AAC Accepted Manuscript Posted Online 26 November 2018 Antimicrob. Agents Chemother. doi:10.1128/AAC.01777-18 Copyright © 2018 American Society for Microbiology. All Rights Reserved.

1 In vivo applicability of Neosartorya fischeri antifungal protein 2 (NFAP2) in treatment of

- 2 vulvovaginal candidiasis
- 3
- 4 Renátó Kovács^{a,b}, Jeanett Holzknecht^c, Zoltán Hargitai^d, Csaba Papp^e, Attila Farkas^f, Attila
- 5 Borics^g, Lilána Tóth^f, Györgyi Váradi^h, Gábor K. Tóth^{h,i}, Ilona Kovács^d, Sandrine Dubrac^k,
- 6 László Majoros^a, Florentine Marx^c, László Galgóczy^f
- 7
- ^aDepartment of Medical Microbiology, Faculty of Medicine, University of Debrecen,
- 9 Debrecen, Hungary
- ^bFaculty of Pharmacy, University of Debrecen, Debrecen, Hungary
- ^cDivision of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck,
- 12 Austria
- ^dDepartment of Pathology, Kenézy Gyula Hospital, University of Debrecen, Debrecen,
- 14 Hungary
- ^eDepartment of Microbiology, Faculty of Science and Informatics, University of Szeged,
- 16 Szeged, Hungary
- ¹⁷ ^fInstitute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences,
- 18 Szeged, Hungary
- ^gInstitute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences,
- 20 Szeged, Hungary
- ^hDepartment of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged,
- 22 Hungary
- ⁱMTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
- ²⁴ ^kDepartment of Dermatology, Venerology and Allergy, Medical University of Innsbruck,
- 25 Innsbruck, Austria

Antimicrobial Agents and Chemotherapy

26

27 Address correspondence to László Galgóczy, galgoczi.laszlo@brc.mta.hu.

28

29 Running title: Treatment of vulvovaginal candidiasis with NFAP2

30 Abstract

31	In the consequence of emerging number of vulvovaginitis caused by azole-resistant and
32	biofilm-forming Candida species, the fast and efficient treatment of this infection has become
33	challenging. The problem is further exacerbated by the severe side-effects of azoles as long-
34	term use medications in the recurrent form. There is therefore an increasing demand for novel
35	and safely applicable effective antifungal therapeutic strategies. The small, cysteine-rich and
36	cationic antifungal proteins from filamentous ascomycetes are potential candidates as they
37	inhibit the growth of several Candida spp. in vitro; however no information is available about
38	their in vivo antifungal potency against yeasts. In the present study we investigated the
39	possible therapeutic application of one of their representatives in the treatment of
40	vulvovaginal candidiasis, the Neosartorya fischeri antifungal protein 2 (NFAP2). NFAP2
41	inhibited the growth of a fluconazole (FLC)-resistant Candida albicans strain isolated from
42	vulvovaginal infection, and it was effective against both planktonic cells and biofilm in vitro.
43	We observed that the fungal cell killing activity of NFAP2 is connected to its pore-forming
44	ability in the cell membrane. NFAP2 did not exert cytotoxic effects on primary human
45	keratinocytes and dermal fibroblasts at the minimal inhibitory concentration in vitro. In vivo
46	murine vulvovaginitis model experiments showed that NFAP2 significantly decreases the cell
47	number of the FLC-resistant C. albicans, and the combined application with FLC enhances
48	the efficacy. These results suggest that NFAP2 provides a feasible base for the development
49	of a fundamental new, safely applicable mono- or polytherapeutic topical agent in the
50	treatment of superficial candidiasis.

51

52 Keywords

53 Neosartorya fischeri antifungal protein 2, Candida albicans, vulvovaginitis, in vitro

54 susceptibility, antifungal mechanism, *in vitro* cytotoxicity, *in vivo* murine model

55 Introduction

56	Candida spp. belong to the normal human flora under the control of a sensitive and well-
57	regulated balance mechanism between the fungus and the host-defense system. If this
58	mechanism is disturbed by physiological or non-physiological changes, Candida can
59	overgrow the dermal and mucosal surfaces in healthy individuals. One of these symptoms is
60	the vulvovaginal candidiasis (VVC), when Candida infects the surface of vaginal and vulvar
61	mucosa (1). VVC is estimated to be the most common fungal infection in a number of
62	countries (2), and has been considered to be an important worldwide public health problem by
63	the World Health Organization (3). VVC affects ~75% of adult women at least once in their
64	lifetime, ~15% of the cases are asymptomatic, and ~10% are recurrent (RVVC) which means
65	more than four infection episodes per year in the absence of predisposing factors. Although
66	VVC is not associated with mortality, it causes discomfort, pain, and social embarrassment
67	which impair sexual and affective relationships, and work performance. Untreated VVC can
68	lead to severe complications, such as vaginitis and penitis if it is transferred to the male
69	partner; and as a consequence pelvic inflammation, infertility, ectopic pregnancy, pelvic
70	abscess, spontaneous abortion and menstrual disorders can occur (1).
71	Candida albicans is still the most common VVC associated yeast in most countries. However,
72	epidemiology surveys from the last 15 years have demonstrated an increasing prevalence of
73	non-albicans Candida (NAC) species (1). The recommended treatment in the US for
74	uncomplicated C. albicans VVC is the vaginal application of nystatin or azole-based topical
75	agents, but considering the personal preference, a single oral dose of 150 mg fluconazole
76	(FLC) is suggested alternatively. For severe acute cases such as RVVC, 150 mg FLC, given
77	every 72 hours for a total of two or three doses, is recommended for six months (4, 5). This
78	long-term FLC use may cause severe side effects in the host (e.g. liver toxicity) and promote
79	the development of a resistance mechanism in the fungus (6). Susceptibility data indicate a

4

80	continuous increase in the number of VVC-related and FLC-resistant C. albicans isolates (2,
81	7). The development of resistance mechanism is connected to the biofilm-forming ability of
82	the fungus. Namely, C. albicans is able to adhere to the surface of vaginal epithelium and
83	form a complex three-dimensional structure of fungal cell agglomerates with reduced
84	susceptibility to azoles and less sensitivity to the killing mechanisms of the host immune
85	system resulting in RVVC frequently (4). Therefore, nowadays the fast and efficient treatment
86	of RVVC becomes more and more challenging, and novel, safely applicable antifungal
87	strategies are needed with high efficiency against Candida biofilms.
88	In vitro susceptibility data suggest that the small molecular weight, cysteine-rich and cationic
89	antifungal proteins secreted by filamentous ascomycetes (crAFP) are potential therapeutic
90	candidates to fight against Candida infections (8-13). In our previous study we already
91	demonstrated that one of their representatives, the Neosartorya fischeri antifungal protein 2
92	(NFAP2) effectively inhibits the growth of clinically relevant Candida spp. in the
93	standardized clinical susceptibility Clinical and Laboratory Standards Institute (CLSI) M27-
94	A3 testing method, and interacts synergistically with FLC in vitro (12). These observations
95	propose the in vivo efficacy and potential applicability of NFAP2 as mono- or polytherapeutic
96	agent in anti-Candida therapy.
97	To prove this assumption, in the present study we investigated the <i>in vivo</i> applicability of
98	NFAP2 in the treatment of VVC. First of all, we determined the <i>in vitro</i> cell-killing efficacy
99	and antifungal mechanism of NFAP2 against a FLC-resistant and biofilm-forming C. albicans
100	strain isolated from human VVC, before testing the in vitro cytotoxicity of NFAP2 on primary
101	human keratinocytes (HKC) and dermal fibroblasts (HDF). Based on the promising in vitro
102	results, we successfully applied NFAP2 alone and in combination with FLC in an in vivo
103	murine VVC model system.
104	

