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The quarantine of people suspected of being exposed to an infectious agent is one of the
most basic public health measure that has historically been used to combat the spread of
communicable diseases in human communities. This study presents a new deterministic
model for assessing the population-level impact of the quarantine of individuals suspected
of being exposed to disease on the spread of the 2014e2015 outbreaks of Ebola viral
disease. It is assumed that quarantine is imperfect (i.e., individuals can acquire infection
during quarantine). In the absence of quarantine, the model is shown to exhibit global
dynamics with respect to the disease-free and its unique endemic equilibrium when a
certain epidemiological threshold (denoted byR 0) is either less than or greater than unity.
Thus, unlike the full model with imperfect quarantine (which is known to exhibit the
phenomenon of backward bifurcation), the version of the model with no quarantine does
not undergo a backward bifurcation. Using data relevant to the 2014e2015 Ebola trans-
mission dynamics in the three West African countries (Guinea, Liberia and Sierra Leone),
uncertainty analysis of the model show that, although the current level and effectiveness
of quarantine can lead to significant reduction in disease burden, they fail to bring the
associated quarantine reproduction number (R Q

0 ) to a value less than unity (which is
needed to make effective disease control or elimination feasible). This reduction of R Q

0 is,
however, very possible with a modest increase in quarantine rate and effectiveness. It is
further shown, via sensitivity analysis, that the parameters related to the effectiveness of
quarantine (namely the parameter associated with the reduction in infectiousness of
infected quarantined individuals and the contact rate during quarantine) are the main
drivers of the disease transmission dynamics. Overall, this study shows that the singular
implementation of a quarantine intervention strategy can lead to the effective control or
elimination of Ebola viral disease in a community if its coverage and effectiveness levels
are high enough.
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1. Introduction

Ebola virus disease (EVD), which first appeared in 1976 in Zaire (Bowen et al., 1977; Johnson, Webb, Lange, & Murphy,
1977), is one of the most virulent viral diseases of humans, with a case fatality ratio estimated between 25 and 90%
(World Health Organization, 2018a). EVD is transmitted between humans through contact with blood, secretions, organs or
other bodily fluids of infected or dead humans or animals, and its incubation period range between 2 and 21 days. The
symptoms are vomiting, diarrhea, body rash, tremors and in some cases, both internal and external bleeding. The largest
Ebola outbreak so far started in Guinea in December 2013 (World Health Organization, 2015). During this epidemic, almost
29,000 people contracted the diseasewhich resulted inmore than 11,000 deaths, mostly in Guinea, Liberia and Sierra Leone. A
new outbreak started recently (on 4 April 2018) in the Democratic Republic of the Congo and (as of October 20, 2018) there
have already been 237 Ebola cases and 153 deaths (World Health Organization, 2018b).

Quarantine, defined loosely as the temporary removal (from their immediate abode or the general population) of people
suspected of being exposed to a communicable disease, has historically been used as an effective basic public health control
measure to prevent the spread of infectious diseases. There are numerous issues pertaining to the logistic of the actual
implementation of quarantine as a control strategy, such as who should be quarantined and for how long suspected people
should be in quarantine (these have major socio-economic and public health implications). For instance, in the case of the
2014 outbreaks of the EVD, some US states imposed a three-week quarantine period for all health care workers who returned
to the United States from the Ebola-affected regions (where they may have cared for patients with Ebola) (Campbell, Adan, &
Morgado, 2017; Drazen et al., 2014). It was, however, shown by Haas (Haas, 2014) that the three-week period may not be
optimal (in particular, it was shown that exposed individuals with 0.2%e12% risk of developing disease may be released from
quarantine prior to the end of the incubation period). On August 1, 2014, the three Western African countries affected by the
epidemic (Guinea, Liberia and Sierra Leone) announced the enforcement of amass quarantine in vast forest areas around their
common borders that are considered the epicentre of the outbreak (a few days later, Liberian authorities imposed a 10-day
quarantine over West Point; Sierra Leone announced, on September 6, a nationwide mass quarantine between September 19
and 21) (Eba, 2014).

Numerous mathematical modeling studies have been conducted to study the transmission dynamics and control of EVD.
In fact, the earliest mathematical models for EVD appeared long before the 2014e15 epidemic. Chowell et al. (Chowell,
Hengartner, Castillo-Chavez, Fenimore, & Hyman, 2004) proposed a stochastic SEIR model to fit data from the 1995 and
2000 outbreaks in Congo and Uganda. This model was further developed by Legrand et al. (Legrand, Grais, Boelle, Valleron,&
Flahault, 2007) by including two new compartments for hospitalized people and for people who died from Ebola but have not
yet been buried. Several new models appeared soon after the start of the 2014 outbreak (Nishiura & Chowell, 2014; Towers,
Patterson-Lomba, & Castillo-Chavez, 2014). The model by Legrand et al. was used to study the 2014e15 Ebola outbreaks by
Rivers et al. (Rivers, Lofgren, Marathe, Eubank, & Lewis, 2014). Webb and Browne incorporated age of infection in their model
(Webb & Browne, 2016). Tsanou et al. considered the role of host-reservoir transmission (with bats as reservoir) of EVD and
spillover potential to humans (Tsanou, Bowong, Lubuma, & Mbang, 2017). Furthermore, Tsanou et al. (Tsanou, Lubuma,
Ouemba Tass�e, & Tenkam, 2018) studied the impact of environmental contamination on the transmission dynamics of
EVD. Several other studies incorporated the effect of anti-EVD control measures, such as increasing hospitalization, timely
burial of people who died from EVD and distribution and use of protective kits in households (Althaus, 2014; Barbarossa et al.,
2015; Lewnard et al., 2014). For instance, Agusto et al. (Agusto, Teboh-Ewungkem, & Gumel, 2015) studied the effect of
traditional beliefs and customs on the transmission dynamics of the disease.

