase (Figure 3(a)). In contrast, the
activity of integrase was inhibited already at a lower, 2.15
𝜇M concentration of herbacitrin (Figure 3(b)). These results
suggest that herbacitrin may interfere with the replication
cycle of HIV at multiple stages.

While the three compounds tested in this study allowonly
a limited evaluation of structure-activity relationships, from
a comparison of the activity of compounds 1 and 2, it appears
to be clear that a catechol moiety in the flavonoid B-ring (as in
compound 2) is unfavorable concerning the anti-HIV activity
of flavonol 7-O-glycosides. This, however, does not apply to
the aglycone quercetin that contains such a catechol B-ring
and that was found similarly potent as herbacitrin against
HIV replication in our experimental setup. Previously, much
higher, one or even nearly two orders of magnitude higher
concentrations of quercetin were reported as necessary for
significant activity [12, 13]. Concerning the role of the sugar
part, the presence of a 3-glycoside moiety, as in myricetin,
was previously suggested to assist the internalization of a
flavonoid into the cell, hence increasing its ability to interfere

with HIV [25]. As of now, however, no related studies are
available on the role of a 7-glycoside moiety.

3. Conclusion

To the best of our knowledge, this is the first report on the
anti-HIV activity of the flavonoid 7-O-glycoside herbacitrin.
This compoundmay inhibit HIV-1 replication predominantly
by targeting the HIV-1 integrase enzyme. Herbacitrin is a
major flavonoid of the flowers found in Gossypium hirsutum,
a widely used traditional herbal medicine. While we could
not find track of HIV treatment-related traditional use of
cotton flowers in the scientific literature, our results might
warrant investigating a possible positive effect on HIV-
infected patients treated with such preparations for other
indications. At the same time, the anti-HIV activity of herbac-
itrin strongly justifies further studies on 7-O-glycosylated,
noncatechol flavonols against HIV-1, as well as on traditional
herbal preparations containing significant amounts of such
constituents.

4. Materials and Methods

4.1. General. NMR spectra were recorded in MeOH-𝑑
4
on

a Bruker Avance DRX 500 spectrometer at 500MHz (1H)
or 125MHz (13C); the signals of the deuterated solvent were
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Figure 3: Effect of noncytotoxic concentrations of herbacitrin (1) on HIV-1 reverse transcriptase (a) or integrase (b) activity. Positive control:
Nevirapine (nonnucleoside RT inhibitor, 18.8 𝜇M) or sodium azide. Means are given in percentage of the negative control, the error bars show
standard error of mean (SEM); ∗ ∗ ∗: p<0.001 by means of one-way ANOVA followed by Bonferroni’s post hoc test, ∗(T): p<0.05 by means
of a planned comparison by unpaired T-test, as compared to the negative control.

taken as reference. Two-dimensional (2D) experiments (1H-
1H COSY, HSQC and HMBC) were set up, performed, and
processed with the standard Bruker protocol. Herbacitrin
and gossypitrin were purchased from Atomax Chemicals
Co., Ltd. (Shenzhen, Guangdong, China) purity >90%, and
quercetin from Sigma-Aldrich (Saint Louis, Missouri, USA)
purity >98%.

4.2. Herbacitrin (1). 1H-NMR (500MHz, CD
3
OD): 𝛿H 6.67

(1H, s, H-6), 8.21 (2H, d, J=8.7Hz, H-2�耠, 6�耠), 6.93 (2H, d,
J=8.8Hz, H-3�耠, 5�耠), 4.97 (1H, d, J=7.6Hz, H-1�耠�耠), 3.55 (1H,
m, H-2�耠�耠), 3.50 (1H, m, H-3�耠�耠), 3.44 (1H, m, H-4�耠�耠), 3.48 (1H,
m, H-5�耠�耠), 3.92 (1H, dd, J=12.1, 1.5Hz, H-6�耠�耠a), 3.75 (1H, dd,
J=12.2, 4.9Hz, H-6�耠�耠b). 13C-NMR (125MHz, CD

3
OD): 𝛿C

149.0 (C-2), 137.3 (C-3), 177.8 (C-4), 153.6 (C-5), 99.9 (C-6),
151.8 (C-7), 129.0 (C-8), 145.7 (C-9), 106.6 (C-10), 123.9 (C-1�耠),
131.1 (C-2�耠, 6�耠), 116.4 (C-3�耠, 5�耠), 160.8 (C-4�耠), 103.5 (C-1�耠�耠), 74.9
(C-2�耠�耠), 77.7 (C-3�耠�耠), 71.3 (C-4�耠�耠), 78.5 (C-5�耠�耠), 62.4 (C-6�耠�耠).