105 **Results**

106	In vitro susceptibility. In our previous work we observed that the antifungal efficacy and the
107	minimal inhibitory concentration (MIC) of NFAP2 depend on the applied test medium and the
108	investigated Candida strain (10, 12). One of the major virulence factors of C. albicans is the
109	ability to form a biofilm, which shows less susceptibility or intrinsic resistance to
110	conventional antifungal agents. Furthermore, the formation of biofilm plays a role in the
111	colonization of mucosal surfaces (14). Hence, we determined the exact MICs of FLC and
112	NFAP2 for planktonic and sessile biofilm cells of C. albicans 27700 in RPMI 1640 medium
113	simulating the human extracellular environment in composition. MIC values of FLC proved
114	to be 16 μ g/ml and 512 μ g/ml for planktonic and sessile cell population, respectively.
115	According to susceptibility breakpoints (15), C. albicans 27700 is resistant to FLC. Both cell
116	types showed the same susceptibility to NFAP2 with MICs of 800 μ g/ml. It is noteworthy,
117	that 400 μ g/ml NFAP2 already caused >50% decrease in turbidity and metabolic activity for
118	planktonic cells. At this concentration NFAP2 was inactive against the biofilm, significant
119	decrease in turbidity and in metabolic activity was not observed.
120	Anti-Candida mechanism. Our previous observations applying the membrane impermeant,
121	red-fluorescent nuclear and chromosome stain propidium-iodide (PI) already suggested the
122	prompt plasma membrane disruption ability of NFAP2 on yeast cells as the key factor of the
123	antifungal effect (10, 12), but the exact mechanism for the membrane disruption has not been
124	investigated yet. First, we quantified the number of disrupted cells by fluorescence-activated
125	cell sorting (FACS) analysis. It revealed that $38.20\pm3.12\%$ (p = 0.00007) of the FLC-resistant
126	C. albicans 27700 cells have a PI-positive phenotype after 24 hours of NFAP2-treatment at
127	the MIC compared to the untreated control $(3.26 \pm 1.72\%)$ (Fig. S1 in the supplemental
128	material). Scanning electron microscopy (SEM) images showed that NFAP2 forms pores in
129	the plasma membrane, causing the loss of cell content which finally results in cell death (Fig.

130	1). Several different molecular mechanisms of membrane disruption were proposed for
131	antimicrobial peptides and proteins previously. Many of such mechanisms (including pore
132	formation) involve significant conformational changes and/or oligomerization of the
133	membrane-acting proteins (16-18). This conformational change can be detected by electronic
134	circular dichroism spectroscopy (ECD) (19). We observed that the ECD spectrum of NFAP2
135	in the presence of yeast cells is similar to that of the pure aqueous NFAP2 solution and
136	demonstrates previously described spectral contributions emerging from β -conformation (200
137	nm, 212 nm) and disulfide bridges (228 nm) (Fig. 2) (12). The presence of C. albicans 27700
138	cells did not induce any change in the secondary structure of the protein within 24 hours of
139	incubation. However, the number of colony forming units (CFU) decreased significantly (p =
140	000062), from 6.10±0.54 \times 10 ⁶ cells/ml to 2.49±0.34 \times 10 ⁶ cells/ml in the samples, during the
141	24 hours time frame of ECD measurements. This suggests that while 100 mg/ml NFAP2
142	exposure results in notable cell death, mechanisms of action accompanied by large scale
143	structural changes can be ruled out for NFAP2.
144	In vitro cytotoxicity. In silico prediction showed high binding affinity of NFAP2 to the
144 145	<i>In vitro</i> cytotoxicity. <i>In silico</i> prediction showed high binding affinity of NFAP2 to the human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its
145	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its
145 146	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a
145 146 147	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic
145 146 147 148	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic application is the treatment of superficial candidiasis (12). To verify this suggestion, it is
145 146 147 148 149	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic application is the treatment of superficial candidiasis (12). To verify this suggestion, it is necessary to elucidate the cytotoxic potential of the protein on HKC and HDF as the
145 146 147 148 149 150	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic application is the treatment of superficial candidiasis (12). To verify this suggestion, it is necessary to elucidate the cytotoxic potential of the protein on HKC and HDF as the predominant cell type in the epidermis, and the most common cells of connective tissue
145 146 147 148 149 150 151	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic application is the treatment of superficial candidiasis (12). To verify this suggestion, it is necessary to elucidate the cytotoxic potential of the protein on HKC and HDF as the predominant cell type in the epidermis, and the most common cells of connective tissue synthesizing the extracellular matrix and collagen, respectively. <i>In vitro</i> viability staining of
145 146 147 148 149 150 151 152	human serum albumin (HSA) ($\Delta G = -12.16$ kcal/mol, Kd = 1.21e-09 M) (20), hence its systemic application as antifungal drug is debatable. However, NFAP2 is considered as a potential candidate for a novel topical antifungal agent, and the most possible therapeutic application is the treatment of superficial candidiasis (12). To verify this suggestion, it is necessary to elucidate the cytotoxic potential of the protein on HKC and HDF as the predominant cell type in the epidermis, and the most common cells of connective tissue synthesizing the extracellular matrix and collagen, respectively. <i>In vitro</i> viability staining of primary HKCs and HDFs with PI after exposure to NFAP2 for 24 hours revealed no change

155	In vivo application. Based on the observed in vitro MIC values, NFAP2 is considered as a
156	monotherapeutic agent in the treatment of VVC caused by FLC-resistant strains. In vitro data
157	already suggested that NFAP2 could interact synergistically with FLC against C. albicans
158	(12), hence the <i>in vivo</i> antifungal effect of NFAP2-FLC combination was also investigated to
159	reveal a possible FLC-resistance reversion. Results of the in vivo experiments are shown in
160	Fig. 3. The single 35 mg/kg and the daily 5 mg/kg doses of FLC could not reduce
161	significantly ($p > 0.05$) the vaginal fungal burden compared to untreated mice. In comparison
162	with the untreated group of animals, 800 μ g/ml/day NFAP2 regimens alone or in combination
163	with 5 mg/kg/day FLC caused significant reduction ($p \le 0.05$) in the number of living <i>C</i> .
164	albicans cells from vaginal tissue. This reduction was more prominent when NFAP2 was
165	applied in combination with FLC ($p = 0.0017$) than as a monotherapeutic agent ($p = 0.0177$).
166	Furthermore, the yeast cell number decreasing activity of NFAP2-FLC combination proved to
167	be significantly more effective than that of FLC alone ($p = 0.0001$ and $p = 0.0084$ compared
168	to 35 mg/kg single and 5 mg/kg daily dose, respectively). All significance values are indicated
169	in Table S2 in the supplemental material.
170	Histology. Grocott-Gömöri methenamine-silver nitrate (GMS) staining revealed the presence
171	of yeast and pseudohyphal form of Candida cells in the vaginal tissues of infected mice (Fig.
172	4A-D). However, decrease in the fungal cell number was observable when the animal was
173	treated with NFAP2 or NFAP2-FLC combination (Fig. 4C and D) in comparison with the
174	untreated and FLC-treated groups (Fig. 4A and B). Inflammatory reaction indicated by
175	neutrophilic granulocytes was observable in all samples stained with hematoxylin-eosin
176	(H&E) (Fig. 4), but it was more moderate in NFAP2 and NFAP2+FLC treated animals (Fig.
177	4C and D) than in untreated and FLC-treated groups (Fig. 4A and B). The vaginal
178	inflammation detected in uninfected mice could have been the consequence of the prior
179	estradiol-valerate treatment (Fig. 4E) (21).