A number of mathematical models, typically of the form of deterministic systems of nonlinear differential equations, have
been designed and used to gain insight into the population-level impact of quarantine (of people suspected of being exposed
to a disease) and isolation (of people with clinical symptoms of a communicable disease) on the spread and control of in-
fectious diseases (see, for instance, themodels in (Day, Park, Madras, Gumel,&Wu, 2006; Gumel et al., 2004; Hethcote, Zhien,
& Shengbing, 2002; Lipsitch et al., 2003; Mubayi, Kribs Zaleta, Martcheva, & Castillo-Ch�avez, 2010; Nu~no, Feng, Martcheva, &
Castillo-Chavez, 2005; Safi & Gumel, 2010; Safi & Gumel, 2013; Safi & Gumel, 2015; Yan & Zou, 2008)). Hethcote (Hethcote
et al., 2002) presented SIQS (susceptible-infected-quarantined-susceptible) and SIQR (susceptible-infected-quarantined-
recovered) models for the dynamics of an infectious disease that is controllable using quarantine and isolation, showing that
the use of quarantine-adjusted incidence induces the phenomenon of Hopf bifurcation in the transmission dynamics of the
disease. Nu~no et al. (2005) also showed oscillatory dynamics in an SIQRmodel for the dynamics of two strains of influenza in a
population. Similarly, a probabilistic model was designed and used by Day et al. (Day et al., 2006) to determine the conditions
under which quarantine is expected to be useful. The Day et al. study showed that the number of infections averted through
quarantine is expected to be low if isolation is effective, but the number increases abruptly as the effectiveness of isolation
diminishes. It is worth mentioning, however, that in majority of the quarantine, or quarantine and isolation, models in the
literature (including the models in all of the aforementioned studies, with exception of those in (Lipsitch et al., 2003; Mubayi
et al., 2010; Safi & Gumel, 2013)), the term “quarantine” was generally incorrectly used to refer to the removal of individuals
who already have been infected with the disease (either in the exposed/latent (Day et al., 2006; Gumel et al., 2004; Safi &
Gumel, 2010; Safi & Gumel, 2015), or even in the symptomatic (Hethcote et al., 2002; Nu~no et al., 2005) class). In other
words, the term “quarantine”was used instead of the more epidemiologically-appropriate term, “isolation”. As stated earlier,
quarantine is the temporary removal of susceptible individuals who are feared to have been exposed to a communicable
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disease. These (currently-susceptible-but-feared-exposed) individuals are temporarily removed from the actively-mixing
population until, at the very least, after the incubation period of the disease, after which they are tested to determine
whether or not they have the disease. If they have acquired the infection, they are then placed in isolation. If they do not show
clinical symptoms of the disease at the end of the quarantine period, they return to the susceptible (and actively-mixing)
population. People can be quarantined at home (i.e., self-quarantine) or in public health facility (such as hospital, health
centers ormakeshift facility, such as themilitary tents used during the 2014 ebola outbreaks (Drazen et al., 2014)). Quarantine
is correctly modeled in a few studies, including in (Lipsitch et al., 2003; Mubayi et al., 2010; Safi& Gumel, 2013). In particular,
Lipsitch et al. (Lipsitch et al., 2003) modeled quarantine of susceptible individuals based on the number of individuals with
clinical symptoms of the disease in the community. In addition to allowing for the quarantine of susceptible individuals, the
model developed by Safi and Gumel (Safi& Gumel, 2013) also accounted for the adjustment of the disease incidence function
to account for the actively-mixing population (in line with Hethcote (Hethcote et al., 2002)). These features were also
incorporated in the model developed by Mubayi et al. (Mubayi et al., 2010). It is worth stating, however, that the quarantine
models in (Lipsitch et al., 2003; Mubayi et al., 2010) do not allow breakthrough infection during quarantine. In other words,
the models in (Lipsitch et al., 2003; Mubayi et al., 2010) assume perfect quarantine (this assumption is relaxed in the current
study).

The purpose of the current study is to design a new model for realistically assessing the population-level impact of
quarantine (assumed to be imperfect, so that individuals in quarantine can acquire infection during quarantine) on the spread
and control of the 2014e2015 EVD outbreaks in the three affected Western African countries. The paper is organized as
follows. The model is formulated and fitted with observed data in Section 2 (the basic properties of the model, as well as the
local asymptotic stability result for the associated disease-free equilibrium, are also given). A special case of the model, in the
absence of quarantine, is rigorously analysed in Section 3. Numerical simulations of the full model are reported in Section 5.

2. Formulation of mathematical model

The model is formulated as follows. The total population at time t, denoted by NðtÞ, is split into the population of those in
quarantine (denoted by NQ ðtÞ) and those not in quarantine (denoted by NUðtÞÞ, so that NðtÞ ¼ NQ ðtÞþ NUðtÞ. The total
population of individuals in quarantine at time t is divided into those that are susceptible ðSQ ðtÞÞ, exposed (EQ ðtÞ; that is,
infected but not yet infectious) and symptomatic ðIQ ðtÞÞ. Hence,

NQ ðtÞ ¼ SQ ðtÞ þ EQ ðtÞ þ IQ ðtÞ:
Similarly, the total population of individuals not in quarantine at time t is sub-divided into the sub-populations of sus-
ceptible (SUðtÞ), exposed (EUðtÞ), symptomatic (IUðtÞ), treated ðIT ðtÞÞ, recovered ðRðtÞÞ, dead ðDðtÞÞ, so that

NUðtÞ ¼ SUðtÞ þ EUðtÞ þ IUðtÞ þ IT ðtÞ þ RðtÞ þ DðtÞ:
The force of infection associated with the model to be developed (denoted by lðtÞ) is given by

lðtÞ ¼ IUðtÞ þ hT IT ðtÞ þ hQ IQ ðtÞ þ hDDðtÞ
NUðtÞ

; (1)

where hT , hQ and hD are modification parameters accounting for the variability of the infectiousness of infected individuals in
the IT , IQ and D classes, in comparison to those in the IU class, respectively. Following Lipsitch et al. (Lipsitch et al., 2003),
quarantine is modeled as follows: a fraction, q, of susceptible individuals who are feared exposed to Ebola (i.e., by having
contact with a confirmed Ebola case) are placed in quarantine. Owing to its assumed imperfect nature, individuals in
quarantine can be infected (and moved to the compartment EQ ) with probability b (quarantined individuals remain sus-
ceptible and stay in the quarantined susceptible SQ class during quarantine with probability 1� b). Quarantined individuals
who do not develop the disease at the end of the quarantine period are moved to the SU class at a rate rQ .
Fig. 1. Flow diagram of the model (2).
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The model is given by the following deterministic system of nonlinear differential equations (where a prime denotes
differentiation with respect to time t; a schematic diagram of the model is depicted in Fig. 1 and the parameters of the model
are described in Table 1):

