1	In vivo applicability of Neosartorya fischeri antifungal protein 2 (NFAP2) in treatment of
2	vulvovaginal candidiasis
3	
4	Renátó Kovács ^{a,b} , Jeanett Holzknecht ^c , Zoltán Hargitai ^d , Csaba Papp ^e , Attila Farkas ^f , Attila
5	Borics ^g , Lilána Tóth ^f , Györgyi Váradi ^h , Gábor K. Tóth ^{h,i} , Ilona Kovács ^d , Sandrine Dubrac ^k ,
6	László Majoros ^a , Florentine Marx ^c , László Galgóczy ^f
7	
8	^a Department of Medical Microbiology, Faculty of Medicine, University of Debrecen,
9	Debrecen, Hungary
10	^b Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
11	^c Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck,
12	Austria
13	^d Department of Pathology, Kenézy Gyula Hospital, University of Debrecen, Debrecen,
14	Hungary
15	^e Department of Microbiology, Faculty of Science and Informatics, University of Szeged,
16	Szeged, Hungary
17	^f Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences,
18	Szeged, Hungary
19	^g Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences,
20	Szeged, Hungary
21	^h Department of Medical Chemistry, Faculty of Medicine, University of Szeged, Szeged,
22	Hungary
23	ⁱ MTA-SZTE Biomimetic Systems Research Group, University of Szeged, Szeged, Hungary
24	^k Department of Dermatology, Venerology and Allergy, Medical University of Innsbruck,
25	Innsbruck, Austria

- 26
- 27 Address correspondence to László Galgóczy, galgoczi.laszlo@brc.mta.hu.

28

29 Running title: Treatment of vulvovaginal candidiasis with NFAP2

TABLE S1 Composition of media used in this study.

Description	Composition
	RPMI 1640 (Lonza BE12-167F), 10 mM HEPES buffer
R10 (Fibroblast cell culture	(Biochrom-Merck L1613), 0.1% gentamicin (Gibco 15750-037),
medium)	10% heat-inactivated fetal calf serum (PAN Biotech P30-1502), 2
	mM L-alanyl-L-glutamine (GlutaMAX, Gibco 35050-038)
SD (Sabouraud dextrose)	4% glucose, 1% peptone, and 2% agar (w/v) if necessary
YEGK (Yeast extract	
glucose medium with	1% glucose; 1% KH_2PO_4 ; 0.5% yeast extract, and 2% agar (w/v)
	if necessary
KH ₂ PO ₄)	
YPD (Yeast extract peptone	1% yeast extract, 2% bacteriological peptone, 2% D-(+)-glucose,
dextrose medium)	and 2 % (w/v) agar if necessary

32 **Table S2** Significance values from murine VVC model.

			G1 101
Treatment 1	Treatment 2	p-value	Significance
35 mg/kg FLC	untreated	>0.9999	non significant
5 mg/kg/day FLC	untreated	>0.9999	non significant
800 mg/kg/day NFAP2	untreated	0.0177	significant ([*])
800 mg/kg/day NFAP2 + 5 mg/kg/day FLC	untreated	0.0017	significant (^{**})
5 mg/kg/day FLC	35 mg/kg FLC	>0.9999	non significant
800 mg/kg/day NFAP2	35 mg/kg FLC	0.0016	significant (**)
800 mg/kg/day NFAP2 + 5 mg/kg/day FLC	35 mg/kg FLC	0.0001	significant (***)
800 mg/kg/day NFAP2	5 mg/kg/day FLC	0.0687	non significant
800 mg/kg/day NFAP2 + 5 mg/kg/day FLC	5 mg/kg/day FLC	0.0084	significant (^{**})
800 mg/kg/day NFAP2 + 5 mg/kg/day FLC	800 mg/kg/day NFAP2	>0.9999	non significant

33 Abbreviations: FLC, fluconazole; NFAP2: *Neosartorya fischeri* antifungal protein 2.

34 *: $p \le 0.05$, **: $p \le 0.005$, ***: $p \le 0.0001$.

FIG S1 FACS analysis and quantification of PI-positive *C. albicans* 27700 cells after
incubation for 24 hours at 30 °C under continuous shaking at 160 rpm (A) in RPMI 1640
(Sigma-Aldrich, St Louis, MO, USA), (B) in RPMI 1640 supplemented with MIC of NFAP2
(800 μg/ml), and (C) after treatment with 70% (v/v) ethanol for 10 min at 4 °C. Data represent
the results from three independent experiments.

FIG S2 *In vitro* toxicity-testing of NFAP2 on primary HKC and HDF. Fluorescence staining
with PI (red) and counterstaining with Hoechst (blue) of primary (A) HKC and (B) HDF after
24 hours exposure to 800 µg/ml and 1600 µg/ml NFAP2. Untreated cells were used as living
controls, and 50% ethanol-treated as dead control.

Fig S3 RP-HPLC chromatogram of recombinant NFAP2 produced by *P. chrysogenum* (A)
after cation-exchange chromatography, and (B) after the additional semipreparative RP-HPLC
purification step to reach the 100% purity.