8

AAC

180

181 Discussion

182	crAFPs (such as the NFAP2-related Aspergillus giganteus antifungal protein, AFP; and
183	Penicillium chrysogenum antifungal protein, PAF) are of particular interest in the fight against
184	fungal infections as they show in vitro growth inhibitory activity against fungal pathogens,
185	and they are non-toxic to mammalian cells (22, 23). However, their in silico predicted strong
186	binding ability to HSA (ΔG = -13.52 kcal/mol, Kd = 1.22e-10 M for AFP, and ΔG = -11.09
187	kcal/mol, Kd = 7.33e-09 M for PAF) diminishes the expectations for systemic application
188	(20). In this study we provide for the first time information about the <i>in vivo</i> antifungal
189	efficacy of a crAFP as a topical agent in the treatment of mucosal infection caused by C .
190	albicans; an opportunistic human pathogenic yeast.
191	NFAP2 represents a novel, phylogenetically distinct group of crAFPs, and shows a unique
192	high anti-yeast activity in vitro (10, 12). The in vivo animal model experiments in our study
193	required the determination of the in vitro MIC of NFAP2 against the applied microorganism
194	for the infection, and the investigation of the cell-killing ability under clinically approved test
195	conditions. Previous studies demonstrated that in vitro antifungal efficacy of crAFPs highly
196	depends on the ion strength of the test medium (24, 25). According to this, NFAP2 shows
197	higher MICs on the same Candida strain in the highly cationic RPMI 1640 than in a low
198	cationic medium (12). This feature is not exclusive to NFAP2; relative high MICs were
199	observed for PAF (26) and NFAP (27), when their activity was tested against different human
200	pathogenic filamentous fungi in RPMI 1640. RPMI 1640 is a standard medium recommended
201	by CLSI for clinical susceptibility tests, and it simulates the composition of human
202	extracellular environment. Our results showed that both planktonic and sessile biofilm cells of
203	the tested FLC-resistant C. albicans isolated from human VVC are susceptible to NFAP2 in
204	this medium. Biofilm formation of C. albicans isolates from hospitalized patients is directly

205

planktonic cells, contributing to the pathogenesis of superficial and systematic candidiasis 206 207 (28). Parallel to this observation, the sessile biofilm cells of the involved C. albicans isolate 208 were less susceptible to FLC and NFAP2 than the planktonic cells. The applied CLSI M27-A3 method recommends 10^3 cells/ml as inoculum for the MIC determination. However, the 209 210 detected MIC based on this method does not guarantee the same inhibitory efficacy against 211 higher cell numbers (29). After 24 hours of incubation, around one-third of the yeast cells were killed when the MIC of NFAP2 was applied against 10^7 cells/ml (Fig. S1 in the 212 213 supplemental material). This amount represents the yeast cell number that was used for the 214 vaginal infection in the in vivo animal model experiments. 215 The potential *in vivo* application of a drug candidate in the treatment of mycotic infections highly depends on its fungal selectivity, namely the exerted antifungal mechanism on the 216 217 pathogenic fungi, and the cytotoxic effects on the host cells. Antifungal plant defensins with 218 similar features to crAFPs (such as disulfide-bond stabilized tertiary structure, positive net 219 charge, and amphipathic surface) are non-toxic to human cells, and they bind to specific 220 fungal membrane components of yeast cell causing membrane permeabilization and/or 221 disruption (30). These actions may require the conformational change of the antifungal plant 222 defensin (31). Our results show that the yeast cell killing activity of NFAP2 is realized by 223 pore formation in the fungal plasma membrane without any changes in the secondary 224 structure (Fig. 1 and Fig. 2). These observations together with the lack of *in vitro* toxicity 225 (even at twice the MIC, Fig. S2 in the supplemental material) on primary HKCs and HDFs 226 suggest the fungal selectivity of NFAP2 to yeast cells. Furthermore, based on the reported 227 antifungal mode of action of membrane destructive plant defensins (30), we hypothesize that 228 the presence of a fungal-specific plasma membrane target may be involved in the antifungal 229 mechanism of NFAP2. To reveal the nature of this target awaits further investigations.

related to the virulence. C. albicans is more tolerant to antifungal drugs in this form than the

230	Membrane disrupting antifungal peptides are considered as a potential new class of
231	antifungals to treat FLC-resistant VVC, however, their in vivo antifungal potency in this
232	infection and their impact on the host body have not been tested yet (32, 33). Our above
233	discussed in vitro results proposed the in vivo therapeutic potency of NFAP2 as a topical
234	agent in the treatment of VVC caused by FLC-resistant C. albicans. Considering the fact that
235	biofilm formation is involved in the C. albicans colonization of mucosal surfaces (14), one
236	dosage of NFAP2 in the in vivo murine VVC model corresponded to the determined in vitro
237	MIC. However, total recovery from the infection was not reached at this dosage (Fig. 4C).
238	Instead, the daily application of NFAP2 significantly decreased the cell number of the FLC-
239	resistant C. albicans strain in the vagina in contrast to FLC (Fig. 3). This result proves the
240	potential effectiveness of NFAP2 monotheraphy in the treatment of superficial yeast
241	infections. Until today the in vivo applicability of crAFPs as antifungal agents was
242	investigated only with PAF (34, 35). Since PAF effectively inhibits the growth of human
243	pathogenic filamentous fungi (23), its therapeutic potential was tested by Palicz et al. (2016)
244	in a murine pulmonary aspergillosis model (35). Twice a day intraperitoneal application of
245	PAF was not able to overcome the fungal invasion finally, however, it could prevent the
246	spread of Aspergillus fumigatus in the lung tissue in the first days and prolonged the survival
247	of the animals with one day (35).
248	Before the present study, the described in vitro synergistic interaction between NFAP2 and
249	FLC against Candida isolates already suggested the polytherapeutic potential of the protein
250	(12). Our results from <i>in vivo</i> murine VVC model experiments clearly corroborates that the
251	combined application of NFAP2 and FLC is more effective against the involved FLC-
252	resistant C. albicans isolate than the treatment with the two compounds alone (Fig. 3). This
253	result suggests a positive in vivo interaction between them in the vaginal tissue and the
254	reversion of FLC-resistance. Similarly to our findings a better outcome was observed in a