S0UðtÞ ¼ P� kbSUðtÞlðtÞ � qkð1� bÞSUðtÞlðtÞ þ rQSQ ðtÞ � dSUðtÞ;

S0Q ðtÞ ¼ qkð1� bÞSUðtÞlðtÞ �
bkQQSQ ðtÞIQ ðtÞ

NQ ðtÞ
� rQSQ ðtÞ � dSQ ðtÞ;

E0UðtÞ ¼ ð1� qÞkbSUðtÞlðtÞ � pEUðtÞ � dEUðtÞ;

E0Q ðtÞ ¼ qkbSUðtÞlðtÞ þ
bkQQSQ ðtÞIQ ðtÞ

NQ ðtÞ
� pEQ ðtÞ � dEQ ðtÞ;

I0UðtÞ ¼ pEUðtÞ � ðvþmþwÞIUðtÞ � dIUðtÞ;
I0ΤðtÞ ¼ w

�
IUðtÞ þ IQ ðtÞ

�� ðvþmÞIT ðtÞ � dIT ðtÞ;
I0Q ðtÞ ¼ pEQ ðtÞ � ðvþmþwÞIQ ðtÞ � dIQ ðtÞ;
R0ðtÞ ¼ v

�
IUðtÞ þ IT ðtÞ þ IQ ðtÞ

�� dRðtÞ;
D0ðtÞ ¼ m

�
IUðtÞ þ IT ðtÞ þ IQ ðtÞ

�� fDðtÞ;

(2)
with the auxiliary equation

B0ðtÞ ¼ fDðtÞ;

and lðtÞ as given by (1). In (2),P is the recruitment rate (by birth or immigration), k is the average daily per capita contact rate
in the community, b is the transmission probability per contact (here, we follow Lipsitch et al. (Lipsitch et al., 2003) in
separating the parameters k and b instead of applying the usual composite transmission parameter b. That is, we assume that
each infectious individual makes k contacts per day, and a proportion, b, of these contacts lead to infection). The parameters q
and d represent, respectively, the quarantine rate of susceptible individuals and the natural mortality rate (the latter rate is

assumed to be the same in all epidemiological compartments). Individuals in quarantine acquire EVD infection at a rate bkQQ .
The parameter p accounts for the rate of progression from any of the exposed classes (EU or EQ ) to the corresponding
symptomatic class (IU or IQ ). That is, 1=p is the mean incubation period of the disease. Infectious individuals in the IU and IQ
classes are hospitalized at a ratew. The parameters v andm are, respectively, the recovery rate and per capita disease-induced
Table 1
Description, ranges and baseline values of parameters of the model (2).

Parameter Description Baseline value
(range)

Ref.

P Recruitment rate 11826/week World Health Organization (2018c)
d Natural death rate 0.00054/week World Health Organization (2018c)
b Transmission probability per contact 0.054 Legrand et al. (2007)
hT Modification parameter for infectiousness of hospitalized

individuals
0.86 Legrand et al. (2007)

hQ Modification parameter for infectiousness of infected quarantined
individuals

0.502 (0.5e0.9) Legrand et al. (2007)

hD Modification parameter for infectiousness of Ebola-deceased
individuals

3.89 Legrand et al. (2007)

k Average per capita contact rate in the community 9.15/week Legrand et al. (2007)
q Quarantine rate of susceptible individuals 0.125 (0.05e0.5)/

week
Fitted

rQ Rate of release from quarantine 1.107 (0.5e2)/
week

Fitted

kQQ Average per capita contact rate during quarantine 7.97/week Fitted
1=p Incubation period 1.498 week (Gomes et al., 2014; Legrand et al., 2007; Pandey

et al., 2014)
v Recovery rate 0.362/week (Gomes et al., 2014; Legrand et al., 2007)
m Ebola-induced death rate 0.797/week (Gomes et al., 2014; Legrand et al., 2007; Pandey

et al., 2014)
w Hospitalization rate 1.58/week (Gomes et al., 2014; Legrand et al., 2007; Rivers

et al., 2014)
1=f Mean time from death due to Ebola to burial 0.762 weeks World Health Organization (2015)
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death rate. Ebola-deceased individuals are buried at a rate f (i.e., 1=f is the mean time from death to burial for Ebola-deceased
individuals) (Agusto et al., 2015; Barbarossa et al., 2015; Legrand et al., 2007). It is worth emphasizing that, in contrast to
Lipsitch et al. (Lipsitch et al., 2003), it is assumed in this study that hospitalized individuals can transmit infection (hence, the
mean duration of infectiousness is 1=ðwþ mþ vÞ).

The model (2) is an extension of many existing models for quarantine and isolation (such as those in (Gumel et al., 2004;
Hethcote et al., 2002; Lipsitch et al., 2003; Mubayi et al., 2010; Nu~no et al., 2005; Safi& Gumel, 2010; Safi& Gumel, 2013; Safi
& Gumel, 2015; Yan & Zou, 2008)) by, inter alia:

1. Incorporating the quarantine of susceptible individuals (this was not included in the models in (Gumel et al., 2004;
Hethcote et al., 2002; Nu~no et al., 2005; Safi & Gumel, 2010; Safi & Gumel, 2015; Yan & Zou, 2008)).

2. Using nonlinear quarantine rate of susceptible individuals (linear rates were used in (Mubayi et al., 2010; Safi & Gumel,
2013)).

3. Allowing for breakthrough infection during quarantine (perfect quarantine and isolation were assumed in (Lipsitch et al.,
2003; Mubayi et al., 2010). That is, the models in (Lipsitch et al., 2003; Mubayi et al., 2010) assume that susceptible in-
dividuals in quarantine do not acquire infection during the quarantine period).

4. Allowing for disease transmission by infected individuals in quarantine and/or isolation (this was not accounted for in the
models in (Lipsitch et al., 2003; Mubayi et al., 2010)).