4.3. Gossypitrin (2). 1H-NMR (500MHz, CD
3
OD): 𝛿H 6.67

(1H, s, H-6), 7.85 (1H, d, J=2.1Hz,H-2�耠), 6.90 (1H, d, J=8.6Hz,
H-5�耠), 7.77 (1H, dd, J=8.6, 2.1Hz, H-6�耠), 4.96 (1H, d, J=7.6Hz,
H-1�耠�耠), 3.57 (1H, t, J=8.8Hz, H-2�耠�耠), 3.52 (1H, m, H-3�耠�耠), 3.42
(1H, m, H-4�耠�耠), 3.48 (1H, m, H-5�耠�耠), 3.91 (1H, dd, J=12.1,
1.9Hz, H-6�耠�耠a), 3.75 (1H, dd, J=12.1, 4.9Hz, H-6�耠�耠b). 13C-
NMR (125MHz, CD

3
OD): 𝛿C 148.9 (C-2), 137.4 (C-3), 177.8

(C-4), 153.5 (C-5), 99.9 (C-6), 151.7 (C-7), 129.0 (C-8), 145.7
(C-9), 106.6 (C-10), 124.3 (C-1�耠), 116.4 (C-2�耠), 146.3 (C-3�耠),
149.0 (C-4�耠), 116.3 (C-5�耠), 122.3 (C-6�耠), 103.5 (C-1�耠�耠), 74.9 (C-
2�耠�耠), 77.7 (C-3�耠�耠), 71.3 (C-4�耠�耠), 78.5 (C-5�耠�耠), 62.4 (C-6�耠�耠).

4.4. Cells and Virus. The permanent human T-cell lines
MT-4 and MT-2 were maintained at 37∘C in a humidified
atmosphere containing 5% CO

2
in RPMI 1640 (Sigma-

Aldrich) medium supplemented with 10% heat-inactivated
fetal bovine serum (Sigma-Aldrich), 100 IU/ml penicillin

and 100𝜇g/ml streptomycin (Sigma-Aldrich). HIV-1 (HTLV-
IIIB) was obtained from the culture supernatant of MT-
4/HTLV-IIIB cells. The 50% HIV-1 tissue culture infectious
dose (TCID

50
) on MT-4 cells was determined by virus

yield assay [26]. The titer of the virus stock was 2.32∗105
TCID

50
/ml.

4.5. Cytotoxicity Assay. To determine the in vitro cytotoxic
effect of the compounds, viability of the treated and untreated
cells was measured by a colorimetric assay as described
earlier [27]. Briefly, MT-4 and MT-2 cells were seeded
into a 96-well plate at a density of 15,000 cells/well in
the presence of different concentrations of the compounds
dissolved in dimethyl sulfoxide (DMSO). The final concen-
tration of DMSO used in the experiments did not affect the
cell viability. After 4 days of incubation, cell cultures were
analyzed using MTT cell viability assay (Sigma-Aldrich) to
monitor the reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl-tetrazolium bromide (MTT) to a blue formazan
product by metabolically active cells. To initiate the cell
viability assay, 20𝜇l MTT (5mg/mL dissolved in PBS) was
added to each well. After 4 h incubation cell supernatant
was removed and 100𝜇l DMSO per well was added. The
absorbance was measured at 550nm on a microplate reader
after mixing the contents thoroughly. The cytotoxicity tests
were implemented in two biological replicates. The CC

50

(50% cytotoxic concentration) values were determined by
nonlinear regression using the variable slope log (inhibitor)
vs. normalized response model of GraphPad Prism 5 (Graph-
Pad Software, San Diego, CA, USA).

4.6. Cell-Based Antiviral Assay. MT-4 and MT-2 cells at a
density of 15,000 cells/well were incubated in 96-well plates
in the presence of compounds at 37∘C in 5% CO

2
for 5

days. Simultaneously, cells were exposed to HIV-1 (2,32∗102



Evidence-Based Complementary and Alternative Medicine 5

TCID
50
/ml). Untreated and infected or AZT (3�耠-azido-3�耠-

deoxythymidine)-treated cells were used as controls. After
the incubation period, diluted culture supernatants were
analyzed for HIV production by determining the amount of
viral core protein using a p24 enzyme-linked immunosorbent
assay (ELISA) kit (Fujirebio) according to manufacturer’s
instructions.The results were expressed relative to the control
of untreated HIV-1 infected cells. The experiment was per-
formed in four biological replicates. Statistical analysis was
performed by one-wayANOVA followed byBonferroni’s post
hoc test.

4.7. HIV RT and IN Inhibition Assays. Inhibitory effects of
compounds on the HIV-1 reverse transcriptase and integrase
activity were measured by a colorimetric RT kit (Roche
Diagnostics) and IN assay kit (Express Biotech Interna-
tional) according to the instructions of the manufacturer.
Reverse transcriptase assay measures the amount of labeled
nucleotides incorporated during the transcription process of
RNA. Nevirapine, a nonnucleoside RT inhibitor, was used as
a positive control in the RT reaction. HIV-1 integrase assay
measures the integrase activity after 3�耠-end processing of the
HIV-1 LTR donor substrate DNA and catalyzing the strand-
transfer recombination reaction to integrate the donor sub-
strate DNA into the target substrate DNA. Sodium azide was
applied as a positive control compound in the experiments
measuring the integrase activity. The RT and IN inhibition
assays were performed in two biological replicates. Statistical
analysis was performed by one-way ANOVA followed by
Bonferroni’s post hoc test, and a planned comparison by
unpaired T-test was also performed (see Figure 3(b)).

Data Availability

Underlying data related to this submission are available from
the authors.
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