11

255	murine pulmonary aspergillosis model when PAF was combined with amphotericin B
256	(AMB), namely the PAF-AMB combination prolonged the survival of the animals and
257	decreased the lung injury score compared to their monotherapeutic application (35).
258	Intranasal application of PAF in mice did not alter the important physiological parameters of
259	the animals and did not cause morphological changes in the affected organs. Furthermore
260	inflammatory response of the skin following PAF application was not observed (34). Based
261	on these and other in vivo toxicity results PAF is considered as a safely applicable antifungal
262	compound (34, 35). Our histological examinations signed that NFAP2 could also be safely
263	used in topical therapy since it did not cause morphological alterations and serious
264	pathological reactions of the vaginal and vulvar tissues (Fig. 4), and did not change the
265	macromorphology of the affected organs (data not shown). The presence of neutrophilic
266	granulocytes after NFAP2 application indicates that they are recruited to the site of the
267	infection to kill the fungal pathogen (Fig. 4C and D), and NFAP2 does not inhibit this
268	process. However, the fungal infection was still present in the vagina after treatment with
269	NFAP2 or NFAP2-FLC combination (Fig. 4C and D); significant decrease in the viable C.
270	albicans cell number was observed in comparison with the untreated group of animals (Fig.
271	3). As NFAP2 did not show any cytotoxic effects even at twice the MIC (Fig. S2 in the
272	supplemental material), the protein should be administered in higher doses than the in vitro
273	MIC dose applied in our experiments to reach the full recovery from the infection.
274	Considering our in vivo results presented in this study and the fact that recombinant NFAP2
275	can be produced in high amount by the GRAS microorganism P. chrysogenum (12), this
276	protein provides a feasible base to develop a novel topical agent in the treatment of superficial
277	candidiasis caused by drug-resistant Candida strains.
278	
279	Materials and methods

280	Strains and media. The previously well-characterized FLC-resistant and biofilm-forming C.
281	albicans 27700 strain isolated from human vulvovaginal candidiasis was used in the
282	experiments (36). It was maintained on yeast extract glucose agar slants with KH ₂ PO ₄
283	(YEGK) at 4 °C. Primary HKC and HDF cells were isolated and grown in CellnTec basal
284	(CnT-BM.1; CellnTec, Bern, Switzerland) and R10 medium, respectively, as described
285	previously (37). CFU was determined on yeast extract peptone dextrose (YPD) and
286	Sabouraud dextrose (SD) agar plates. In vitro antifungal susceptibility tests were performed in
287	RPMI 1640 medium (Sigma-Aldrich, St Louis, MO, USA) supplemented with 0.03% (w/v)
288	L-glutamine and buffered to pH 7.0 with 0.165 M 4-morpholinopropanesulfonic acid (Sigma-
289	Aldrich, St Louis, MO, USA). Media compositions are listed in Table S1 in the supplemental
290	material.
291	Protein production and purification. Recombinant NFAP2 was produced by Penicillium
292	chrysogenum and purified by cation-exchange chromatography as described before (12). To
293	exclude the effects of any contaminating compounds during the experiments, NFAP2 was
294	further purified by semipreparative reversed-phase high performance liquid chromatography
295	(RP-HPLC) on a Shimadzu-Knauer apparatus (Kyoto, Japan) to reach 100% purity (Fig. S3 in
296	the supplemental material). The following solvent system was applied: (A) 0.1% (v/v)
297	trifluoroacetic acid (TFA), (B) 80% (v/v) acetonitrile, 0.1% (v/v) TFA. Linear gradient from 0
298	to 30% (v/v) solvent (B) over 60 min was used at the flow rate of 4 ml/min. Peaks were
299	detected at 220 nm. Purity of the NFAP2 was checked by analytical RP-HPLC on an Agilent
300	1200 Series HPLC instrument (Agilent Technologies, Santa Clara, CA, USA) using the same
301	solvent system as for purification from 15 to 30% (v/v) solvent (B) over 15 min at 1 ml/min
302	flow rate.
303	In vitro susceptibility testing. Susceptibility testing of C. albicans 27700 planktonic cells to
304	FLC and NFAP2 was performed using the broth microdilution method in accordance with the

305	CLSI approved standard M27-A3 protocol (38). The final drug concentrations ranged from 25
306	to 1600 μ g/ml and from 2 to 1024 μ g/ml for NFAP2 and FLC (Sigma-Aldrich, St Louis, MO,
307	USA), respectively. Susceptibility of sessile biofilm C. albicans 27700 cells to FLC and
308	NFAP2 was determined by 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-
309	carboxanilide (XTT) reduction assay following the protocol described in Pierce et al. (2008)
310	(39) with slight modifications. Briefly, aliquots of 100 µl of standardized C. albicans 27700
311	suspension (1 \times 10 ⁶ CFU/ml) in RPMI 1640 were inoculated in wells of polystyrene flat-
312	bottom 96-well microtiter plates (TPP, Trasadingen, Switzerland) and incubated statically for
313	24 hours at 37 °C to allow the biofilm-formation. The one-day-old biofilms were washed
314	three times with 200 μ l saline in order to remove the non-attached fungal cells, then the final
315	concentration of NFAP2 (25-1600 $\mu g/ml),$ and FLC (8-512 $\mu g/ml)$ was pipetted onto them.
316	After 24 hours incubation at 37 °C, metabolic activity was quantified. Briefly, wells were
317	filled with 100 μl of 0.5 mg/ml XTT / 1 μM menadione solution (both from Sigma-Aldrich, St
318	Louis, MO, USA), and then the plates were covered with aluminum foil and incubated for 2
319	hours at 37°C. After this incubation period, the absorbance (A ₄₉₂) of 80 μ l supernatant was
320	measured in flat-bottom 96-well microtiter plates. MIC for planktonic and sessile biofilm cells
321	was defined as the lowest protein or drug concentration at which $\geq 90\%$ reduction was
322	detected in turbidity and metabolic activity in comparison with the untreated control. The
323	percentage change in turbidity and metabolic activity was calculated on the basis of
324	absorbance (A ₄₉₂) as 100% × (A _{well} – A _{background})/(A _{drug-free well} – A _{background}). A _{background}
325	corresponds to the absorbance of fungal-free and drug-free wells. Susceptibility of C. albicans
326	27700 was tested in three independent experiments.
327	FACS. FACS, SEM and ECD investigations (later) were performed on mid-log phase C.
328	albicans 27700 cells grown up in RPMI-1640 medium at 30 °C under continuous shaking at
329	160 rpm. The proportion of the dead cells after NFAP2-treatment was determined by applying

330	the membrane impermeant, red-fluorescent nuclear and chromosome stain PI (Sigma-Aldrich,
331	St Louis, MO, USA). The yeast cells (1×10^7 cells) were incubated in the presence of NFAP2
332	at MIC (800 μ g/ml) in RPMI 1640 for 24 hours at 30 °C with continuous shaking at 160 rpm.
333	After incubation, cells were collected by centrifugation (17,000 \times g, 2 min) and washed with
334	PBS (pH 7.4), then stained with 5 μ g/ml PI for 10 min at room temperature in the dark, and
335	finally washed again with PBS (pH 7.4), before resuspending them in PBS (pH 7.4). The
336	number of PI-positive cells was counted and analyzed using FlowSight Imaging Flow
337	Cytometer (Amins, Merck Millipore, Billerica, MA, USA) and the related Image Data
338	Exploration and Analysis Software (IDEAS, Amins, Millipore, Billerica, MA, USA). Twenty
339	thousand cells were screened, and the FACS analysis was repeated in three independent
340	experiments. Cells treated with 70% (v/v) ethanol for 10 min at 4 $^{\circ}$ C were used as positive
341	staining control. Untreated cells (RPMI 1640 without NFAP2) were used as natural death
342	control. FACS analyses were achieved in three independent experiments.
343	SEM. <i>C. albicans</i> 27700 cells (1×10^7 cells) were treated with MIC of NFAP2 (800 µg/ml) as
344	described before for the FACS analysis. Untreated cells served as positive phenotype control.
345	Eight microliters of the cell suspensions in PBS were spotted on a silicon disc coated with
346	0.01% Poly-L-Lysine (Merck Millipore, Billerica, MA, USA), then the cells were fixed by
347	gently adding 2.5% (v/v) glutaral dehyde and 0.05 M cacodylate buffer (pH 7.2) in PBS (pH $$
348	7.4) for one hour. After that, the discs were washed twice with PBS (pH 7.4) and dehydrated
349	with a graded ethanol series (30%, 50%, 70%, 80%, and 100% (v/v) ethanol, each for 15 min
350	at room temperature). The samples were dried with Quorum K850 critical point dryer
351	(Quorum Technologies, Laughton, East Sussex, UK), followed by 12 nm gold coating and
352	observed under a JEOL JSM-7100F/LV scanning electron microscope (JEOL Ltd, Tokyo,
353	Japan).