5. Allowing for the heterogeneity between infected individuals in quarantine and isolation and those not in quarantine and
isolation (i.e., we stratify the infected population into EQ and IQ for those in quarantine and isolation, and EU and IU for
those not in quarantine and isolation). This allows for the assessment of the effectiveness of an intervention strategy aimed
at encouraging infected people in quarantine and isolation to positively modify their behavior so that they do not continue
to generate more infections (this stratification is not considered in the model in (Mubayi et al., 2010). That is, all infected
individuals are lumped into the same compartment in (Mubayi et al., 2010), regardless of their quarantine or isolation
status).

Further, the model (2) extends many of the EVD models in the literature (such as those in (Agusto et al., 2015; Chowell et al.,
2004; Tsanou et al., 2017)) by, inter alia, allowing for the quarantine of susceptible individuals and disease acquisition and
transmission during quarantine and isolation (or hospitalization).
2.1. Basic qualitative properties

The basic qualitative properties of themodel (2), with respect to the nonnegativity and boundedness of solutions, will now
be explored.

Lemma 2.1. Suppose that the initial values SUð0Þ, SQ ð0Þ, EUð0Þ, EQ ð0Þ, IUð0Þ, IT ð0Þ, IQ ð0Þ, Rð0Þ, Dð0Þ, Bð0Þ of the model (2) are all
nonnegative. Then, the solution of (2) starting with these initial values will remain nonnegative for all time t >0. Furthermore, all
solutions of the model (2) are bounded.

Proof. The proof for the nonnegativity component of the theorem is by contradiction (see Theorem A4 of (Thieme, 2003)).
Suppose that the statement of the lemma (with respect to nonnegativity) does not hold. That is, there is at least one of the
nine state variables of the model (2), and a t ¼ t� � 0, such that the value of this state variable goes through 0 at t ¼ t�, and all
state variables of the model take nonnegative values for 0 � t � t�. For example, consider the state variable is SUðtÞ. It can be
seen that the derivative of SUðtÞ is positive if SUðtÞ ¼ 0. Hence, SUðtÞ cannot decrease further once it has reached 0. The case of
each of the other state variable of the model can be shown in a similar way.

To show that all solutions of the model (2) are bounded, it is convenient to define N ðtÞ ¼ SUðtÞ þ SQ ðtÞ þ EUðtÞ þ EQ ðtÞ þ
IUðtÞ þ IT ðtÞ þ IQ ðtÞ þ RðtÞ þ DðtÞ and d ¼ minff ;dg. Thus,

N 0ðtÞ ¼ P� d
�
SUðtÞ þ SQ ðtÞ þ EUðtÞ þ EQ ðtÞ þ IUðtÞ þ IT ðtÞ þ IQ ðtÞ þ RðtÞ�� fDðtÞ

� P� dN ðtÞ;

fromwhich it follows that lim supt/∞N ðtÞ � P
d
. Using the fact that all solutions are nonnegative, the second statement of the

lemma is established. ∎
Define the following feasible region for the model (2):

G ¼
��

SUðtÞ; SQ ðtÞ; EUðtÞ; EQ ðtÞ; IUðtÞ; IT ðtÞ; IQ ðtÞ;RðtÞ;DðtÞ
�
2ℝ9

þ : N ðtÞ � P
d

�
:

The result below follows from the above analyses.

Lemma 2.2. The region G is positively-invariant for the model (2) for every nonnegative initial condition in ℝ9þ .
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2.2. Data fitting

It should, first of all, be stated that good estimates for pretty much all the non-quarantine related parameters of the model
(2) are available in the literature, as tabulated in Table 1. Further, good estimates for one of the four quarantine-related pa-
rameters (hQ ) are available. Thus, our task is to find good estimates for the remaining three quarantine-related parameters of

the model (kQQ , rQ and q). In order to do so, and to subsequently validate the model, we fitted the model using the available

cumulative data for the 2014e15 Ebola outbreaks in three affected West African countries. We apply Latin Hypercube
Sampling (a Monte-Carlo sampling method used in statistics to measure simultaneous variation of several model parameters
(McKay, Beckman, & Conover, 1979)) to generate a representative sample set from the parameter ranges for the three

quarantine-related parameters (kQQ , rQ and q), while the baseline values for the rest of the parameters, given in Table 1, are

used as well. For all elements of this representative sample set, we numerically calculate the solutions of the model (2) with
the given parameter values and apply the least squaresmethod to find the parameters which give the best fit. We consider the
data of the first 40 weeks of the outbreak (World Health Organization, 2018d) (as tabulated in Table 2), as after this time,
several intervention measures were implemented (hence, the estimates for many of the control-related parameters of the
model, including the transmission, hospitalization and burial rates, changed significantly). The estimated values of the two
quarantine-related parameters of the model obtained from the fitting exercise are tabulated in Table 1. The simulation results
obtained for the cumulative number of cases, by fitting the model with the data of the first 40-week period, are depicted in
Fig. 2. The figure shows a reasonably good fit (thereby adding realism to the predictive capacity of the model (2)). The
goodness of the fit is theoretically measured by computing the associated average relative error of the fit using the formula
1
40
P40

i¼1
jyi�byij
jyij z0:8163, where yi and byi are the exact and estimated cumulative number of cases for Week i ði ¼ 1;2; /; 40Þ

(depicted in Table 2), respectively. The reasonably small value of the relative error (0.8134) confirms the goodness of the fit
obtained.
Table 2
Cumulative number of cases reported (sum of confirmed, suspected and probable cases) in the first forty weeks of the 2014e2015 Ebola epidemic inWestern
Africa (World Health Organization, 2018d).

