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Abstract A straightforward, site-selective arylation of the bis(triflate)
of estrone by Suzuki–Miyaura reactions has been developed. Monoary-
lation occurs selectively at the D-ring with good to excellent yield. Such
products were exemplarily employed for the synthesis of estrones con-
taining two different aryl substituents.

Key words palladium, site selectivity, steroids, Suzuki–Miyaura reac-
tion

The functionalisation of natural products has been

always a tool to develop novel medicinal drugs with im-

proved activity, selectivity, stability, and/or better bioavail-

ability. Such semisynthetic approaches are common in

pharmaceutical research as they lower the number of syn-

thetic steps and the need to introduce certain functional-

ities. For example, chiral centres are already incorporated

and allow further derivatisation. In this regard, steroids

have been intensively studied as privileged structures

addressing various receptors with diverse biological func-

tions (Figure 1).1

Figure 1  Naturally occurring steroids with anticancer activity

For instance, cortistatins are natural occurring steroids

isolated from the marine sponge Corticium simplex and

found great attention in anticancer research. Such com-

pounds show potent antiangiogenic effects and inhibit pro-

liferation of human umbilical vein endothelial cells in low

nanomolar range.2 Hence, several derivatives have been

synthesized and studied for their anticancer activity.1,3

Structurally related estrones, 1,3,5(10)-estratrien-3-ol-

17-one, as steroidal hormones, among other activities re-

sponsible for menstrual and estrous reproductive cycles of

human females, have been functionalised on various posi-

tions leading to diverse pharmaceutical activity. In particu-

lar, ethynyl estradiol is commonly used as a component of

oral contraceptive pills.4 In contrast, 3-alkynylestrones

show antiviral activity and inhibition of alkaline phospha-

tases.5 Other studies revealed that functionalisation of posi-

tions two or three leads to antiangiogenic and antiprolifera-

tive activity and inhibition of steroid sulfatase. Undesired

estrogenic effects were not observed and, hence, these mol-

ecules can be used in anticancer therapies.2f,6 Moreover, in-

troduction of boronic pinacol esters at positions 3 and 17

lead to induction of gene expression in response to hydro-

gen peroxide and, therefore, enable selective detection of

hydrogen peroxide in living mammalian cells.7

In recent years, we studied the functionalisation of ste-

roids by palladium-catalysed cross-coupling reactions.5b,8 In

2010, Sun et al. reported the twofold Sonogashira reaction

of the bis(triflate) of estradione.9 Due to the biological im-

portance of 3- and 17-funtionalised 1,3,5,16-estratetraenes,

we decided to study arylation reactions of the bis(triflate)

of estrone, i.e., of 3,17-(trifluorosulfonyloxy)-1,3,5,16-

estratetraene. Herein, we report what are, to the best of our

knowledge, the first Suzuki–Miyaura reactions of the

bis(triflate) of estradione. The reactions proceed in good

yields and with excellent site selectivity. The synthesis of 3-

or 17-monoarylated 1,3,5,16-estratetraenes by classical
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methods has been previously reported.6f,10,11 However,

these reactions have, in most cases, a narrow product

scope.

3,17-(Trifluorosulfonyloxy)-1,3,5,16-estratetraene (1)

was synthesised from estrone in 79% yield in one-step ac-

cording to a known method.12 Subsequently, we studied the

Suzuki–Miyaura reaction of 1 with 3.0 equiv. of (4-me-

thoxy)boronic acid using different reaction conditions. At

the beginning, we employed 1,4-dioxane as the solvent and

SPhos as the ligand as these conditions were previously

successfully employed for reactions of triflates of estrones

(Table 1).8b However, the desired diarylated product 2a

could be isolated in only 36% yield (Table 1, entry 1). The

low yield can be explained by the fact that a significant

amount of monoarylated product 3a was formed (up to

30%). Therefore, in the following, we changed the solvent.

The reaction in toluene gave product 2a in an acceptable

yield of 68% yield (Table 1, entry 2), while the reaction in

Scheme 1  Synthesis of 3a–j. Isolated yields are given.
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xylene at elevated temperature resulted in lower yields

(Table 1, entry 3). Interestingly, a change of the ligand and

use of CataXium A (nBuPAd2), resulted in a complete change

of the product distribution and formation of monoarylated

product 3a in nearly quantitative yield (96%, Table 1, entry

4). Product 3a was isolated in only 77% yield when 1.5 in-

stead of 3.0 equiv. of the boronic acid was employed. The

structure of product 3a was confirmed by NOESY experi-

ments showing a correlation between the anisol protons

and the 13β-methyl group of the estrone moiety.

After optimisation of the conditions, we turned our at-

tention to the impact of the functional groups attached to

the arylboronic acid on the reaction outcome (Scheme 1).13

At the beginning, we studied the sterical influence of

the substituents. The reaction of 1 with p-tolylboronic acid

gave product 3b in excellent yield (95%), while product 3c,

containing a meta-substituted methyl group, was isolated

in only 68% yield.14 The use of ortho-tolylboronic acid was

unsuccessful as no conversion was observed. This steric ef-

fect might be explained by the presence of the methyl

group located in position 13 of the estrone core structure.

Table 1  Optimisation – Synthesis of 2a and 3aa

# Ligand (mol%) ArB(OH)2 
(equiv.)

Solvent Temp (°C) Yield 2a (%) Yield 3a (%)

1 SPhos (10) 3.0 1,4-dioxane 100 36 31

2 SPhos (10) 3.0 toluene 100 68 23

3 SPhos (10) 3.0 xylene 130 22 11

4 nBuPAd2 (10) 3.0 toluene 100  0 96

5 nBuPAd2 (10) 1.5 toluene 100  0 77

a Conditions: Pd(OAc)2 (5 mol%), ligand, K3PO4 solvent, 20 h.
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Scheme 2  Synthesis of 3,17-diaryl-1,3,5,17-estratetraenes 4a and 4b. Conditions: Pd(OAc)2 (5 mol%), SPhos (10 mol%), toluene, 100 °C, 20 h.
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The electronic effects were next studied. Electron-poor

arylboronic acids gave generally lower yields, due to their

lower reactivity in the transmetalation step. However, the

developed reaction conditions are consistent with the em-

ployment of various functional groups, such as the acetyl

(3h), chloro (3g), and vinyl groups (3i) as well as hetero-

cyclic groups (3j).

Finally, we exemplarily studied the synthesis of 3,17-

diaryl-1,3,5,16-estratetraenes starting from 3f and 3j. Using

our optimised conditions for the diarylation (Table 1, entry

2), we synthesized compounds 4a and 4b in moderate to

good yields (Scheme 2).

The structures of compounds 4a and 4b gave suitable

single crystals for X-ray analysis which provided an inde-

pendent proof that the first arylation takes place site-selec-

tively at the five-membered ring of the steroidal framework

(Figure 2).15

In conclusion, we developed an efficient methodology

for the selective synthesis of arylated estratetraenes. The

first arylation steps occurs selectively at position 17 and

allows for further derivatisation at the second triflate group

located at the A-ring.
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