AAC

354	ECD spectroscopy. C. albicans 27700 cells were washed two times and resuspended in
355	ddH_2O or in aqueous solution of NFAP2 (100 µg/ml) in a final concentration of 10^7 cells/ml.
356	ECD spectroscopic measurements of these samples and an aqueous solution of NFAP2 (100
357	μ g/ml) were performed in the 185-260 nm wavelength range using a Jasco-J815
358	spectropolarimeter (JASCO, Tokyo, Japan). Spectra were collected at 25 °C with a scan speed
359	of 100 nm/s using a 0.1 cm pathlength quartz cuvette. Spectra presented are accumulations of
360	10 scans for each sample. Spectrum acquisitions were done after 0 and 24 hours of incubation
361	of the samples at 30 °C under continuous shaking at 160 rpm. After the spectroscopic
362	measurements, CFU of the NFAP2-treated and untreated samples was determined. This
363	experiment was repeated twice.
364	Determination of CFU. Following ECD measurements, cells were collected by
365	centrifugation (17,000 \times g, 2 min) and washed two times with YPD medium then ten-fold
366	serial dilutions were prepared in five steps in one milliliter YPD. 100 μ l cell suspensions from
367	the last three steps were spread on YPD agar plates in three replicates. Colony number was
368	counted after incubation for 24 hours at 30 °C.
369	In vitro cytotoxicity assay. Fluorescence viability staining was performed on primary HKC
370	and HDF cells grown in chambered cell culture slides (Falcon, Corning Life Sciences,
371	Tewksbury, MA, USA). The cells (4×10^3 cells/well) were seeded and grown until they
372	reached 70-80% confluence at 37 °C and 5% CO ₂ , then NFAP2 in the concentration range
373	between 400-1600 μ g/ml was added and the plates were incubated for 24 hours under the
374	same conditions. After the incubation period, the cells were washed with phosphate buffered
375	saline (PBS, pH 7.4) and the fluorescent dye PI (1 $\mu g/ml$) and 2'-(4-hydroxyphenyl)-5-(4-
376	methyl-1-piperazinyl)-2,5'-bi-1H-benzimidazole trihydrochloride hydrate (Hoechst, 1 µg/ml;
377	Sigma-Aldrich, St Louis, MO, USA) were added for 10 minutes in the dark. Untreated cells
378	were used as living controls, and 50% ethanol-treated (for 10 minutes) as dead control. The

16

379	cells were washed three times with PBS (pH 7.4) and observed with a Zeiss Axioplan
380	fluorescence microscope (Zeiss, Oberkochen, Germany), equipped with an Axiocam mono
381	microscope digital camera (Zeiss, Oberkochen, Germany), excitation/emission filters 365/420
382	nm for blue fluorescence and 546/590 or 565/620 nm for red fluorescence. Image acquisition
383	and editing was done with ZEN 2 (blue edition) microscope software (Zeiss, Oberkochen,
384	Germany) and GIMP 2 (GNU Image Manipulation Program, version 2.8.10). The study with
385	primary HKC and HDF was carried out in accordance with the recommendations of the Ethics
386	Committee of the Medical University of Innsbruck (Innsbruck, Austria). The protocol was
387	approved from the Ethics Committee of the Medical University of Innsbruck. All subjects
388	gave written informed consent in accordance with the Declaration of Helsinki. The in vitro
389	cytotoxicity assay was repeated twice.
390	In vivo murine vulvovaginitis model. Groups of ten BALB/c immunocompetent female
391	mice (weight: 20-22 g) were used in this study. The animals were maintained in accordance
392	with the Guidelines for the Care and Use of Laboratory Animals (40); experiments were
393	approved by the Animal Care Committee of the University of Debrecen (permission no.:
394	12/2014). Mice were administered 50 μ l subcutaneous estradiol-valerate (10 mg/ml prepared
395	in sesame seed oil) 72 hours prior to infection to establish the VVC (41, 42). In accordance
396	with our previous studies, mice were challenged intravaginally with $1-1.2 \times 10^7$ CFU of C.
397	albicans 27700 in final volume of 25 μ l (36, 42). Mice were divided into the following five
398	groups: i) untreated control, ii) 800 μ g/ml/day NFAP2, iii) 35 mg/kg/once FLC which
399	corresponds to the normal human dose of 150 mg based on 24h-AUC value (43), iv)
400	5mg/kg/day FLC, and v) 800 μ g/ml/day NFAP2 + 5 mg/kg/day FLC. All treatments were
401	started after 24 hours of the infection when the presence of C. albicans biofilm had become
402	evident on the murine vaginal mucosa (44). FLC treatment was given intraperitoneally at a
403	volume of 0.5 ml, while NFAP2 was administered intravaginally at a volume of 25 μl and one

AAC

Antimicrobial Agents and Chemotherapy

404	hour after the FLC treatment when it was applied in combination with FLC. Untreated control
405	mice were given 0.5 ml and/or 25 μl physiological saline for intraperitoneally and
406	intravaginally, respectively. At four days postinfection, fungal vagina burden was determined
407	after sacrificing of animals. Whole vaginae were excised, weighed and homogenized in one
408	milliliter saline. Aliquots of 100 μ l of the undiluted and diluted (1:10) homogenates were
409	plated onto SD agar plates. The plates were incubated for 48 hours at 35 °C, and then the
410	CFUs were determined. The lower limit of detection was 50 CFU/g/tissue. All animal
411	experiments were repeated two times, and five animals were involved in each group in each
412	treatment.
413	Histology. Vaginae of different but identically treated mice were involved in histological
414	investigations as those described above. The histopathological examination and histochemical
415	staining were performed on routine formalin fixed, paraffin embedded, mouse vaginal tissues.
416	Serial 4 μ m thick sections were cut from paraffin blocks and routine GMS and H&E stains
417	were performed (45).
418	In silico analysis. The binding ability of NFAP2 to HSA (UniProt IDs: A0A1D0CRT2 and
419	P02768, respectively; 46) was predicted by the PPA-Pred2 (Protein-Protein Affinity
420	Predictor) server (20).
421	Statistical analyses. CFU data after ECD experiments were analyzed using Microsoft Excel
422	2010 software (Microsoft,Edmond, WA, USA), and the two sample t-test was used to
423	determine the significance values. Vaginal burden was analyzed using Kruskal-Wallis test
424	with Dunn's post-test for multiple comparisons using the software GraphPad Prism version
425	6.05 (GraphPad Software, San Diego, CA, USA). Significance was defined as $p < 0.05$, based
426	on the followings: * : $p \le 0.05$, ** : $p \le 0.005$, *** : $p \le 0.0001$.
427	
428	Supplemental material