Weeks Guinea Liberia Sierra Leone

1 1 1 1
2 5 1 1
3 9 2 1
4 13 2 1
5 21 3 2
6 23 3 2
7 28 4 3
8 35 4 3
9 39 5 4
10 44 5 4
11 47 6 5
12 103 8 6
13 127 8 6
14 158 25 6
15 203 27 12
16 218 35 12
17 226 35 12
18 236 35 12
19 248 35 12
20 248 35 12
21 291 35 50
22 344 35 81
23 351 35 89
24 398 41 136
25 398 51 158
26 413 115 252
27 413 142 337
28 413 196 442
29 427 249 525
30 472 391 574
31 495 554 717
32 519 786 810
33 607 1082 910
34 648 1378 1026

35 771 1698 1216
36 899 2407 1478
37 942 3022 1673
38 1074 3458 2021
39 1199 3834 2437
40 1350 4076 2950



Fig. 2. Fitting the model to the data for the 2014e2015 Ebola outbreaks in Western Africa (World Health Organization, 2018d): cumulative number of new
infected cases (Parameter values used are as given in Table 1).
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3. Analysis of special case of the model: quarantine-free with mass action incidence

We consider, first of all, a special case of the model (2) in the absence of quarantine (i.e., the model (2) with q ¼ 0) and
constant total population (i.e., the model (2) with mass action incidence, rather than standard incidence). The two as-
sumptions are made for mathematical tractability, in addition to allowing for the determination of whether or not adding
quarantine to the resulting model (without quarantine) will alter its dynamical features. The second assumption of constant
total population is justified since Ebola-inducedmortality is generally very negligible, in comparison to the total population in
the affected areas (World Health Organization, 2018d). The quarantine-free model with constant total population is given by:

S0UðtÞ ¼ P� kbSUðtÞIUðtÞ � kbhTSUðtÞIT ðtÞ � kbhDSUðtÞDðtÞ � dSUðtÞ;
E0UðtÞ ¼ kbSUðtÞIUðtÞ þ kbhTSUðtÞIT ðtÞ þ kbhDSUðtÞDðtÞ � pEUðtÞ � dEUðtÞ;
I0UðtÞ ¼ pEUðtÞ � ðvþmþwÞIUðtÞ � dIUðtÞ;
I0T ðtÞ ¼ wIUðtÞ � ðvþmÞIT ðtÞ � dIT ðtÞ;
R0ðtÞ ¼ v½IUðtÞ þ IT ðtÞ� � dRðtÞ;
D0ðtÞ ¼ m½IUðtÞ þ IT ðtÞ� � fDðtÞ:

(3)

� � � � � �
�
P

	

The reduced model (3) has a disease-free (trivial) equilibrium (DFE), E 0 ¼ ðSU ;EU ;IU ;IT ;R ;D Þ ¼ d ;0;0;0;0;0 , and a non-

trivial (positive) endemic equilibrium point (EEP)

E 1 ¼ �S��U ; E��U ; I��U ; I��T ;R��;D���
¼
�
P� ðdþ pÞE�

d
; E�;

pE�

dþmþ vþw
;

pwE�

ðdþmþ vÞðdþmþ vþwÞ;
pvE�

dðdþmþ vÞ;
mpE�

f ðdþmþ vÞ
	
;

� 1
�

1
	

where E ¼ dþp 1� R 0
, with R 0 (the basic reproduction number of the model (3)) given by

R 0 ¼ Pbkp½dðf þ hDmÞ þ f ðmþ vþ hTwÞ þ hDmðmþ vþwÞ�
df ðdþ pÞðdþmþ vÞðdþmþ vþwÞ :
The non-trivial equilibrium E 1 exists whenever R 0 >1 (it should be noted that the SU component of this equilibrium is
positive for R 0 >1, since 1� 1

R 0
<1 and P>1).
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3.1. Global asymptotic stability of equilibria

3.1.1. Disease-free equilibrium
The global asymptotic stability property of the DFE (E 0) of the model (3) will be explored using the approach in [38,

Theorem2.1]. It is worth recalling the following result.

Theorem A. ([ (Shuai & van den Driessche, 2013), Theorem2.1]).
Consider the system

x0 ¼ F ðx; yÞ �V ðx; yÞ;
y0 ¼ gðx; yÞ (4)

with g ¼ ðg1;…; gmÞT . The vectors x ¼ ðx1;…; xnÞ2ℝn and y ¼ ðy1;…; ymÞT2ℝm represent the populations in the disease

compartments and the disease-free compartments, respectively. The functions F and V are defined as F ¼ ðF 1;…;F nÞT
and V ¼ ðV 1;…;V nÞT such that F i denotes the rate of new infections in the ith disease compartment and V i; i ¼ 1;…;n
denote transition terms. Assume that the disease-free system y0 ¼ gð0; yÞ has a unique equilibrium y0 >0 which is locally
asymptotically stable within the disease-free space. Define the two n� n matrices F and V as

F ¼
 
vF i

vxj
ð0; y0Þ

!
and V ¼

 
vV i

vxj
ð0; y0Þ

!
;

and let,

fðx; yÞ :¼ ðF � VÞx� F ðx; yÞ þV ðx; yÞ:

Furthermore, let uT � 0 be the left eigenvector of the matrix V�1F corresponding to the eigenvalue R 0. If fðx; yÞ � 0 in
G3ℝnþmþ , F � 0, V�1 � 0 and R 0 � 1, then Q ¼ uTV�1x is a Lyapunov function for (4) on G.

Theorem 3.1. The disease-free equilibrium E0 of the model (3) is globally-asymptotically stable in ~G :¼ fðSUðtÞ; EUðtÞ; IUðtÞ; IT ðtÞ;
RðtÞ;DðtÞÞ2ℝ6þg whenever R 0 � 1.

Proof. Using the notation in Theorem A above, the next generation matrices, V and F, associated with the model (3) are
given, respectively, by

V ¼

0BB@
dþ p 0 0 0
�p dþmþ vþw 0 0
0 �w dþmþ v 0
0 �m �m f

1CCA and F ¼

0BBBBBB@
0

bPk
d

bPkhT
d

bBkhD
d

0 0 0 0

0 0 0 0

0 0 0 0

1CCCCCCA;

and the function f is given by
fðSU ; EU ; IU ; IT ;R;DÞT ¼
�
bkðP� dSUÞðDhD þ hT IT þ IUÞ

d
;0;0;0

	
:

T �1
Hence, each condition of Theorem A is satisfied. Further, it follows from the above derivations that u V x is a Lyapunov
function for (3), where u is the left eigenvector of the matrix V�1F corresponding to the eigenvalue R 0. The statement of the
theorem follows from LaSalle's Invariance Principle (LaSalle & Lefschetz, 1961). ∎

3.1.2. Endemic equilibrium
The global asymptotic stability property of the endemic equilibrium E 1 of the model (3) will be explored using results

from (Shuai & van den Driessche, 2013). It is worth recalling the following result.

Theorem B. ([ (Shuai & van den Driessche, 2013), Theorem3.5]).
Let U be an open set in ℝn. Consider a differential equation system

z0k ¼ fkðz1; z2;…; zmÞ; k ¼ 1;2;…;m; (5)
with z ¼ ðz1;z2;…;zmÞ2U.
Suppose the following assumptions are satisfied.
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1. There exist functions Di : U/ℝ, Gij : U/ℝ and constants aij � 0 such that for every 1 � i � n, D0
i ¼ D0

ijð5Þ �
Pn

j¼1aijGijðzÞ
for z2U.

2. For A ¼ ½aij�, each directed cycle C of the weighted digraph G defined by the weight matrix A has
P

ðs;rÞ2E ðC Þ
GrsðzÞ � 0 for

z2U, where E ðC Þ denotes the arc set of the directed cycle C .

Then, there exist constants ci � 0 such that the function D ðzÞ ¼Pn
i¼1ciDiðzÞ is a Lyapunov function for (5).

We claim the following result.

Theorem 3.2. The endemic equilibrium E 1 of the model (3) is globally-asymptotically stable in

~Gy
n
ðSUðtÞ; EUðtÞ; IUðtÞ; IT ðtÞ;RðtÞ;DðtÞÞ2ℝ6

þ : EUðtÞ ¼ IUðtÞ ¼ IT ðtÞ ¼ DðtÞ ¼ 0
o

if R 0 >1.

Proof. Define h : ℝ/ℝ as hðxÞ ¼ x� 1� lnx and let D1 ¼ h
�
SUðtÞ
S��U

	
þ E��

S��U
h
�
EUðtÞ
E��

	
, D2 ¼ h

�
IUðtÞ
I��U

	
, D3 ¼ h

�
IT ðtÞ
I��T

	
and D4 ¼

h
�
DðtÞ
D��

	
. At the endemic equilibrium, the following equalities hold:

P ¼ kbS��U I��U þ kbhTS
��
U I��T þ kbhDS

��
U D�� þ dS��U ;

pþ d ¼ kbS��U I��U þ kbhTS
��
U I��T þ kbhDS

��
U D��

E��
;

vþmþwþ d ¼ p
E��

I��U
;

vþmþ d ¼ w
I��U
I��T

;

f ¼ m
I��U þ I��T
D�� :
Noting that hðxÞ � 0 for all x>0 and hðxÞ ¼ 0 if and only if x ¼ 1, and applying the above equalities, gives:

D0
1ðtÞ � kbI��U

�
IUðtÞ
I��U

� ln
IUðtÞ
I��U

� EUðtÞ
E��

� ln
EUðtÞ
E��

	
þkbhT I

��
T

�
IT ðtÞ
I��T

� ln
IT ðtÞ
I��T

� EUðtÞ
E��

� ln
EUðtÞ
E��

	
þkbhDD

��
�
DðtÞ
D�� � ln

IUðtÞ
I��U

� EUðtÞ
E��

� ln
EUðtÞ
E��

	
:¼ a12G12 þ a13G13 þ a14G14;

D0
2ðtÞ � p

E��

I��U

�
EUðtÞ
E��

� ln
EUðtÞ
E��

� IUðtÞ
I��U

� ln
IUðtÞ
I��U

	
:¼ a21G21;

D0
3ðtÞ � w

I�U
I��T

�
IUðtÞ
I��U

� ln
IUðtÞ
I��U

� IT ðtÞ
I��T

� ln
IT ðtÞ
I��T

	
:¼ a32G32;

and;

D0
4ðtÞ �

mI��U
D��

�
IUðtÞ
I��U

� ln
IUðtÞ
I��U

� DðtÞ
D�� � ln

DðtÞ
D��

	
þmI��T

D��

�
IT ðtÞ
I��T

� ln
IT ðtÞ
I��T

� DðtÞ
D�� � ln

DðtÞ
D��

	
;

:¼ a43G43 þ a42G42:
Hence, Assumption (1) of TheoremB holds. Define theweighted digraph ðG ;AÞ associatedwith theweightmatrix A ¼ ½aij�,
with aij defined as the constants in the above inequalities (and all other aij's not mentioned above are set to zero; see also
Fig. 3).

For all cycles of ðG ;AÞ, the Assumption (2) of Theorem B can easily be verified. For instance, the case of the cycle①/②/

③/④ is verified as follows. For this cycle,



Fig. 3. The weighted digraph ðG ;AÞ constructed for model (3).
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G14 þ G43 þ G32 þ G21

¼
�
DðtÞ
D�� � ln

IUðtÞ
I��U

� EUðtÞ
E��

� ln
EUðtÞ
E��

	
þ
�
IT ðtÞ
I��T

� ln
IT ðtÞ
I��T

� DðtÞ
D�� � ln

DðtÞ
D��

	
þ
�
IUðtÞ
I��U

� ln
IUðtÞ
I��U

� IT ðtÞ
I��T

� ln
IT ðtÞ
I��T

	
þ
�
EUðtÞ
E��

� ln
EUðtÞ
E��

� IUðtÞ
I��U

� ln
IUðtÞ
I��U

	
¼ 0:

The other cases can be handled in a similar way. Hence, the statement of the theorem follows from Theorem B.
It is worth stating that, using the baseline values of the parameters in Table 1, the value of the basic reproduction number

(R 0) isR 0 ¼ 1:403>1 (hence, it follows from Theorem 3.2 that the disease will persist in the population). It is further worth
noting that this value ofR 0 lies in the range given in numerousmodeling studies for the 2014 EVD outbreaks (such as those in
(Agusto et al., 2015; Barbarossa et al., 2015; Gomes et al., 2014; Nishiura & Chowell, 2014; Towers et al., 2014)).
4. Analysis of full model with quarantine and standard incidence