18

429 Supplemental material for this article may be found at

431

432 Acknowledgements

433 LG is financed from the Postdoctoral Excellence Programme (PD 120808) and the bilateral

434 Austrian-Hungarian Joint Research Project (ANN 122833) of the Hungarian National

435 Research, Development and Innovation Office (NKFI Office). This work was supported from

436 the Austrian Science Fund (I1644-B20 and I3132-B21) to FM. The research was also

437 supported by the EU and co-financed by the European Regional Development Fund under the

438 project GINOP-2.3.2-15-2016-00014 (to GKT). Research of AB and LG have been supported

439 by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. Present

440 work of LG was supported by the UNKP-18-4 New National Excellence Program of the

441 Ministry of Human Capacities.

442

443 **References**

444 1. Gonçalves B, Ferreira C, Alves CT, Henriques M, Azeredo J, Silva S. 2016. Vulvovaginal

445 candidiasis: Epidemiology, microbiology and risk factors. Crit Rev Microbiol 42:905–927.

446 2. Sherry L, Kean R, McKloud E, O'Donnell LE, Metcalfe R, Jones BL, Ramage G. 2017.

447 Biofilms formed by isolates from recurrent vulvovaginal candidiasis patients are

448 heterogeneous and insensitive to fluconazole. Antimicrob Agents Chemother 61:e01065-17.

3. Sobel JD. 2007. Vulvovaginal candidosis. Lancet 369:1961–1971.

450 4. Muzny CA, Schwebke JR. 2015. Biofilms: An underappreciated mechanism of treatment

451 failure and recurrence in vaginal infections. Clin Infect Dis 61:601–606.

452 5. Sobel JD. 2013. Factors involved in patient choice of oral or vaginal treatment for

453 vulvovaginal candidiasis. Patient Prefer Adherence 8:31–34.

AAC

Antimicrobial Agents and Chemotherapy

454	6. Brand SR, Degenhardt TP, Person K, Sobel JD, Nyirjesy P, Schotzinger RJ, Tavakkol A.
455	2018. A phase 2, randomized, double-blind, placebo-controlled, dose-ranging study to
456	evaluate the efficacy and safety of orally administered VT-1161 in the treatment of recurrent
457	vulvovaginal candidiasis. Am J Obstet Gynecol 218:624.e1-624.e9.
458	7. Marchaim D, Lemanek L, Bheemreddy S, Kaye KS, Sobel JD. 2012. Fluconazole-resistant
459	Candida albicans vulvovaginitis. Obstet Gynecol 120:1407-1414.
460	8. Gun Lee D, Shin SY, Maeng CY, Jin ZZ, Kim KL, Hahm KS. 1999. Isolation and
461	characterization of a novel antifungal peptide from Aspergillus niger. Biochem Biophys Res
462	Commun 263:646–651.
463	9. Galgóczy L, Virágh M, Kovács L, Tóth B, Papp T, Vágvölgyi C. 2013. Antifungal peptides
464	homologous to the Penicillium chrysogenum antifungal protein (PAF) are widespread among
465	Fusaria. Peptides 39:131–137.
466	10. Tóth L, Kele Z, Borics A, Nagy LG, Váradi G, Virágh M, Takó M, Vágvölgyi C,
467	Galgóczy L. 2016. NFAP2, a novel cysteine-rich anti-yeast protein from Neosartorya fischeri
468	NRRL 181: isolation and characterization. AMB Express 6:75.
469	11. Huber A, Hajdu D, Bratschun-Khan D, Gáspári Z, Varbanov M, Philippot S, Fizil Á,
470	Czajlik A, Kele Z, Sonderegger C, Galgóczy L, Bodor A, Marx F, Batta G. 2018. New
471	antimicrobial potential and structural properties of PAFB: A cationic, cysteine-rich protein
472	from Penicillium chrysogenum Q176. Sci Rep 8:1751.
473	12. Tóth L, Váradi G, Borics A, Batta G, Kele Z, Vendrinszky Á, Tóth R, Ficze H, Tóth GK,
474	Vágvölgyi C, Marx F, Galgóczy L. 2018. Anti-candidal activity and functional mapping of
475	recombinant and synthetic Neosartorya fischeri antifungal protein 2 (NFAP2). Front
476	Microbiol 9:393.
477	13. Sonderegger C, Váradi G, Galgóczy L, Kocsubé S, Posch W, Borics A, Dubrac S, Tóth
478	GK, Wilflingseder D, Marx F. 2018. The evolutionary conserved γ -core motif influences the
	20

Onli	
Posted	
Manusaript	
Accepted	

479 anti-Candida activity of the Penicillium chrysogenum antifungal protein PAF. Front

Microbiol 9:1655. 480

- 14. Gulati M, Nobile CJ. 2016. Candida albicans biofilms: development, regulation, and 481
- 482 molecular mechanisms. Microbes Infect 18:310-321.
- 15. Pfaller MA, Andes D, Diekema DJ, Espinel-Ingroff A, Sheehan D; CLSI Subcommittee 483
- for Antifungal Susceptibility Testing. 2010. Wild-type MIC distributions, epidemiological 484
- 485 cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for
- 486 harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat
- 13:180-195. 487
- 488 16. Cosentino K, Ros U, García-Sáez AJ. 2016. Assembling the puzzle: Oligomerization of α -
- pore forming proteins in membranes. Biochim Biophys Acta 1858:457-466. 489
- 17. Sani MA, Separovic F. 2016. How membrane-active peptides get into lipid membranes. 490
- 491 Acc Chem Res 49:1130-1138.
- 492 18. Kumar P, Kizhakkedathu JN, Straus SK. 2018. Antimicrobial peptides: Diversity,
- mechanism of action and strategies to improve the activity and biocompatibility in vivo. 493
- 494 Biomolecules 8: pii E4.
- 495 19. Avitabile C, D'Andrea LD, Romanelli A. 2014. Circular dichroism studies on the
- 496 interactions of antimicrobial peptides with bacterial cells. Sci Rep 4:4293.
- 497 20. Yugandhar K, Gromiha MM. 2014. Protein-protein binding affinity prediction from amino
- 498 acid sequence. Bioinformatics 30:3583-3589.
- 499 21. Finking G, Brehme U, Bruck B, Wehrmann M, Hanke S, Kamenz J, Kern S, Lenz C,
- 500 Hanke H. 1998. Does anti-atherogenic estradiol valerate treatment cause adverse effects on
- 501 liver and uterus in NZW rabbits? Vet Hum Toxicol 40:136-140.
- 502 22. Meyer V. 2008. A small protein that fights fungi: AFP as a new promising antifungal
- 503 agent of biotechnological value. Appl Microbiol Biotechnol 78:17-28.