In this section, the local asymptotic stability of the DFE of the full model (2) (with both quarantine and standard incidence)
will be analysed. The DFE of the full model is given by:

E 01 ¼


S�U ; S

�
Q ; E

�
U ; E

�
Q ; I

�
U ; I

�
T ; I

�
Q ;R

�;D�
�
¼
�
P
d
;0;0;0;0;0;0;0; 0

	
;

and it can be shown (using the next generation operator method (Diekmann, Heesterbeek, & Roberts, 2010; van den
Q
Driessche & Watmough, 2002)) that the associated quarantine reproduction number, denoted by R 0 , is given by:

R Q
0 ¼ bkp

�
mhDðmþ vþwþ dÞ þ qf

�
mhQ þ vhQ þ dhQ þwhT

�þ ð1� qÞf ðmþ vþwhT þ dÞ�
f ðdþ pÞðdþmþ vÞðdþmþ vþwÞ :

The result below follows from Theorem 2 of (van den Driessche & Watmough, 2002).
Theorem 4.1. The DFE of the full model (2), E 01, is locally-asymptotically stable if R Q
0 <1, and is unstable if R Q

0 >1.
As in (Safi and Gumel, 2013, 2015), the model (2) can be shown (using standard tools, such as the centre manifold theory

(Castillo-Chavez & Song, 2004)) to undergo the phenomenon of backward bifurcation at R Q
0 ¼ 1, a dynamic phenomenon

associated with the co-existence of stable disease-free equilibrium and a stable endemic equilibrium when the associated

reproduction threshold, R Q
0 , is less than unity. The epidemiological implication of this phenomenon, which arises due to the

imperfect nature of quarantine to prevent disease transmission during quarantine (i.e., leaky quarantine), is that having

R Q
0 <1, while necessary, is no longer sufficient for the effective control of the disease. In other words, quarantine-induced

backward bifurcation makes the effort for the effective control of Ebola more difficult. Hence, this study shows that add-
ing imperfect quarantine to the quarantine-free Ebola transmission model (3) induces a new dynamical phenomenon
(backward bifurcation) that was not present in the quarantine-free model.
4.1. Uncertainty and sensitivity analysis

The model (2) contains numerous parameters, and uncertainties are expected to arise in the estimates of the parameter
values used in the model simulations. Uncertainty analysis, using Latin Hypercube Sampling (LHS) (Blower & Dowlatabadi,
1994), is used to account for such uncertainty. The baseline values and ranges of the parameters in Table 1 are used for
this analysis, and it is assumed each parameter of the model obeys a uniform distribution. Using the quarantine reproduction

number (R Q
0 ) as the response function, the results for the uncertainty analysis obtained show thatR Q

0 lies in the range ð0:268;



Fig. 4. Box plot of the reproduction number (R Q
0 ) with 2000, resp. 10000 LHS runs. Parameter values used are as given in Table 1.
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2:585Þ, with a mean 1:013>1 (Fig. 4(a)). This simulation suggests that, although the community-wide implementation of
quarantine significantly reduces the basic reproduction number (R 0 ¼ 1:403 in this case), this level (and effectiveness) of

quarantine is unable to lead to the effective control of the disease (since R Q
0 >1, albeit only slightly). However, if the

parameter hQ , for the reduction of infectiousness of quarantined-infected individuals, is further reduced from its baseline

value (e.g., if it is reduced from 0.502 to 0), the mean value of R Q
0 reduces to 0:997<1 (so that effective disease control is

feasible in this case) (see Fig. 4(b)). Similarly, increasing the quarantine rate (q) from the current baseline value of q ¼ 0:125 to

q ¼ 0:4, for instance, leads to a reduction of mean R Q
0 from R Q

0 ¼ 1:009 to R Q
0 ¼ 0:997 (see Fig. 4(c)). In other words, these

simulations show that the singular implementation of quarantine strategy in the community can lead to the effective control
(or elimination) of the disease if the coverage (q) and effectiveness of quarantine to prevent transmission during quarantine
(i.e., reduce hQ ) is high enough.

Furthermore, sensitivity analysis is carried out, using Partial Rank Correlation Coefficients (PRCCs (Blower & Dowlatabadi,
1994)), to determine the parameters of the model (2) that have the highest impact on the disease dynamics. For these
simulations, the cumulative number of new cases is chosen as the response function. The sensitivity analysis based on the
PRCC ranks the effect of the parameters on the response function (or outcome), while varying the parameters in their given
ranges (parameters with higher positive (negative) PRCC values are positively (negatively) correlated with the response
function). Table 3 depicts the resulting PRCC values obtained for the parameters of the model, fromwhich it follows that the
average contact rate in the community ðkÞ and the probability of transmission per contact (b) are the most dominant pa-
rameters that affect the response function (the cumulative number of cases). The mean length of time for the burial of Ebola-
deceased individuals (1=f ) is also shown to be influential, as expected (having the third highest PRCC value in magnitude).
Further, of the quarantine-related parameters, those related to the quarantine of susceptible individuals (q) and the reduction

of the infectiousness of quarantined-infected individuals (hQQ ) are also influential (albeit with significantly decreased PRCC

values in magnitude in comparison to the PRCC values of k and b). Thus, this study suggests that a quarantine program that

significantly decreases the value of hQQ (which can be achieved by effectively treating infected quarantined individuals and/or

limiting their contacts with susceptible individuals during quarantine) or increase q (by increasing the contact tracing and
quarantining of people feared exposed to EVD infection) can lead to a significant reduction in disease burden.
Table 3
Partial rank correlation coefficients of parameters of model 2.