AAC

Antimicrobial Agents and Chemotherapy

504	23. Hegedus N, Leiter E, Kovács B, Tomori V, Kwon NJ, Emri T, Marx F, Batta G, Csernoch
505	L, Haas H, Yu JH, Pócsi I. 2011. The small molecular mass antifungal protein of Penicillium
506	chrysogenuma mechanism of action oriented review. J Basic Microbiol 51:561-571.
507	24. Sonderegger C, Fizil Á, Burtscher L, Hajdu D, Muñoz A, Gáspári Z, Read ND, Batta G,
508	Marx F. 2017. D19S mutation of the cationic, cysteine-rich protein PAF: Novel insights into
509	its structural dynamics, thermal unfolding and antifungal function. PLoS One 12:e0169920. 0.
510	25. Galgóczy L, Borics A, Virágh M, Ficze H, Váradi G, Kele Z, Marx F. 2017. Structural
511	determinants of Neosartorya fischeri antifungal protein (NFAP) for folding, stability and
512	antifungal activity. Sci Rep 7:1963.
513	26. Galgóczy L, Papp T, Pócsi I, Hegedus N, Vágvölgyi C. 2008. In vitro activity of
514	Penicillium chrysogenum antifungal protein (PAF) and its combination with fluconazole
515	against different dermatophytes. Antonie Van Leeuwenhoek 94:463-740.
516	27. Virágh M, Vörös D, Kele Z, Kovács L, Fizil Á, Lakatos G, Maróti G, Batta G, Vágvölgyi
517	C, Galgóczy L. 2014. Production of a defensin-like antifungal protein NFAP from
518	Neosartorya fischeri in Pichia pastoris and its antifungal activity against filamentous fungal
519	isolates from human infections. Protein Expr Purif 94:79-84.
520	28. Ferreira AV, Prado CG, Carvalho RR, Dias KS, Dias AL. 2013. Candida albicans and
521	non-C. albicans Candida species: comparison of biofilm production and metabolic activity in
522	biofilms, and putative virulence properties of isolates from hospital environments and
523	infections. Mycopathologia 175:265–272.
524	29. Cuenca-Estrella M, Díaz-Guerra TM, Mellado E, Rodríguez-Tudela JL. 2001. Influence
525	of glucose supplementation and inoculum size on growth kinetics and antifungal susceptibility
526	testing of Candida spp. J Clin Microbiol 39:525–532.

- Antimicrobial Agents and Chemotherapy
- Ų

- 527 30. Cools TL, Struyfs C, Cammue BP, Thevissen K. 2017. Antifungal plant defensins:
- 528 increased insight in their mode of action as a basis for their use to combat fungal infections.
- 529 Future Microbiol 12:441–454.
- 530 21. Valente AP, de Paula VS, Almeida FC. 2013. Revealing the properties of plant defensins
- through dynamics. Molecules 18:11311–11326.
- 532 32. Ng SM, Yap YY, Cheong JW, Ng FM, Lau QY, Barkham T, Teo JW, Hill J, Chia CS.
- 533 2017. Antifungal peptides: a potential new class of antifungals for treating vulvovaginal
- candidiasis caused by fluconazole-resistant *Candida albicans*. J Pept Sci 23:215–221.
- 535 33. Ng SMS, Yap JM, Lau QY, Ng FM, Ong EHQ, Barkham T, Teo JWP, Alfatah M, Kong
- 536 KW, Hoon S, Arumugam P, Hill J, Brian Chia CS. 2018. Structure-activity relationship
- 537 studies of ultra-short peptides with potent activities against fluconazole-resistant Candida
- 538 *albicans*. Eur J Med Chem 150:479–490.
- 539 34. Palicz Z, Jenes A, Gáll T, Miszti-Blasius K, Kollár S, Kovács I, Emri M, Márián T, Leiter
- 540 E, Pócsi I, Csősz E, Kalló G, Hegedűs C, Virág L, Csernoch L, Szentesi P. 2013. In vivo
- 541 application of a small molecular weight antifungal protein of *Penicillium chrysogenum* (PAF).
- 542 Toxicol Appl Pharmacol 269:8–16.
- 543 35. Palicz Z, Gáll T, Leiter É, Kollár S, Kovács I, Miszti-Blasius K, Pócsi I, Csernoch L,
- 544 Szentesi P. 2016. Application of a low molecular weight antifungal protein from *Penicillium*
- 545 *chrysogenum* (PAF) to treat pulmonary aspergillosis in mice. Emerg Microbes Infect 5:e114.
- 546 36. Bozó A, Domán M, Majoros L, Kardos G, Varga I, Kovács R. 2016. The in vitro and in
- 547 *vivo* efficacy of fluconazole in combination with farnesol against *Candida albicans* isolates
- using a murine vulvovaginitis model. J Microbiol 54:753–760.
- 549 37. Blunder S, Rühl R, Moosbrugger-Martinz V, Krimmel C, Geisler A, Zhu H, Crumrine D,
- 550 Elias PM, Gruber R, Schmuth M, Dubrac S. 2017. Alterations in epidermal eicosanoid

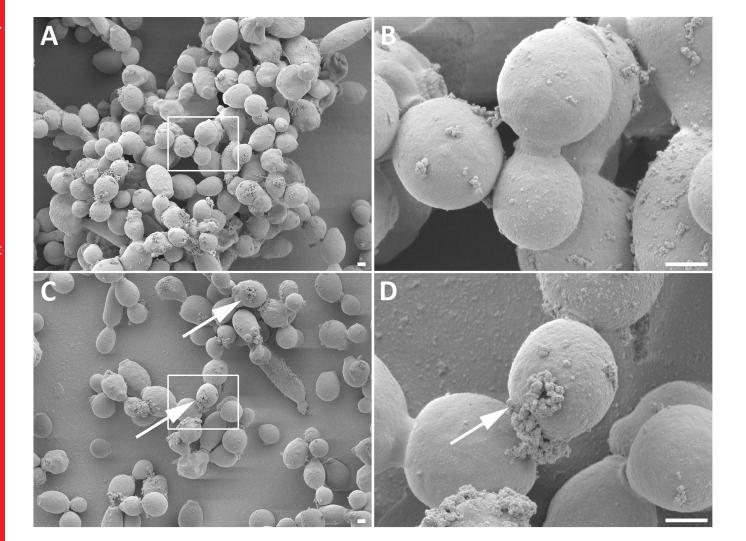
551 metabolism contribute to inflammation and impaired late differentiation in FLG-mutated atopic dermatitis. J Invest Dermatol 137:706-715. 552 38. Clinical and Laboratory Standards Institute. 2008. Reference method for broth dilution 553 554 antifungal susceptibility testing of yeasts; approved standard, 3rd ed. CLSI document M27-A3. Clinical and Laboratory Standards Institute, Wayne, PA, USA. 555 39. Pierce CG, Uppuluri P, Tristan AR, Wormley FL Jr, Mowat E, Ramage G, Lopez-Ribot 556 557 JL. 2008. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat Protoc 3:1494–500. 558 559 40. National Research Council (US) Committee for the Update of the Guide for the Care and 560 Use of Laboratory Animals. 2011. Guide for the Care and Use of Laboratory Animals. 8th 561 edition. National Academies Press Washington, WA, USA. 41. Fidel PL Jr, Cutright J, Steele C. 2000. Effects of reproductive hormones on experimental 562 563 vaginal candidiasis. Infect Immun 68:651-657. 564 42. Kovács R, Czudar A, Horváth L, Szakács L, Majoros L, Kónya J. 2014. Serum 565 interleukin-6 levels in murine models of Candida albicans infection. Acta Microbiol Immunol 566 Hung 61:61–69. 567 43. Louie A, Banerjee P, Drusano GL, Shayegani M, Miller MH. 1999. Interaction between 568 fluconazole and amphotericin B in mice with systemic infection due to fluconazole-569 susceptible or -resistant strains of Candida albicans. Antimicrob Agents Chemother 43:2841-570 2847. 44. Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC. 2010. Candida albicans 571 572 forms biofilms on the vaginal mucosa. Microbiology 156:3635-3644.

- 573 45. Morris GB, Ridgway EJ, Suvarna SK. 2018. Traditional stains and modern techniques for
- 674 demonstration microorganisms in histology, p 254–279. In Suvarna K, Layton C, Bancroft J

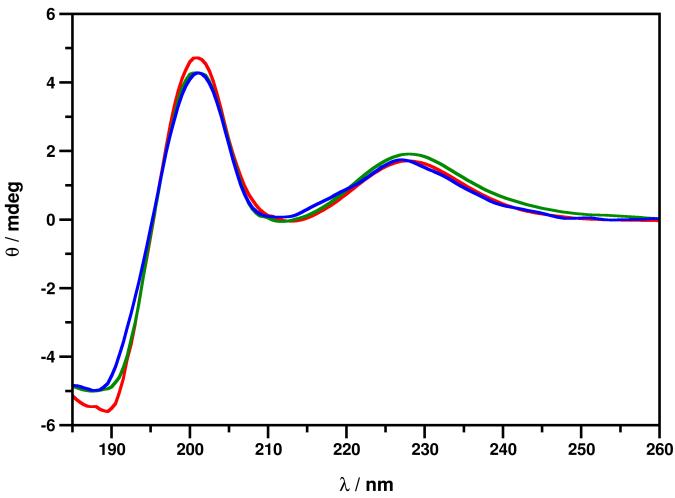
Accepted Manuscript Posted Online

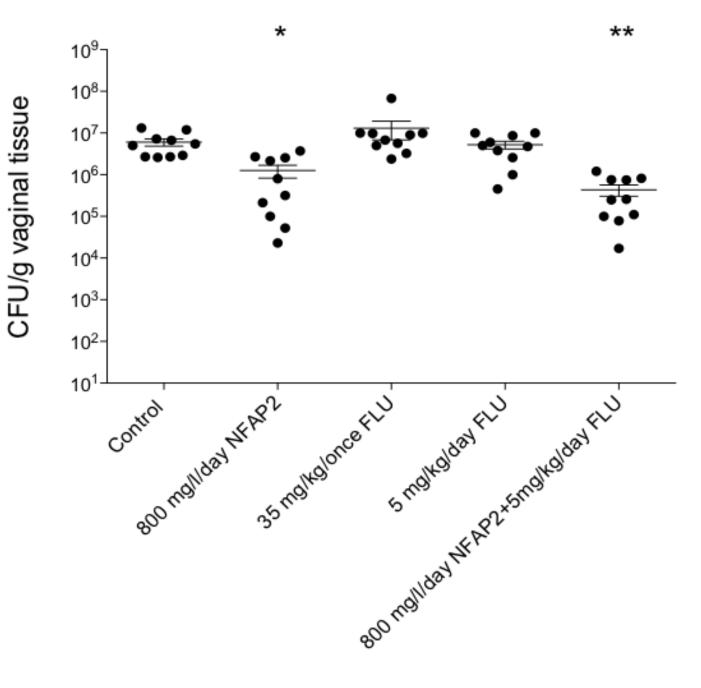
- (ed), Bancroft's theory and practice of histological techniques, 8th edition, Elsevier, New 575
- 576 York, NY.
- 46. UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids 577
- Res 45:D158–D169. 578

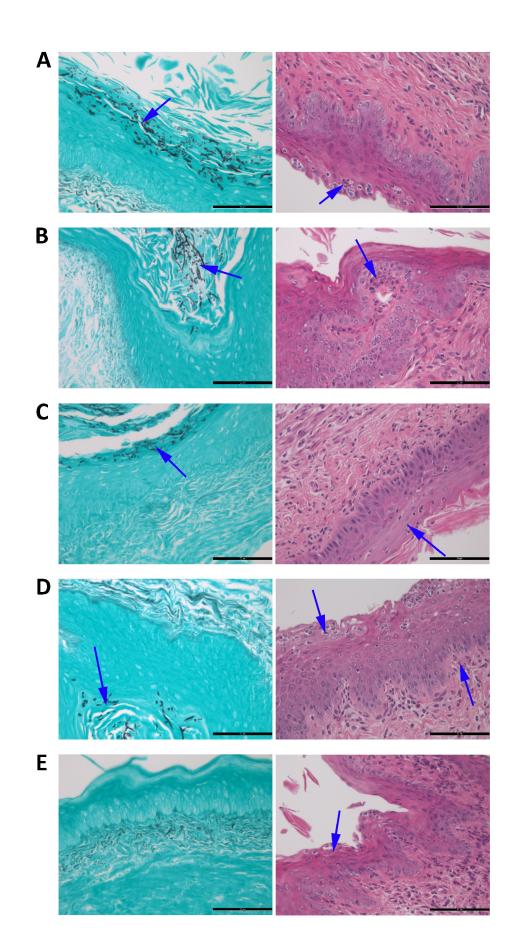
AAC


579 Figure legends

580


581	FIG 1 Scanning electron microscopy of <i>C. albicans</i> 27700 cells after incubation in (A and B)
582	RPMI 1640 medium, and (C and D) in RPMI 1640 medium supplemented with 800 μ g/ml
583	NFAP2 for 24 hours at 30 °C with continuous shaking at 160 rpm. Framed regions in (A and
584	C) are shown at higher magnification in (B and D) respectively. Arrows indicate the pore
585	formation in the cell envelop and the loss of cell content after exposure to NFAP2. Scale bars,
586	1 μm.
587	
588	FIG 2 ECD spectra of NFAP2 in ddH ₂ O (blue), and in the presence of <i>C. albicans</i> cells
589	immediately after exposure (red) to, and after 24 hours of incubation (green) with 100 μ g/ml
590	NFAP2 at 30 °C with continuous shaking at 160 rpm.
591	
592	FIG 3 In vivo efficacy of NFAP2, FLC and their combination in murine vulvovaginitis
593	model. The bars represent the mean \pm SEM (standard error of mean) of the vaginal tissue
594	burden of BALB/c mice intravaginally infected with FLC-resistant C. albicans 27700 isolate.
595	Significant differences (p-values) between the CFU numbers were determined based on the
596	comparison with the untreated control. Other significance values existing between the
597	different treatments are presented in Table S2 in the supplemental material. Level of
598	significant differences are indicated at p \leq 0.05 (*), p \leq 0.005 (**).
599	
600	FIG 4 Histological investigation of vaginal tissue from mice suffering from vulvovaginal
601	candidiasis (A) without and with topical (B) 5 mg/kg/day FLC, (C) 800 μ g/ml NFAP2, and
602	(D) combined 5 mg/kg/day FLC + 800 μ g/ml NFAP2 treatments. (E) Vaginal tissue of
603	uninfected mice. Vaginal tissues were stained with GMS (left) and H&E (right). Blue arrows


- Antimicrobial Agents and Chemotherapy
- AAC


- 604 indicate the presence of *C. albicans* 27700 cells (left images) and neutrophilic granulocytes
- 605 (right images). Scale bars, 50 μm.

Downloaded from http://aac.asm.org/ on November 27, 2018 by guest