Parameter Description PRCC

b Transmission probability per contact 0.72
k Average per capita contact rate in the community 0.78
q Quarantine rate of susceptible individuals �0.23
hT Modification parameter for infectiousness of hospitalized individuals �0.18
hQ Modification parameter for infectiousness of infected quarantined individuals �0.19
hD Modification parameter for infectiousness of Ebola-deceased individuals 0.35
1=rQ Length of stay in quarantine 0.23
kQQ Average per capita contact rate during quarantine �0.19
1=p Incubation period 0.22
v Recovery rate �0.08
m Ebola-induced death rate �0.39
w Hospitalization rate �0.24
1=f Mean time from death due to Ebola to burial 0.43
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5. Numerical simulations

Further numerical simulations are carried out to assess the population-level impact of the quarantine-related parameters
of the model (2). These simulations show, in particular, that while the quarantine of susceptible individuals (q) and the
average duration in quarantine (1=rQ ) have marginal impact on the cumulative number of new Ebola cases (Figs. 5 and 6,

respectively), themodification parameter for transmission during quarantine (hQ ) and the contact rate during quarantine (kQQ )

have significant impact on the disease burden (Figs. 7 and 8, respectively). In other words, these simulations show that the

parameters related to the efficacy of quarantine (hQ and kQQ ) play a more significant role on the disease dynamics than the

parameters related to quarantine rate of susceptible individuals (q) and length of quarantine (rQ ). A contour plot of the

quarantine reproduction number (R Q
0 ), as a function of hQ and q, is depicted in Fig. 9, fromwhich it follows thatR Q

0 decreases
with decreasing values of hQ and increasing values of q. Hence, this plot further supports the earlier result that the imple-
mentation of a quarantine strategy that reduces the infectiousness of quarantined-infected individuals (coupled with
increased quarantine rate, q) will result in significant reduction of disease burden in the community.
6. Discussion and conclusion

Quarantine of individuals suspected of being exposed to a contagious disease is one of the oldest public health measures
for combatting the spread of such contagious diseases in populations. This study presents a new deterministic model for
Fig. 5. Effect of quarantine of susceptible individuals (q) on the number of new Ebola cases. Parameter values used are as given in Table 1, with different values of
q.

Fig. 6. Effect of duration of quarantine (1=rQ ) on the cumulative number of new Ebola cases. Parameter values used are as given in Table 1, with rQ ¼ 0:33; rQ ¼
1:54 (fitted value) and rQ ¼ 3.



Fig. 7. Effect of modification parameter for disease transmission during quarantine (hQ ) on the cumulative number of new Ebola cases. Parameter values used are
as given in Table 2, with hQ ¼ 0:05; hQ ¼ 0:502 (fitted value), hQ ¼ 0:75 and hQ ¼ 1.

Fig. 8. The effect of the per capita contact rate (kQQ ) during quarantine.
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assessing the population-level impact of the implementation of quarantine on the control of the 2014 Ebola outbreaks inWest
Africa. The model was fitted using data relevant to the EVD dynamics in Guinea, Liberia and Sierra Leone. Some of the notable
features of themodel include the explicit modeling of quarantine of both susceptible and infected individuals (in linewith the
approach by Lipsitch et al. (Lipsitch et al., 2003)) and the assumption that quarantine is imperfect (so that disease trans-
mission can occur during quarantine). Detailed theoretical analysis of a special case of themodel, in the absence of quarantine
and with constant total population, was carried out. The analysis revealed that the disease-free equilibrium of the resulting
quarantine-free model is globally-asymptotically stable whenever a certain epidemiological quantity (the basic reproduction
number of the model, denoted by R 0) is less than unity. The epidemiological implication of this result is that, in the absence
of quarantine, bringing R 0 to a value less than unity is necessary and sufficient for the effective control of the disease in the
population. The quarantine-free model is also shown to have a unique endemic equilibrium (where Ebola persists in the
population), which is globally-asymptotically stable, whenever R 0 >1. The full model with quarantine was also analysed,
from which it was deduced that adding imperfect quarantine to the quarantine-free model introduces a dynamic phe-
nomenon (backward bifurcation) that was not present in the former model. Thus, the community-wide implementation of
imperfect quarantine measures (except if implemented with high efficacy to minimize disease transmission during quar-
antine) may fail to lead to the effective control of the disease. The presence of backward bifurcation in the transmission
dynamics of a disease makes its effective control more difficult (since a lot more effort is needed to reduce the associated
reproduction number further below unity, outside the backward bifurcation region).

Detailed uncertainty and sensitivity analysis are carried out on the parameters of the model to assess the impact of un-
certainties in the estimates of parameter values (on the numerical simulation results obtained) and determine the parameters
that are most influential to the disease transmission dynamics (as measured in terms of the cumulative number of new
infections). It was shown that while the current level and efficacy of quarantine significantly reduces the value of the basic
reproduction number (R 0) of the model (hence, significantly reduces disease burden), it fails to bring this number to a value
less than one (so that disease elimination is feasible). However, a modest increase in quarantine rate and/or the effectiveness
level of quarantine (with respect to either reduction in the infectiousness of quarantined-infected individuals (hQ ) or



Fig. 9. Contour plot of the quarantine reproduction number (R Q
0 ), as a function of modification parameter for reduction of infectiousness of quarantined-infected

individuals (hQ ) and contact rate during quarantine (kQQ ). Parameter values used are as given in Table 1, with b ¼ 0:054, k ¼ 9:3, hT ¼ 0:7176, hD ¼ 2:748, p ¼
0:6784, v ¼ 0:4764, m ¼ 0:8578, w ¼ 1:3578, f ¼ 1:276 and d ¼ 0:00054.

A. D�enes, A.B. Gumel / Infectious Disease Modelling 4 (2019) 12e27 25
minimizing contact during quarantine ðkQQ Þ) can reduce the quarantine reproduction number of the model (R Q
0 ) to a value

less than one (thereby making effective disease control or elimination feasible).
The results of the sensitivity analysis carried out show that the contact rate in the community (k), transmission probability

per contact (b) and themean duration before burying Ebola-deceased individuals (1=f ) have themost influence on the disease
burden (as measured in terms of the cumulative number of new cases). Thus, these simulation results suggest that control
measures that decrease the impact of these parameters (e.g., minimizing contacts with people suspected of the disease or
reducing the time before an Ebola-deceased individual is buried) will be quite effective in minimizing disease burden. Our
results suggest that the quarantine of susceptible individuals and the average duration in quarantine have a smaller effect on
the number of infected, themodified transmission rate during quarantine and the contact rate for quarantined people have an
important effect on the spread of the disease. The results of this study show that the prospects of the effective control of EVD
using quarantine alone are bright, provided the coverage and effectiveness levels are high enough.
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